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ABSTRACT

Algorithms for Video Object Detection and Segmentation

with Application to Content-Based Multimedia Systems

Huitao Luo

We have designed several analysis algorithms for video object (VO) detection and

segmentation, which is an important part of the new MPEG4 and MPEG7 stan-

dards. The algorithms are developed in two directions, i.e., automatic algorithms

and semi-automatic algorithms.

In automatic analysis research, our work is mainly focused on model-based algo-

rithm design. Instead of working on general-purpose algorithms, we design detection

and segmentation algorithms for typical multimedia applications. By constraining

the application domain, we could represent the video objects to be processed with

some models. The models are created with speci�c statistical structures, but are

still generally applicable in certain application domains. Speci�cally, we have de-

signed video object detection and/or segmentation algorithms for three applications:

(1) Real-time VO segmentation for videophones. (2) Anchorperson detection and

segmentation for broadcast news indexing and retrieval. (3) Face detection in the

compressed DCT domain.

For videophone applications, we design a blob-based region model and a shape

model to represent typical head-and-shoulder foreground. Both models use a Gaus-

sian assumption for their feature vectors. At the system level, a hierarchical struc-

ture is designed to support an online processing of model-creating, model-�tting,

and model-updating. In our experiments, a QCIF size video sequence is segmented

in real time using software only into three video objects: a background, a head and a



shoulder on average Pentium PC platforms. Based on the real time performance of

the algorithm, we discuss two direct applications of it, i.e., real time VO generation

for MPEG-4 codecs and content-based bit-rate control for traditional H.263 codecs.

For anchorperson detection, we propose to model anchorperson patterns with

their color and shape features. The detection problem is decomposed into a color

model based face region detection and a shape model based head-and-shoulder pat-

tern detection problem. The statistical shape model design is similar to what we

used for videoconference applications, except an o�ine model �tting.

Our work on face detection proposes to merge two types of face detection algo-

rithms in the literature, skin-color based and texture based face detection. Though

each of them has been explored extensively, our work for the �rst time shows that

they can be combined with a hybrid statistical model (color-texture model) to gen-

erate better detection performance. In addition, the hybrid model is designed in the

compressed DCT domain. A number of fundamental problems, e.g., block quanti-

zation problem, preprocessing, and feature vector selection and classi�cation in the

DCT domain, are discussed.

In semi-automatic analysis research, an interactive authoring system is designed

for video object segmentation. This system features a new contour interpolation

algorithm, which enables the user to de�ne the contour of a VO on multiple anchor

frames while the computer interpolates the missing contours of this object on every

frame automatically. Typical active contour model is adapted and the contour

interpolation problem is decomposed into two directional contour tracking problems

and a merging problem. In addition, new user interaction models are created for the

user to interact with the computer. Experiments indicate that this system o�ers a

good balance between algorithm complexity and user interaction eÆciency.
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Chapter 1

Introduction

1.1. History and Motivation

The emergence and development of modern multimedia technology mainly happened

within the past 5-10 years. One or two decades ago, people were still enjoying ana-

logue telephones, black and white televisions and simple cassette recorders. The

major use of computers was for scienti�c computing. There was no concept of mul-

timedia systems. But today, powerful personal computers with high speed Internet

connections, Hi-Fi CD based audio systems, VCD and DVD players are all quite

common in average households. The concept of multimedia is not only a hot topic

in the research community, but also in
uencing the way of people's life.

The fundamental driving forces behind these changes are the fast advancing in

the computing, communication and storage techniques and industries. Especially in

the past �ve years, the processing power of personal computers has been experiencing

exponential climbing. It is no long diÆcult to decode one or even several MPEG

videos in real time on a good Intel architecture personal computer without any

hardware acceleration. The solving of even challenging tasks such as real time

encoding of MPEG video, real time rendering of 3D texture, etc., are already on the

near horizon. In communication industry, wide-bandwidth optical �bers constitute
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powerful backbone network, which supports Internet service to the every corner

of the world. People send and receive emails, make phone calls with voice over

IP, download video streams from news web sites such CNN, MSNBC, etc. Even

videophones are becoming popular with the price drop of CCD cameras and more

popular use of 56K modem and DSL techniques. In the storage industry, high

capacity storage devices are becoming more reliable and a�ordable. A single piece

of DVD disk can hold two hours' high quality digital video and it is also possible to

add high capacity hard disks to traditional TV set top boxes to record TV programs

and o�er better services such as browsing, fast forwarding, replaying, etc.

With all these developments, the state-of-the-art of multimedia research is also

experiencing big changes. In the 1980s, voice was the only media that the capacity of

our communication channels could accommodate. Therefore voice compression and

coding was the major research issue at that time. Typical technical achievements

at that time include DPCM, VQ and subband coding. In the early 1990s, with the

maturity of personal computers and better communication capacities, digital image

and video became the media forms that people were eager to handle. Intensive re-

search e�orts were directed to the eÆcient compression and coding of digital image

and especially digital video. Fruitful results were obtained both theoretically and

practically. In the theoretical aspect, traditional source coding framework was built

up solidly. Statistical coding methods such as Hu�man coding, Arithmetic coding

were thoroughly studied. The capacities of di�erent kinds of transform coding meth-

ods, especially discrete cosine transform (DCT), wavelet and subband transforms

were also compared and investigated in detail. In addition, because of the need of

video coding, a complete theoretical system was built up for motion analysis, which

includes motion estimation, motion compensation and motion segmentation. In the

application aspect, a series of international standards were built up that represent
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the good balance between algorithm eÆciency and system realization complexity.

These include: JPEG for coding continuous tone images, JBIG for coding bi-level

images, MPEG-1 for coding digital video for the purpose of storage and playback,

MPEG-2 for coding of digital video (mainly) for the purpose of broadcasting, and

H.261 and H.263 for real time videophones and videoconferencing service. The

availability of these standards helped the convergence in multimedia industry and

promoted the commercialization of research results. The e�orts of standardiza-

tion were so successful that the MPEG working group was awarded the EMMY

AWARD [15] in 1996.

Technically, the major topic of early multimedia research, including the related

standards was to compress the large amount of media data (especially video). It

is reasonable to mention the standards such as JPEG, MPEG-1 and MPEG-2 as

compressing standard. But as techniques evolve, traditional waveform, sample-based

and frame-based signals become unsatisfactory for a variety of new applications

and requirements. For example, with better capturing, communication and storage

techniques, the amount of digital media data from various sources is increasing

dramatically that overwhelms the management capacity of traditional databases.

The users of image databases prefer to �nd a picture or video clip that is \similar"

to a given one, as compared to the traditional key words based searching. Internet

surfers would like to go directly to news stories that are most interesting to them

rather than to download and view the whole news video from beginning to the end.

In addition, as the development of computer animation, virtual reality and video

based interactive game, the boundary between computer graphics and traditional

media forms such as video and audio is becoming less crucial. Both the research

community and the industry come to realize that it is necessary and important

to develop comprehensive systems and standards that handle various media forms:
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video, audio, text and computer graphics in a consistent way. All these requirements

boil down to a new concept of content-based multimedia system, which is also where

the topic of this dissertation resides.

1.2. Content-Based Multimedia Systems

In the available media forms, text and computer graphics are synthesized from

semantics with well-de�ned content information, while video and audio are captured

and digitized signals with no clear content de�nition. In a content-based multimedia

system, low-level signals such as audio and video are associated with high-level

content information, and they are coded, transmitted, stored and managed with

content awareness. Because human beings are the end user of most multimedia

systems, content-based system is intuitively superior to traditional low-level signal-

based systems. In the literature, a number of research works have been reported on

how content analysis and semantic information can help create better multimedia

systems. Here we try to overview them brie
y in several (not rigid) categories.

1. EÆcient video coding. Content information can help improve coding eÆ-

ciency in several ways. Typical works in this category include model-assisted

video coding, model-based video coding and eigen-face based coding. Model-

assisted coding was �rst developed by Eleftheriadis and Jacquin [28, 29]. They

designed an ellipse-�tting algorithm to locate human faces in videoconferences

and a region adaptive rate control algorithm was developed for subband and

H.261 encoders. Their basic idea is that more important regions (such as

face region) receive more encoding bits as compared with less important re-

gions (such as backgrounds). This approach o�ers an interesting content-based

extension for traditional signal compressing algorithms. In model-based cod-

ing [3, 58, 57], a generic mesh model is designed for human faces and this model
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is �tted to actual faces in time of coding. The face motion is then tracked and

projected into a feature space spanned by a set of \action units" [58]. This ap-

proach is demonstrated to be able to transmit face images at the rate of several

kilo-bits per second with good SNR quality. But its major problem is that it is

hard to �nd the �tting and the tracking parameters for individual faces. Sim-

ilarly, Moghaddam and Pentland [79] proposed to encode human faces with

eigen-faces based on their research of human face recognition. Eigen-faces

are obtained through K-L expansion of a large training data set. Actual face

vectors are projected to the eigen-faces and only the projections are coded.

Their reported coding performance of about 100 bytes for faces from their

Photobook database.

2. Nonlinear video structuring for indexing and retrieval. To manage the

growing amount of video data on the web, many research works are carried out

to create nonlinear indexing structures from linear video sequences. Simple

clustering methods have been shown to be fairy e�ective for content analysis

stages such as scene cut detection and key frame selection [118, 35]. Some high-

level abstraction stages are also proposed. For example, Yeung [114] proposed

to generate a Scene Transition Graph based on the temporal position and the

chromatic similarity of key frames. In [32], Zhang designed an automatic

news video analysis system. A simple template is designed to detect anchor-

person scene cuts and the news video is segmented into separate story units

based on anchorperson detection. The story units are further grouped into

domestic news, international news, weather reports and commercials. In [82],

Mukhopadhyay and Smith reported an automatic web site design system for

lecture media, in which the captured lecture video, audio and power-point

lecture slides are synchronized based on their contents for Internet retrieval.
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3. Embedded video hotlinks. As a nature extension of hotlinks in HTML

documents, several research works have proposed to embed hotlinks in video

objects. That is, semantically meaningful video objects are de�ned within cer-

tain spatial and temporal regions of the video sequences. When users double

click mouses within these regions, the embedded hotlinks are activated. Typi-

cal examples include IBM's HotVideo [109], Veon's HyperVideo [110] systems

and MIT Media Lab's Hyper-Video system [23]. In addition, the suggested

\interactive TV" [44] also works in a similar manner.

4. Similarity-based indexing and retrieval. Early work in this area mainly

focused in signal similarities, for example, color histograms [94], texture fea-

tures [93, 98], edge features [119] and motion similarities [89, 25]. Some works

tried to obtain certain semantic information from video data by automatic or

semi-automatic de�nitions of objects, and the indexing and retrieval work is

then designed based on the object features, for example, object motion or-

bits [13], object shape [92, 24, 43, 47, 46], spatial and temporal relationship of

objects [13], etc. But no eÆcient methods available for video object de�nition

is the major problem for these works.

5. Standardization e�orts of MPEG-4 and MPEG-7. In recognition of

the content requirements in multimedia research, MPEG committee continues

their work on MPEG-1 and MPEG-2 with the proposal and development of

MPEG-4 and later MPEG-7 standards. The major concern of MPEG-4 is

to combine eÆcient media compression algorithms with content-aware media

representations. In this way, the compressed video and audio can still be man-

aged eÆciently based on their contents. MPEG-4 realizes this by the de�nition

of objects. Video, audio, graphics and texts are all coded and transmitted as

individual objects. The objects are then composed together at the time of
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playback. Under the MPEG-4 framework, the content information, once ob-

tained, is maintained in its basic representation. Therefore, content-based pro-

cessing such as indexing, retrieval, content editing, content �ltering, etc. are

all convenient tasks. MPEG-4 is an important standard in multimedia in that

it o�ers an object-based representation and platform in which various forms

of media can be processed, transmitted and stored. But MPEG-4 does not

specify the process of content analysis. For example, MPEG-4 assumes video

objects are created outside of its system. Similarly, the upcoming MPEG-7

is also going to by-pass the stage of content analysis. According to the latest

requirement release [49], MPEG-7 \aims to create a standard for describing

the multimedia content data", which will support \the increasing number of

cases where the audio-visual information is created, exchanged, retrieved and

re-used by computational systems". That is, the target of MPEG-7 is to cre-

ate a description standard that will facilitate the computation processing of

multimedia data. In addition, according to [49], MPEG-7 is trying to design a

representation standard for high-level visual media interpretation as compared

with the object-based MPEG-4 standard.

To sum up, though we do not intend to be inclusive, it is already obvious based on

the surveyed works that content-based system is the trend of multimedia research.

Because a human observer is the end consumer of media information, appropriate

content information helps in various aspects of media processing: coding, indexing

and retrieval, media interaction, media streaming and �ltering, etc. MPEG-4 and

MPEG-7 intend to create a general framework for content systems, i.e., they spec-

ify mechanisms for content representation and content description, content trans-

mission (streaming, rate control, error control, etc.), content playback (rendering,

composing), and content storage and management (index, retrieval). But the very
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gap between the traditional waveform-based media system and the content-based

system, i.e., content analysis stage, is left without de�nition.

1.3. Multimedia Content Analysis

Multimedia content analysis is the process of obtaining content information from

media signals. As the concept of multimedia itself, multimedia content analysis

research is a new research area. It is related to traditional research topics such as

speech recognition, image understanding and computer vision, but is not totally the

same. The di�erence includes at least the following aspects.

First, multimedia content analysis refers to a wide range of processing results

that spread the media understanding spectrum. For example, in video content

analysis, scheme-cut detection and key frame selection can be done based on simple

signal statistics. Image similarity could be compared based on their simple statistics

such as color and motion histogram, or at the object level by comparing the shape,

color similarity of the objects within the images (e.g., MPEG-4), or even at the

high-level of image understanding by comparing the meaning of the images (e.g.,

MPEG-7). The speci�c choice of analysis methods is highly application dependent.

Second, in multimedia systems, waveform signals are indispensable components.

The content information is used to manage and improve the waveform signals, not

to replace them. For example, in the videophone case, people always would like to

see the original video of their partner though they may have clear idea of the content

of this video, i.e., who it is. Therefore, content analysis algorithms for multimedia

applications have to work with various signal qualities (due to di�erent compression

qualities) and sometimes have the issue of compressed domain processing, i.e., to

work directly on the compressed signals.

Third, the end consumer of multimedia system is human, therefore, the quality
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requirement on content analysis algorithms is more 
exible. In some cases, for

example, content-based retrieval, the performance of content analysis algorithms is

still useful at certain percentage of accuracy that may not be acceptable for most

computer vision tasks.

Fourth, multimedia content analysis can sometimes make use of information fu-

sion over various media forms. For example, in automatic broadcast news indexing,

information from video, audio and close caption could be combined in order to get

e�ective indexing results.

In this thesis work, the research e�orts are mainly focused on video analysis at

the object level, i.e., object detection and segmentation. Therefore, we give a brief

survey on related works, which will help create a reference framework, as well as

help illustrate the problems solved in this thesis.

1.3.1 Video Object Detection and Segmentation: the Problem Formu-

lation

In multimedia research, the concept of video object (VO) was �rst de�ned by MPEG-

4 standard, as atomic units of image and video content. According to [48, 87], VOs

could be a semantically meaningful unit such as a talking person, a car, etc., and

they could also be just a signal unit. For example, conventional rectangular imagery

is handled as a special case of such objects. In this work, we use video objects to

refer to only the semantic units, which are generated by video analysis.

In video analysis, VO detection and VO segmentation are two related but dif-

ferent concepts. To detect a VO is to �nd the existence of it, but not necessary

to �nd its exact boundary and regions, while the concern of VO segmentation is to

�nd the exact location and boundary of the object. Therefore, the quality measures

for detection are miss rate and false alarm rate, while the quality measures for seg-
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mentation are boundary and region accuracy [115, 69]. In some cases, segmentation

may be a preliminary stage for detection, but by de�nition, they are two di�erent

tasks.

1.3.2 Video Object Detection and Segmentation for Multimedia Appli-

cations: the Approach

General-purpose image segmentation and object detection has been diÆcult prob-

lems in computer vision for quite a few years. As we have already seen in the survey

on content-based systems in Section 1.2., the speci�c analysis requirements for mul-

timedia applications are wide-ranging, and video analysis for multimedia systems

could be designed application speci�c. With application domain knowledge and

limitations, analysis problems become solvable with today's computation powers.

So far, video analysis for the purpose of video object segmentation and detection

has been investigated in a variety of applications.

1.3.2.1 Video Object Segmentation

Automatic video object segmentation has been studied extensively by the multi-

media community since the introduction of the VO concept by MPEG-4. The

approaches in the literature could be classi�ed generally into several categories:

1. Foreground and background segmentation algorithms assume that the

foreground of the picture, e.g., human beings, are moving objects while the

background is static objects. Therefore, the object segmentation problem is

solved by moving region detection. Early works in this area include [55, 1],

several similar but improved algorithms [19, 41] were also proposed to MPEG-

4 as optional VO segmentation methods. The quality of these algorithms are
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good when the assumptions are true, but when foreground motion stops, the

performance degrades greatly.

2. Motion �eld segmentation is another type of segmentation that is based on

motion. Object regions are obtained by �nding the uniform regions in dense

motion �elds. Typical works by Wang and Adelson [107, 106] and Swahney

and Ayer [8] proposed to segment the motion �elds by clustering the motion

�eld with EM algorithm. In [18, 71], boundary models such as active contours

and level sets were proposed to segment the motion �elds. A common problem

for motion based approaches, however, is that segmentation results are only

created on individual frame bases, no tracking algorithm has been designed to

generate temporally consistent video objects. In addition, motion clues can

not always be associated to semantically meaningful video object de�nitions.

3. Multiple image feature based segmentation algorithms segment video

objects combining multiple feature clues. Altunbasak and Tekalp [6] combined

color segmentation with motion segmentation by doing motion segmentation

on top of over-segmented color regions. Ohm and Ma [84] introduced a con-

cept of cluster segmentation, in which a clustering algorithm is designed over

multiple image features over a pixel basis. Di�erent features contribute to

clustering process depending on their heuristic reliable factors. Alatan [4] pro-

posed to combine the results of color and motion segmentation with a \rule

based region processor". Though combining multiple features is theoretically

meaningful, the algorithm becomes fragile and unstable when too many factors

are included. Most works in this category only report experimental results on

limited samples, and there is no practical system available so far.
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Despite the extensive research e�orts invested on automatic video object segmen-

tation, the results are only acceptable on an application-speci�c basis. Therefore,

many researchers seek to solve the problem with semi-automatic approaches. For

example, Chalom and Bove [12, 11] designed a semi-automatic segmentation system

to identify and track objects, which they later used to create a hyperlink video [23]

system. In their system, the user speci�es video objects interactively on the begin-

ning frame and the computer tracks the objects temporally based on multiple image

features including color, position, motion and texture. Castagno and Kunt [10], Cor-

reia and Pereira [22] and Gu and Lee [42] also proposed similar systems that create

VOs with human initialization and machine tracking. Zhong and Chang [117, 116]

built up a video object database consisting of several hundreds of objects with the

segmentation tool they designed.

1.3.2.2 Video Object Detection

Object detection has also been studied in a number of multimedia applications.

Most detection algorithms reported so far in multimedia research have been human

face detection and anchorperson detection, due to their pervasive appearance in

multimedia videos and their well-de�ned structures. As discussed in Seciton 1.2.,

detection of faces and anchorpersons help in eÆcient indexing and retrieval design

in multimedia databases.

In the literature, face detection algorithms can be classi�ed generally into two

groups: color based approaches and texture based approaches. Color based works

try to model human skin color in various chromatic spaces (RGB, YCbCr, HSV)

with various statistical models. In [85] Oliver and Pentland modeled the face color

and background color as a mixture of Gaussian distributions with Expectation-

Maximization (EM) algorithm. Garcia and Tziritas [39] proposed to represent the
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skin color by approximating its distribution volume in the YCrCb space with a

number of linear planes. Wang and Chang [105] applied the color modeling directly

to compressed MPEG macroblocks and modeled the color detection problem as

a Bayesian minimal cast decision rule problem. In addition to color modeling,

a number of recent works seek to include additional heuristics such as texture,

symmetry, region ratio, etc [5, 112, 2].

Texture based works, however, try to detect face directly from the grayscale

information. Sung and Poggio [97] developed a good face detection system based on

multimodal gaussian clustering at MIT AI lab. Another famous face detector was

developed by Rowley and Kanade [88] at CMU, based on neural networks. They

later applied this face detector to news video indexing [91]. Ne�an and Hayes [83]

reported use of Hidden Markov Model (HMM) for face detection. Moghaddam and

Pentland [78] suggested to use eigen-space decomposition methods for face detection

purpose.

In general, most texture-based methods are developed from face recognition

algorithms, which need various training stages. They have good detection accuracy

within the scope of their training set but the missing rate climbs high for data

outside the training data set. For example, most texture-based algorithms detect

only faces in frontal views with limited tilt and rotation. In contrast, color-based

algorithms su�er from their high false alarm rate when the background has skin

type colors. Despite the various heuristics that have been proposed, color-based

approaches are still not as stable as texture-based approaches. It seems it will be

a fruitful direction to combine them together, but so far, no such work has been

reported yet.

As compared with face detection, less works on anchorperson detection are re-

ported. In Zhang's pioneering work [32] on broadcast news analysis, some simple
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templates are created for anchorperson frames that include one and two anchorper-

sons, with the size and the location of the anchorperson almost �xed. The incoming

video frames are compared with these templates directly. Though the author had

reported good results on experimental videos, their template design is too simple

to accommodate reasonable variations in di�erent anchorperson shots. In another

recently work, Liu and Huang [62] proposed to detect anchorpersons by color-based

human face detection and temporal frequency based clustering method.

1.4. Thesis Outline and Contributions

This thesis is in the area of video object detection and segmentation for multimedia

applications. Three applications have been studied: real time video segmentation

for head-and-shoulder type videophone service, face and anchorperson detection

for video indexing and retrieval, and semi-automatic generation of video objects for

MPEG-4. We developed the algorithms in two directions, i.e., automatic algorithms

and semi-automatic algorithms.

In automatic VO segmentation and detection research, we try to tackle the prob-

lems by constraining the application domain or the problems to be solved, so that

the video objects to be detected or segmented can be represented with some well-

de�ned templates and/or models. The detection and/or segmentation problems can

then be formulated as model-based object detection problems. In our work, the term

model is used in a very general sense. In principle, any mathematical formulation

that has the abstracting power to represent a category of video objects is referred to

as a model. However, in most cases, statistical models are the most commonly used

model representations. Speci�cally in our work, Gaussian and mixture of Gaussian

models are extensively used for various model designs, e.g., texture models, color

models and shape models in di�erent applications. Two types of methods are used
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to create models in our work: (1) Pure training example based modeling method. In

this method, all the model parameters are obtained directly from training examples,

no human heuristics are used. For example, the skin color model, the face texture

model and the shape model for head-and-shoulder patterns in this work are created

with this method. (2) Semantic abstraction based method. This method creates

models with certain human abstraction and knowledge. For example, to segment

and track the head-and-shoulder pattern, a blob model is designed in this work.

That is, we believe that the head-and-shoulder pattern could be represented with

two blobs in appropriate ratios and positions.

In semi-automatic video object segmentation research, our major concern is to

design highly eÆcient system to facilitate human-and-computer cooperation. Unlike

previous works in this area that have their major attention to the automatic aspect

of the system, our system design is more focused to the interactive aspect, i.e., we

care more for eÆcient interface design.

The structure of this thesis is organized as follows. We begin in Chapter 2

by presenting a real time video segmentation algorithm for typical videophone and

videoconference applications. In this algorithm, the foreground (a person in its

head-and-shoulder pattern) and the background are modeled separately. The head-

and-shoulder patterns are represented with Gaussian type, blob-based region models

and a Gaussian type shape model. The algorithm makes use of online information

to build and track statistical models for both the background and the foreground

on the 
y. This algorithm is related to the foreground and background segmenta-

tion algorithms mentioned in Section 1.3.2.1, but the domain knowledge is better

embedded in our models. Due to the domain constraints used and a hierarchical

processing structure design, this algorithm runs using software only in real time on

an Intel Pentium 200 MHz PC. Based on this real time segmentation result, two
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possible applications, i.e. to introduce MPEG-4 standard to real time videophone

service and to make use of segmentation results to further improve conventional

H.263 at the very low bit rate, are discussed.

Chapter 3 extends our head-and-shoulder statistical models from online appli-

cations to o�ine applications by developing an automatic anchorperson detection

algorithm for broadcast news video indexing and retrieval. Anchorperson patterns

are modeled as head-and-shoulder patterns similar to Chapter 2. However, in order

to �t the models to candidate video frames in an o�ine fashion, expensive searching

work has to be done. To overcome the diÆculty, the detection problem is decom-

posed into a color-based face region detection problem and a model �tting problem,

with the �tting process constrained by the face detection results. Compared with

previous anchorperson detection works, our approach is more 
exible than [32], and

more accurate than [62].

In Chapter 4, we further investigate the problem of face detection, which we

studied as a functional module for anchorperson detection in Chapter 3. Unlike

previous approaches, we seek to design detection algorithms with both texture and

color clues. In addition, to better process the large amount of video data in the

compressed domain, we design the algorithm in the compressed DCT domain rather

than in the pixel domain. Part of this work is motivated by the earlier work of Wang

and Chang [105]. We extend their work by designing a texture module, which is

similar to Sung's [97] work in the pixel domain. However, in order to achieve the

domain transition, we discuss some fundamental issues such as DCT block e�ect,

quantization e�ect and feature selection.

In Chapter 5, we design and implement an interactive system for general-purpose

video object segmentation, which represents our belief in the solution of the general-

purpose segmentation problems. Unlike the automatic algorithms discussed in the
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previous chapters of this thesis, we seek to design computer algorithms in combina-

tion with human-computer interaction mechanism at the early design stage in order

to obtain good system eÆciency. A new contour interpolation algorithm is designed,

which enables the user to de�ne the contour of a video object on multiple anchor

frames while the computer interpolates the missing contours of this object on every

frame automatically. In addition, new user interaction models are created for the

user to interact with the computer, which is fundamentally di�erent from available

simple tracking approaches in the literature [12, 10, 22, 42, 116].

Finally in Chapter 6, we conclude the thesis.

In summery, the contribution of this thesis work includes the following aspects:

1. A design and implementation of a real time segmentation system for video-

conference applications, which supports MPEG-4 standard for real-time ap-

plications.

2. Developed an optimal region adaptive rate control algorithm for H.263 that

combines objective and subjective quality measures. Implemented the algo-

rithm together with the online segmentation algorithm and had the system

runs in real time software only.

3. A design and implementation of a highly eÆcient model based anchorperson

detection algorithm.

4. A systematical study of face detection problem in the compressed domain.

The problems discussed include preprocessing, block quantization e�ect and

feature selection in the compressed domain.

5. A design and implementation of an eÆcient interactive video object segmen-

tation system.
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6. Release of several general-purpose software packages. An image processing

library in C++, as well as an image manipulation library with a Microsoft

Windows GUI environment is developed.

During this thesis work, publications by the author directly related to the thesis

work include [68, 64, 63, 66, 65], relevant but not directly related include [69, 70, 67].
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Chapter 2

Real-time Model-Based Video Object

Segmentation

2.1. Introduction

With current computer system's increasing power to transmit, process and store

digital video, a multimedia system's objective is no longer just to compress video

signals as two-dimensional signals for transmission or storage. Instead, it should

enable functionalities such as content-based transmission, manipulation, indexing

and retrieval. These new functionalities make it necessary to have new models to

represent video contents, and eÆcient ways to create them. The emerging MPEG-4

international standard intends to address the requirements of object-based video

compression and representation. However, MPEG-4 does not standardize solutions

for the problem of video object (VO) creation.

Segmenting objects from image and/or video data has been under intensive re-

search. Numerous algorithms are available in the literature. However, few can really

achieve automatic VO generation. Some of them only create low level image regions

without any semantic meaning, such as [90, 104, 17]; others, like [55, 1, 107, 96, 17,

19, 41], depend heavily on motion, which is valid only in quite limited cases.
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As such, we believe that more practical solutions to VO segmentation problems

may be developed in two directions. One is to introduce some kind of human

interaction in the VO segmentation process, such as the works reported in [12, 10, 22,

42, 116]. The other is to limit the application domain and use some domain-speci�c

knowledge to guide the segmentation. For example, motion-based segmentation

algorithms are actually using the domain knowledge that assumes VOs are moving

while the background is static. In [22], video analysis algorithms are classi�ed

into those for online applications and those for o�ine applications. Obviously, a

human interaction-based approach is more appropriate for o�ine applications while

a domain knowledge guided approach is required for online, real time applications.

Videophone is a major type of real time video service in multimedia applications

and its head-and-shoulder type picture pattern also o�ers important constraints for

exploiting domain knowledge. This is the reason why this work is focused in the

direction of domain constrained, real time analysis for videophone service.

In a signal compression sense, traditional transform coding algorithms such as

H.261 and H.263 are well developed for videophone service. However, with intelli-

gent video content analysis, videophone applications can be further improved. For

example, by segmenting the videophone pictures into foreground objects (head and

shoulder) and background object, the encoder can use di�erent quantization and

error protection to di�erent video objects. Also the users may have the option to

compose the videophone picture according to their personal tastes, i.e., they may

choose di�erent background pictures, or may add some icons or text to the picture.

In addition, an encoder with semantic information may introduce content-based

scalability in addition to traditional quantizer adaptive scalability by discarding

less important video objects. This is especially important for applications without

QoS guarantee such as Internet and wireless videophone services. Actually, the
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new content and video object oriented MPEG-4 standard can be eÆciently applied

to videophone applications as well as other applications. However, an important

problem is that a reliable and real time video analysis algorithm is necessary.

In this chapter, we propose a model-based, real time video object segmentation

and tracking algorithm mainly for the videophone applications. This algorithm uses

inexpensive videoconference quality CCD cameras and runs software only in real

time on average PC platforms. We believe it is a reasonably good algorithm for

introducing the content-based approaches into videophone applications.

The essence in this algorithm is its limited application domain or context, i.e.,

in a typical videophone setup, we assume the foreground object is one person in

a head-and-shoulder pattern and the background is relatively static. Because of

these limitations, we develop a statistical model to represent appropriate a priori

knowledge and then try to �t the model with the actual video data. More speci�cally,

our algorithm segments the input video into three VOs: a background, a head/face

and a shoulder. The domain knowledge is modeled from two aspects. One is a

blob modeling of each VO region's color and spatial distribution, and the other is

a shape modeling. The segmentation and tracking process is actually the process

of �tting and updating of the region model and shape model. In order to generate

video objects with re�ned boundaries, novel spatial and temporal �lters are designed

as extensions of the statistical modeling framework. In addition, a hierarchical

structure is used at the system level to coordinate the processing and to speed up

the performance.

The structure of this chapter is as follows. First in Section 2.2., we discuss

blob-based region modeling and Kalman �lter for blob tracking. In Section 2.3.,

we introduce shape modeling. In Section 2.4., a hierarchical system structure is in-

troduced to improve system performance. Segmentation experiments are presented
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in Section 2.5.. In Section 2.6., we discuss the application of the segmentation

algorithm to real time videophone services. Finally the chapter is concluded in

Section 2.7..

2.2. Blob Based Region Modeling and Tracking

2.2.1 Motivation and Context

This work is motivated by the widely used \chroma-key" technique and the hu-

man body tracking work of \P�nder" [111]. In addition, it is also related to the

foreground/background segmentation work by Lettera and Mastera [55]. The basic

nature of the algorithm is an online one. First, assume a background scene that

contains no foreground, which enables the creation of a background model. Then

when the foreground enters, another model is created for the foreground. As dis-

cussed in the introduction, the purpose of modeling is to �nd proper representation

of domain knowledge that helps with segmentation and tracking.

2.2.2 Foreground Model

In video telephony, typical foreground can be represented as a \head-and-shoulder"

pattern. We model it with two connected \blob"s. Here the de�nition of blob is sim-

ilar to that in [111], i.e., each blob has a spatial (x; y) and chromatic (Y; U; V ) Gaus-

sian distribution and a support map which indicates whether a pixel is a member

of a blob. In this model, each pixel is represented by a feature vector (x; y; Y; U; V ).

The feature vectors of the pixels belonging to blob k have a Gaussian distribution

with mean vector mk and covariance matrix Ck. Because of their di�erent seman-

tics, the spatial and chromatic distributions are assumed independent. That is, the

matrix Ck is assumed block-diagonal.
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In addition, we introduce some de�nitions related to blob modeling as follows.

First, the support map sk(x; y) for blob k is de�ned as

sk(x; y) =

8><
>:

1 if pixel (x,y) belongs to blob k, k=1, 2, 3, . . . ,

0 otherwise:
(2.1)

Based on sk(x; y), blob k's containing rectangle rectk is de�ned as the rectangle with

the following coordinates:

rectk = rectangle[(xt; yt); (xt; yb); (xb; yt); (xb; yb)]; (2.2)

where 8><
>:

xt = supsk(x;y)=1(x)

xb = infsk(x;y)=1(x)
, and

8><
>:

yt = supsk(x;y)=1(y)

yb = infsk(x;y)=1(y)
: (2.3)

For segmentation purposes we also de�ne a cumulative support map s(x; y) for each

image as:

s(x; y) =

8><
>:

k if sk(x; y) = 1, k=1, 2, 3, . . . ,

0 otherwise.
(2.4)

In addition, we de�ne the entire set of the support maps of foreground blobs as the

foreground map f(x; y):

f(x; y) =

8><
>:

1 s(x; y) 6= 0;

0 s(x; y) = 0:
(2.5)

The relation between these concepts can be seen in Figure 2-1: the left image illus-

trates two blobs, the middle image shows a support map with containing rectangles,

and the right image is a foreground map.

The rationale behind blob modeling is that it represents an image region that
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has chromatic and spatial similarity. By the de�nition of a blob and its associ-

ated support map, low-level pixel oriented segmentation problem is associated with

high-level semantically meaningful blob tracking. In this way, high-level a priori

knowledge can be used to guide pixel segmentation.

Figure 2-1: Left: blob representation, middle: support map with containing rectan-
gles, right: foreground map.

2.2.3 Background Model

The background is modeled as a texture map that varies over time. In common

videophone applications, we assume the camera is static and there are no fast and

major background changes. In this context, there are still several sources that may

introduce temporal color variations in the background pixels and thus in
uence an

accurate modeling. They are enumerated as follows.

1. The thermal noise of the camera sensor. This is mainly in
uenced by the

quality of the camera. Two factors: noise stability and magnitude are related

to our modeling work.

2. The gradual changing of background for some reason. For example a fore-

ground human may move some items in the background or there may be

changes in illumination, etc.
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3. The AGC (automatic gain control) e�ect of the camera. This is quite obvious

when the foreground moves into or out of the scene, or closer or farther away

from the camera and changes the exposure of the camera. In these cases, the

AGC mechanism introduces noticeable luminance variation in the background

pixels even though the background itself does not change at all. Fig. 2-2 and

Fig. 2-3 show our test results using Intel's Proshare videoconference camera,

which does not have an AGC switcher. Fig. 2-2 is the histogram of the inter-

frame variation of the luminance Y for background pixels when there is no

foreground in the scene. Fig. 2-3 is the inter-frame Y variation of the same

background pixels (not occluded by foreground) when a person enters the

scene three meters away from the camera. We can see that the shift can be

decomposed into two parts: a uniform shift and a pixel dependent shift1.

4. The shading e�ect brought about by the foreground motions. This factor

can be compensated in part by introducing the normalized chromatic vector

(U� = U=Y; V � = V=Y ).

Given all these factors, we model each pixel in the background as a Gaussian

distribution in vector space (U�; V �) with mean vector m0 and covariance matrix

C0. In the segmentation loop, the background model is created and updated as

follows. First the uniform shifting vector di�t is estimated and compensated:

di�t =

P
f(x;y)=1(ŷt(x; y)� ŷ(t�1)(x; y))P

(x;y)2I f(x; y)
; (2.6)

1According to our experiments, this e�ect is less important for those cameras with an AGC
switch that can disable the AGC function. We have tested Sony's SSC S20 CCD camera with
AGC function turned o� and found that the foreground induced background color shift can be
ignored in most cases.
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Figure 2-2: AGC e�ects illustration. When there is no foreground in the scene, the
histogram of visible background pixels' inter-frame luminance (Y) variance distri-
bution is approximately a narrow Gaussian peak centered at zero. This is mainly
caused by the thermal noise of CCD camera.

−300 −200 −100 0 100 200 300
0

50

100

150

200

250

300

350

Figure 2-3: AGC e�ects illustration. When some foreground enters the scene, the
histogram of visible background pixels' inter-frame luminance (Y) variance distri-
bution can be interpreted as including two components: a uniform shifting part
(corresponding to the highest peak in the right side) and a region adaptive part.
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m0;t(x; y) = di�t +m0;t�1(x; y); (x; y) 2 I; (2.7)

where ŷt(x; y) and m0;t(x; y) are the feature vector and model parameters for the

current background pixel at the spatial position (x; y) and temporal position t (in

succeeding references, ŷt, m0;t or ŷ, m0 may be used when (x; y) and/or t infor-

mation are not important), and vector di�t is a frame level uniform shifting factor.

As indicated in Eq. (2.6), di�t is obtained by averaging the temporal feature vector

di�erence over those background pixels that are not occluded by the foreground

(f(x; y) = 0). However, the compensation in Eq. (2.7) updates every pixel within

the background model, including those pixels occluded by the foreground as well

(in Eqs. (2.6), (2.7) I refers to the pixel set in one frame). This accounts for the

uniform shifting e�ect of the above mentioned third factor and is useful to model

those uncovered background pixels.

In addition, each visible background pixel has its statistical parameters updated

as:

m0;t = � � ŷt + (1� �) �m0;t�1 ; (0 � � � 1): (2.8)

This compensates for the above mentioned second, third and fourth factors.

Note that unlike the foreground model, each pixel of background is modeled

individually. Or to express in a uniform way, the feature vectors for the background

model can also be put into the vector space (x; y; U�; V �) by implicitly including the

spatial coordinate of each pixel (x; y). This approach can accommodate a variety

of complex backgrounds without limiting them to �t to a structure like head-and-

shoulders foreground.
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2.2.4 Region Classi�cation

With the available foreground and background statistical models, it is straightfor-

ward to classify pixels into di�erent regions by their statistical likelihood. In our

work, MAP (maximum a posteriori probability) principle is used for the classi�cation.

We have two foreground classes (shoulder and head; k = 1; 2) and one background

class (k = 0). To compensate the shading e�ect, we choose to use feature vector

ŷ = (x; y; U�; V �) instead of (x; y; Y; U; V ) for foreground blobs as well (the major

modeling principle remains the same). So the log likelihood is expressed as:

ln(p(ŷj
k)) = �(ŷ �mk)
TC�1

k (ŷ�mk)� ln (det(Ck)); (k = 0; 1; 2); (2.9)

where 
k represents the event that the pixel belongs to class k. Based on MAP,

each pixel is labeled in the support map as:

s(x; y) = argmax
k
(ln(p(
kjŷ))) = argmax

k
[ln(p(ŷj
k) + ln(p(
k))]; (2.10)

where ln(p(
k))) is estimated based on typical videophone pictures.

To convert the classi�ed pixels into meaningful regions, two steps come next.

First the foreground pixels are processed with morphological �lters to create a simple

connected foreground map f(x; y). Second the support map s(x; y) is obtained by

blob growing, i.e., each blob is grown out within the foreground map from their blob

center to create a simple connected support map. This is illustrated in Figure 2-4.

2.2.5 Blob Tracking Procedure

In this section, we discuss the basic tracking procedure in two loops: model initial-

ization loop and tracking loop.
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Figure 2-4: Blob region growing illustration. Each blob's support map sk(x; y) is
grown out from their blob centers on top of the foreground map f(x; y).

2.2.5.1 Initialization Loop

The purpose of initialization loop is to detect \head-and-shoulder" type foreground

and to create the foreground and background models. Its logic steps are illustrated in

Fig. 2-5. At the beginning, the background only scene is captured and a background

model is created. When a foreground enters, the system detects model deviation

and tries to analyze the size, speed and shape of the possible foreground and judge

the likelihood of being a head-and-shoulder foreground. When a valid foreground is

detected, a foreground model is created and the system enters the tracking loop.

model
background

create

the shape
acceptable ?

create
foreground

model

Yes

No To
tracking

loopenter analyze
foreground

detect a

Figure 2-5: Flowchart of the initialization loop.



30
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Pixel Blob region

growing
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Go to initialization loop

YesInput Morphological
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Model update

filter
Successful?

Output

Figure 2-6: Flowchart of the basic tracking loop procedure.

2.2.5.2 Tracking Loop

The 
owchart of tracking loop is shown in Fig. 2-6. As discussed in Section 2.2.4,

the major steps of region segmentation are pixel classi�cation, foreground morpho-

logical �ltering and blob region growing. At the model-level, blobs are tracked with

Kalman �lter. Unlike low-level pixel classi�cation, blob tracking is carried out at

the model-level with semantic meanings. Though in this work, the major concern of

segmentation is to get an accurate support map for each blob rather than to track

the semantic information of blob motion, still good modeling and tracking of blobs

are important because the tracked blobs carry the statistical model parameters,

which are important for support map segmentation.

In this work, each blob is tracked independently with Kalman �lter. The ob-

servation vector for blob k includes the blob's center (xk; yk) and blob's statistical

width and height (wk; hk):

Ŷk = (xk; yk; wk; hk): (2.11)

Here wk and hk are de�ned as wk = 2�xk and hk = 2�yk . They are obtained from the

feature vector covariance matrix Ck. The dynamic model is a discrete Newtonian

physical model of rigid body motion, which has the form:

X̂(t +�t) = 	(�t)X̂(t) + �(t); (2.12)
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where X̂ is the state vector, 	 is the state transition matrix and � is the noise term.

The 12D state vector X̂ and noise vector � contain four variables for the position

of observation vector Ŷ, four for the velocity and four for the acceleration, i.e.,

X̂(t) =

0
BBBBB@
Ŷ

V

A

1
CCCCCA , and �(t) =

0
BBBBB@
�Ŷ

�V

�A

1
CCCCCA : (2.13)

From Newtonian physics, we have

	(�t) =

0
BBBBB@
I I�t 0

0 I I(�t)2

0 0 I

1
CCCCCA : (2.14)

In practice, the Kalman �lter is used to predict the model parameters of each

blob in the next frame, which is the start point of region classi�cation discussed

in Section 2.2.4. In return, the result of region classi�cation in current frame is

used to update the blob model parameters mk, Ck, (k = 1; 2), background model

parameters m0, C0. It is also the observation input driving the Kalman �lter for

the next prediction.

Sometimes when the foreground moves too fast for the �lter to follow or just

moves out of the scene, the system can not �nd appropriate support maps at the

predicted positions of the current frame. In these cases, as indicated in Fig. 2-6, the

system automatically changes its status back to the initialization loop.
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2.3. Shape Modeling and Recognition

2.3.1 Shape Analysis' Role for Segmentation and Tracking

In the previous sections, a blob based region modeling and tracking approach was

discussed. Blobs incorporate domain knowledge quite naturally into the segmenta-

tion problem. However, this approach is mainly based on the chromatic cues, which

makes its performance highly dependent on the camera's quality and the color con-

trast between the foreground and background. For real time tracking purposes, it is

also likely that errors accumulate during the course. In order to stabilize the blob

tracking process, the system should be adjusted from time to time. In our work,

shape cues are used to meet the requirement.

A basic intuition to support this idea is that people can sometimes identify the

head region and the shoulder region only based on the object silhouette. However,

because the foreground is always in motion and its silhouette keeps changing, it is

not in every case that we can analyze the silhouette successfully for segmentation

purpose. For example, in Fig. 2-7 we have two foreground shapes to be analyzed.

In the left image, the shape feature is strong and the head region and shoulder

region can be easily separated based on the foreground shape information, while in

the right image, the shape feature is not so obvious. Therefore, shape analysis only

works as an adjustment or auxiliary approach to previous region based approach.

To solve this problem, a shape recognitionmodule is added into the shape analysis

procedure. We de�ne those shapes with strong shape features as canonical head-

and-shoulder shape. Those shapes outside this category are named non-canonical

shape. If a foreground shape belongs to the canonical category, we are sure that we

can locate the head region and shoulder region with a high reliability only based on

shape information, then the head blob and shoulder blob are located with shape cues.
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Figure 2-7: Comparison of the limits of shape analysis for blob tracking. In the left
image, the shape feature is strong and the head region and the shoulder regions can
be easily separated based on the foreground shape information. But in the right
image, the shape feature is not so obvious and shape analysis is sensitive to noise.

Otherwise the blobs are tracked with chromatic cues as discussed in Section 2.2.. In

this way, we can get the most out of the domain knowledge to stabilize the tracking

algorithm.

2.3.2 Shape Modeling

Though a quantitative de�nition of canonical or non-canonical category is hard to

give and may depend on speci�c algorithm of shape analysis, inclusiveness is not

the requirement of this work. Rather, because the purpose of shape analysis is to

stabilize the region-based blob tracking, we can de�ne the canonical shape category

as a limited size. That is, we do not intend to include all the shapes that can be used

to segment the foreground into head and shoulder regions with certain simple shape-

analysis algorithm. Instead, only those with strong shape features are included in

the category to make sure that if a shape is accepted as a canonical one, then the

segmentation output based on the shape analysis is highly reliable. In this sense,

we model the canonical shape category as a high dimensional Gaussian distribution

and create the model by statistical learning.
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Fast Vectorization

First, a vectorization algorithm is used to convert a shape into a feature vector.

Many algorithms are available in the literature to do this task, such as chain code,

Fourier descriptor, polygon approximation, B-spline, etc. In this work, a fast algo-

rithm is designed to �t in with real time applications. It is illustrated in Fig. 2-8:

the foreground region is divided uniformly into N stripes in the vertical direction

and the horizontal center and the width of each stripe are measured to constitute a

2N dimension feature vector v.

X

Y

unit
topRow

unit/2

Figure 2-8: Stripe based shape vectorization illustration. Foreground is divided
uniformly into N stripes in the vertical direction. For each stripe, its horizontal
center and width are used as components for a feature vector. In this way, a 2N
dimensional feature vector is used to represent the foreground shape.

Suppose the input of the algorithm is a segmented foreground picture f with

each background pixel f(x; y) = 0 and foreground pixel f(x; y) = 1. The origin of

the image coordinates is at the lower left corner of the image. Then the detailed

algorithm may be expressed with the following pseudo-code.

(1) topRow=supf(x;y)=1(y);

(2) unit=(topRow)/N;



35

(3) k=0;

(4) for( row=unit/2; row<topRow; row+=unit ) f
(5) start(k)=inff(x;row)=1(x);

(6) end(k)=supf(x;row)=1(x);

(7) k++;

(8) g
(9) center0=0;

(10) for( i=0; i<N; i++ ) f
(11) width(i)=end(i)-start(i);

(12) center(i)=(end(i)+start(i))/2;

(13) center0+=center(i);

(14) g
(15) center0 /= N;

(16) k=0;

(17) for( i=0; i<N; i++ )f
(18) v(k++)=width(i)/unit;

(19) v(k++)=(center(i)-center0)/unit;

(20) g.

In above pseudo-code, (1)-(2) �nd the width (unit) of sampling stripes, (3)-(8)

actually do the sampling, (9)-(14) convert the sampled position data (start(i) and

end(i)) into width and center data, �nally in (15)-(20), the sampled data is further

normalized with respect to size (dividing by unit) and position (center(i) being

measured with respect to center0, which is obtained by averaging the sampled data),

producing the feature vector v(i), which represents only the shape information.

This algorithm is actually a controlled polygon approximation of the original

shape. The Euclid distance of vector v is a good indication of the shape di�erence
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because of the polygon approximation nature. Though the shape vector is not

rotational invariant, for most real time videophone applications it is not necessary to

recognize rotational invariant shapes. The accuracy of the approximation depends

on the choice of N and the complexity of foreground shape. According to our

observation, N = 15 is big enough for most videophone applications in QCIF size.

Gaussian Modeling

With above vectorization algorithm, the canonical shape category 
 is modeled as

a 2N dimension unimodal Gaussian distribution. The distribution can be charac-

terized by a mean vector �v and a covariance matrix �. The likelihood of a shape

vector v = �v + ~v is given by:

P (vj
) = exp(�1
2
~vT��1~v)

(2�)N det (�)1=2
: (2.15)

A suÆcient statistic for characterizing the likelihood is the Mahalanobis distance:

D = ~vT��1~v: (2.16)

In practice, the mean �v and covariance � are obtained through a set of training

shapes.

2.3.3 Eigen-Analysis and Classi�cation

In Eqs. (2.15), (2.16), the covariance matrix � is 2N by 2N . In order to reduce the

computation complexity, the matrix is decomposed via an eigenvector transform:

� = �T��; (2.17)
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where � is the eigenvector matrix and � is the corresponding diagonal matrix of

eigenvalues. With eigenvector transform, the likelihood equation becomes:

P (vj
) = exp(�1
2

P2N
i=1

b2
i

�i
)

(2�)N det (�)1=2
; (2.18)

where b = �T ~v is the new vector under the orthogonal transform. Similarly, the

Mahalanobis distance is converted to:

D =
2NX
i=1

b2i
�i
: (2.19)

In principle, eigenvectors correspond to the principal axes of the sub-vector space

and the eigenvalues are the corresponding principal variance. Although in above

orthogonal transform, all the 2N eigenvectors are necessary to represent the distri-

bution exactly, only a small number K (K � 2N) of them are generally needed

to encode the samples within the subspace with tolerable errors. These K vectors

are often called principle components and the approach called principle component

analysis (PCA). With PCA, for each vector v, only the �rst K projects of bi are nec-

essary for the computation of likelihood in the Eq. (2.18) or Mahalanobis distance

in Eq. (2.19). The computation is signi�cantly reduced.

In practice, the thresholding of the Mahalanobis distance Eq. (2.19) is used in

our work and it is approximated with two thresholding inequalities:

D1 =
KX
i=1

b2i =�i < T1; (2.20)

D2 = jjvjj2 �
KX
i=1

b2i < T2: (2.21)

A shape is determined as in the canonical shape category only if its feature vector

meets above two inequalities. Here D1 is the Mahalanobis distance and D2 is the
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energy of the feature vector's projection on the complementary space of the subspace

spanned by these �rst K eigenvectors. In other words, we require that the projection

inside the subspace is close to the center, and the projection energy outside the

subspace is small. This thresholding by projection may incur some error in the

mathematical sense. However, the classi�cation error is tolerable as compared with

computation bene�ts.

Figure 2-9: Canonical shape category's eigen-shape illustration. From left to right,
top to bottom, four sub�gures correspond to the �rst four eigen-shapes of canonical
shape category. In each sub�gure, three shapes are overlaid that correspond to
three vectors: �v; �v + a�i; �v � a�i, where a is a weighting factor and �i is the ith
eigenvector.

In the training process, about 200 pictures of canonical shape category2 were

used. The result of eigen-analysis shows that the �rst six eigenvectors cover 92

percent of total energy. This is the thresholding K we used for our experiment. The

shapes corresponding to the �rst four eigenvectors that obtained from our training

2Training samples are chosen by human observation, but their statistical model is created by
the computer. This is the process of machine learning. In our experiment, training samples were
obtained from several persons. For wider application domain, more training samples should be
obtained or users may train the machine with each person's own training samples.
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set are shown in Fig. 2-9. They are ordered from left to right, top to bottom. In each

�gure, three shapes are overlaid that correspond to three vectors: �v; �v+a�i; �v�a�i,
where a is a weighting factor and �i is the i-th eigenvector. Readers can observe

the distribution of shape changing along the �rst several principal eigenvectors and

have a general sense of the canonical shape category's shape distribution discussed

in this work.

2.3.4 Shape Assisted Blob Tracking

If a foreground shape is a canonical shape, by de�nition its shape features is used

to segment the foreground into head region and shoulder regions, or in other words,

to segment the foreground map f(x; y) into a support map s(x; y) of head blob and

shoulder blob. A containing rectangle based algorithm is designed to segment a

foreground map f(x; y) into two blobs by setting a vertical threshold t:

s1(x; y) =

8><
>:

f(x; y) if y > t ;

0 otherwise:
(2.22)

and

s2(x; y) =

8><
>:

f(x; y) if y < t;

0 otherwise:
(2.23)

If we use operator S(sk(t)) and S(rectk(t)) to represent the size of support map k

and size of its containing rectangle at the thresholding t respectively, i.e.,

S(sk) =
X

(x;y)2I

sk(x; y); (2.24)

S(rectk) = (yt � yb)(xt � xb); (2.25)
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where I represents the image pixel set, yt; yb; xt; xb are de�ned in Eqs. (2.2), (2.3),

then the �nal segmentation thresholding T is chosen as

T = argmin
t

n 2X
k=1

[S(rectk(t))� S(sk(t))]
o
: (2.26)

This algorithm is illustrated in Fig. 2-10. Note the coordinate system and the

horizontal thresholding line that segments the foreground into head and shoulder

regions. The purpose of this algorithm is to approximate the foreground map with

two containing rectangles and choose the segmentation that minimizes the approx-

imation error.

X

Y

t

Figure 2-10: Illustration of shape-assisted blob region location. The foreground map
f(x; y) is approximated with two containing rectangles. The thresholding value t is
chosen to minimize the approximation error.

2.4. Hierarchical System Design

Though the region and shape statistical models reduce much analysis complexity,

in practice, we �nd that to update the blob model parameters frame by frame still

involves expensive computation. In addition, because of the statistical nature of

this segmentation algorithm, noise is inevitable and further �ltering is necessary

to improve the quality. In order to solve these problems while limiting the overall



41

computation complexity of the algorithm, a hierarchical structure is designed at the

system level.

2.4.1 Hierarchical Architecture

In the new hierarchical design, the tracking loop of Fig. 2-6 is updated into Fig. 2-

11, i.e., an input image is �rst sub-sampled by M in both horizontal and vertical

directions. Model analysis (both region based blob model and shape model) and

tracking are carried out in the obtained lower resolution image. The processing

result is then up-sampled and further re�ned in the original resolution to produce

the �nal output.

Is foreground
shape

canonical ?

refine
Boundary Output

Input

Yes

Go to initialization loop

Yesclassify
Pixel Morphological

filter

UpsampleSubsample Model update and

Successful?No

Kalman filter

filter
S/T

No

Kalman filter
Model update and

grow
Blob region

with shape info
Locate blob

Figure 2-11: Flowchart of the hierarchical tracking system.

The bene�ts of this structure come from two aspects. First, because the statisti-

cal models are tracked and updated in the lower resolution image, the computation

complexity is reduced by M2. Second, when the segmentation result in the lower

resolution image is mapped back to the full resolution image, only the boundary
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blocks3 are further processed by the spatial and temporal �lters that are designed

to suppress noise and improve the boundary quality. All the interior blocks are

skipped. One drawback, however, is that two versions of the background model are

to be maintained, one in the lower and the other in the full resolution (for fore-

ground model we can maintain just one set of model parameters and convert them

between di�erent image resolutions). But compared with the bene�ts, this is not a

big problem.

2.4.2 Processing on Sub-sampled Image

In Fig. 2-11, most function modules for lower resolution image processing were dis-

cussed in previous sections. The shape modules work as anchors for the region based

tracking modules. They run in loop to �nd canonical shapes and locate the position

of each blob. If the shape-based approach fails, the region-based blob analysis main-

tains its tracking with blob region growing module and information from Kalman

�lter. At this stage, if system still can not �nd the expected blobs at the predicted

positions, it changes its status back to the initialization loop. Unlike Fig. 2-6, here

in Fig. 2-11, because of the incorporation of the shape analysis modules, the tracking

procedure is more resistant to noise in chromatic information and thus can avoid

error accumulation in the tracking course.

2.4.3 Re�ning Processing on Full Resolution Image

In the full resolution layer, a boundary-re�ning module and a joint spatial and

temporal (S/T) �ltering module are designed to improve the boundary quality. In

the three VOs we are going to get: background, head, and shoulder, head plus

shoulder together is the foreground, only the boundary between the foreground and

3One pixel in lower resolution image is mapped into oneM byM block in full resolution image.
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background are considered. If a head VO or a shoulder VO is required individually,

the boundary between them is approximated with their containing rectangle as

de�ned in Eq. (2.2).

In the hierarchical structure, each low-resolution-image pixel maps to aM byM

block in the full resolution image. Both boundary-re�ning module and S/T �ltering

module process only the boundary block pixels.

Boundary re�ning module processes image in one frame to improve the spatial

smoothness of �nal boundary. It includes three steps. First, pixels in the boundary

blocks are classi�ed based on the foreground model and background model in the

full resolution layer. Second, morphological �lters are used to connect the segmen-

tation results in each boundary block with interior block regions, so as to produce

a simple connected foreground map. After that, a relaxation procedure is carried

out to improve the smoothness of the foreground boundary. The relaxation process

examines each boundary pixel in the foreground map f(x; y), and see if it should be


ipped so as to improve the boundary smoothness. This is converted to a statistical

decision problem as follows.

Let 
k; (k = 0; 1) represents the events f(x; y) = k, (k = 0; 1). For each bound-

ary pixel, its MAP classi�cation equation is

ln(p(
kjŷ)) = ln(p(ŷj
k)) + ln(p(
k)): (2.27)

The �rst term in the right side can be obtained from Eq. (2.9). The second term

ln(p(
k)) works as a smoothness measure, which represents a priori knowledge.

Because smoothness is a spatial feature, we de�ne the smoothness measure of a

boundary locally for each of its boundary pixel as [1] does. A priori density p(
k)



44

is modeled by a Markov random �eld considering a 3� 3 neighborhood:

p(
k) =
1

Z
expf�E(
k)g; (k = 0; 1); (2.28)

where Z is a normalizing factor and the energy term E is de�ned as

E(
k) = (nB(k)B + nC(k)C): (2.29)

In Eq. (2.29), nB(k) and nC(k) are the homogeneity measure of the neighborhood if

current boundary pixel is labeled as k. They are obtained as follows. Each current

boundary pixel constitutes eight pixel-pairs with its eight neighboring pixels. If

both pixels in a pixel-pair have the same label, this pixel-pair is a homogeneous

pair, otherwise it is an heterogeneous pair. nB is the number of those heterogeneous

pairs that are in vertical or horizontal positions and nC is the number of those in

diagonal positions. B and C are two weighting factors that represent the distance

factor of those pixel-pairs in di�erent positions in relation to the boundary pixel

under consideration. We have B =
p
2C. The 3�3 neighborhood used for boundary

smoothness measure is illustrated in Fig. 2-12.

C

CC

C B

BB

B

X

Figure 2-12: Illustration of the 3 � 3 neighborhood used for boundary smoothness
measurement in the boundary relaxation procedure. 'X' is the current boundary
pixel. Eight thick bars represent eight pixel pairs.

After the spatial boundary re�ning, a seven-point 3D spatial-temporal median
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�lter is used on the foreground map:

medt(x; y) = med7[It�1(x; y); It+1(x; y); It(x�1; y); It(x; y); It(x+1; y); It(x; y�1); It(x; y+1)]:
(2.30)

The purpose of this median �lter is to suppress the temporal high frequency noise

on the boundary, which will be quite annoying when the segmented VOs are played

back with an MPEG-4 player. Notice that this �lter introduces delaying time of one

frame. For real time applications, higher order median �lter is not desirable.

2.5. Segmentation Experiments

The algorithm is implemented on PC platforms with a variety of video capture hard-

ware, including Intel's Proshare videoconference Kit, Intel's Create&Share Camera

Pack and Sony's CCD SSC-S20 camera with Intel's Brooktree capture card. The

segmentation performance is 15 fps (frames per second) on a Pentium-200 for QCIF

(176� 144) size input videos.

Due to the online feature of the algorithm, we could not use standard sequences

in the test. Instead, several testing sequences are captured for testing purpose. One

of them, in QCIF size, YUV format, 800 frames in length and 10 fps is available

on the website4. This video sequence contains one person in his head-and-shoulder

pattern as foreground with moderate motion.

Fig. 2-13 shows the segmentation result on one frame (the 500th frame) of the

testing video sequence. Fig. 2-13(a) is the original input frame, (b) is the segmented

foreground VO and (c) is the segmented head VO. Note that the boundary between

the head VO and shoulder VO is approximated with their containing rectangle

boundaries. In addition, though the capacity of our segmentation algorithm is to

4http://www.ctr.colulmbia.edu/~luoht/research/rvSeg
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segment the input frame into three regions: background, head and shoulder and in

the terminology of MPEG-4, there are called VOs respectively; some time it is also

possible to combine the foreground part (head and shoulder) as one VO, which is

also semantically meaningful.

(a) (b) (c)

Figure 2-13: Segmentation result example on one frame (frame 530) of the testing
sequence. (a) is the original input frame. (b) is the segmented foreground VO. (c)
is the segmented head VO.

To quantify the role of the shape-based adjustment module in the overall tracking

system, a group of experimental data is used to compare the tracking performance

with and without shape-based adjustment. The video data used is the mentioned

800-frame sequence. The accuracy of head region tracking is measured by comparing

the tracked support map with a ground-truth support map, which is generated with

a semi-automatic video segmentation tool [63] that we developed in our laboratory.

The error rate is de�ned as

error = Smisclassi�ed=Sground-truth;

where Smisclassi�ed, Sground-truth represent the size of the misclassi�ed and the

ground-truth head region, respectively. Fig. 2-14 illustrates the result of this ex-

periment (only the results for 100 frames, from frame 500 to 599 are included) .
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In Fig. 2-14, the horizontal axis is the frame number and the vertical axis is the

head region tracking error rate. The dark curve represents the error rate of the

tracking algorithm without shape-based adjustments and the light curve represents

that of the algorithm with shape-based adjustments. For better observation, we

also overlay a bar graph on the bottom of the �gure that represents the detection

of canonical shapes. On this bar graph, each bar along the horizontal axis means

a detected canonical shape at the frame position. It can be seen that canonical

shapes are detected on about 25 percent of the 100 frames. Due to this detection

result, the tracking result using shape information is better than the result of the

algorithm without it. This relation is especially obvious on frames from 550 to 600,

where blob tracking errors get accumulated because of the large motion of head-and-

shoulder foreground and the similar color of head and shoulder regions (the dark

curve). However, with canonical shape based adjustments, the tracking is much

more reliable (the light curve)5.

In Fig. 2-15, we compare the e�ect of boundary relaxation and 3D spatial/temporal

median �lter. The �rst row from left to right are three consecutive original frames.

The second row are their segmented results without relaxation and �ltering. The

third row are the �nal results with both relaxing and �ltering. We can see that

in the second row, some noises on the boundary are produced because parts of

the background color are very similar to that of the foreground model. However,

with boundary relaxation and 3D �lter, the boundaries in the third row are much

smoother, both spatially and temporally.

5In order to give the readers better sense of the accuracy and reliability performance of our
algorithm, we put frame-by-frame segmentation results of all the 800 frames on our web as well.
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Figure 2-14: Illustration of the function of the shape-based adjustment module.
The dark curve is the head region tracking error of the tracking algorithm without
shape adjustment and the light curve is that of the tracking algorithm with shape
adjustment. On the bottom, a bar graph is overlaid on the same temporal scale.
Each bar represents that a canonical shape is detected at the frame position.

            

Figure 2-15: Comparison of boundary relaxation and 3D �lter e�ects. The top row
from left to right are three consecutive original frames. The second row are their
segmented results without boundary relaxation and 3D �ltering. The third row are
the �nal results with both relaxing and �ltering.
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2.6. Application Discussion

From the experimental results, we believe the discussed segmentation algorithm

is useful for introducing content-based processing for videoconference applications.

One direct application is to generate video objects for MPEG-4, so that videocon-

ference and videophone services can be built up on the MPEG-4 framework. In

addition, the content information might also contribute to traditional coding frame-

work such as H.263. The basic idea is that from the segmentation result, we have

a subjective idea of the input image before we actually encode it. We can then al-

locate more bits to the head region macroblocks (MBs) and less to the background

MBs. This way, we can use the bits more eÆciently than a uniform MB encoding

that a standard H.263 encoder uses. For technical reasons (MPEG-4 application is

straight-forward), we discuss the H.263 application in more detail.

2.6.1 The Idea of Encoder Optimization

In the general framework of MPEG and H.261/H263 standards, there has been ex-

tensive research on optimal encoder design. This includes all the \non-standardized"

steps such as coding model choice, bit allocation, adaptive quantization and rate

control. The possible di�erent choices of all these steps provide large room for

optimization. In this work, we try to incorporate subjective factors, which are

obtained with the previously discussed segmentation algorithm, into a traditional

rate-distortion model and design an optimal H.263 compatible encoder in this sense.

Early relevant research can be found in [28, 29, 52]. In [29], an ellipse detection

algorithm was used to detect the face region in typical head-and-shoulders video-

phone sequences and two techniques, i.e., bu�er rate modulation and bu�er size

modulation were used in a H.261 compatible encoder to control the quantization

that allocated more bits to the facial region. [52] extended this idea in two aspects:
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one was that it classi�ed the image into four regions: eye, lip, face and background

rather than two (face and background) as in [29] and assigned di�erent subjective

importance to each region. The other was that it introduced the idea of temporal

scalability that used di�erent temporal updating rates for di�erent regions. For

example, the lip region was updated at the highest rate in order to get lip synchro-

nization. The ideas in these papers are interesting but we also �nd open problems.

First, there is no uniform way to judge the rate-quality relationship and to choose

proper trade-o�s between rate and distortion in these rate control algorithms. Sec-

ond, excessive segmentation of an image into multiple regions in these algorithms

not only increases analysis complexity, but also brings visual artifacts. Applying dif-

ferent temporal rates on three di�erent facial regions can in some cases be annoying

when the decoded video is played back in real time.

With all these in mind, we design our region based H.263 compatible encoder,

which we refer to as region based encoder in this thesis. As a comparison reference,

we �rst brie
y introduce Telenor's H.263 Testing Model 5 (TM5) [45] in Section 2.6.2

and then describe our algorithm in Section 2.6.3.

2.6.2 Telenor's TM5

Telenor's implementation of TM5 supports most the coding modes of H.263. Here

we focus on its (online) rate control mechanism, which is implemented as follows.

1. The �rst intra picture is coded with Q = 16 (default value, can be set by user),

and the bu�er content is initialized as:

bu�er = R=Ftarget + 3R=FR; and Bt�1 = �B; (2.31)

where R is the target bit rate, FR is the frame rate of the source material

(typically 25 or 30 Hz), Ftarget is the target frame rate, Bt�1 is the bits spent
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in the previous frame and �B is the target number of bits for each frame (under

uniform allocation).

2. For the following pictures the quantizer is updated at the beginning of each

new macroblock line:

Qnew = �Qt�1(1+�G+�L); �G = (Bt�1� �B)=(2 �B); �L = 12(
iX

k=1

Bt;k�(i=M) �B)=R;

(2.32)

where �Qt�1 is the mean quantizer in the previous frame, M is the number of

macroblocks in one frame, Bt;k is the bits spent for the k-th MB in the current

frame (time t) and i is the index of current macroblock.

3. The bu�er content is updated according to the following pseudo code:

buffer=buffer+B t;

while( buffer>3R/FR )

f buffer-=R/FR; frame incr++; g.

Note that the variable B t is just previous Bt and the variable frame incr

controls the number of frames skipped from the input video.

The simple design consideration behind this scheme is that the available bits are

allocated uniformly to every frame and every MB. A linear feedback is used to control

the quantizer to make the actual bit consumption meet the budget (in Eq. (2.32),

�G controls the bit allocation to frames and �L controls the allocation to MBs). If

a frame uses more bits than allocated, some succeeding frames are skipped in order

to maintain the bu�er content. Thus this scheme may not provide a �xed frame

rate due to the frames skipped, though it accepts a target frame rate as an input.
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2.6.3 Region Adaptive Bit Allocation and Rate Control

In our work, we try to improve the rate control module of Telenor's implementation

of H.263 while still maintain bit stream compatibility. More speci�cally, our con-

tribution comes in three aspects: bit allocation, temporal adaptation and adaptive

quantization.

2.6.3.1 Bit Allocation

There are two steps in bit allocation: one is to allocate bits to frames and the other

is to allocate bits to macroblocks. In H.263, there are only I and P frames but no

B frames6. Because there is no random access requirement and H.263 is designed

for real time applications, P frames constitute the majority in an H.263 stream and

I frames are only inserted to compensate for channel errors. It is not possible to

pre-segment the input video into frame groups and assign bits to each I and P frame

according to their relative complexity measures as in [102]. Therefore, in this work,

we just allocate bits uniformly to each frame as TM5 does while concentrating on

the controlling of bit allocation to di�erent macroblocks.

Problem: The problem can be expressed as follows. Given the bit budget B, �nd

the optimal bit allocation Bi to M macroblocks (i = 1; 2; � � � ;M) that minimizes

the overall distortion in an R-D sense. As [54] pointed out, the bit budget B

includes three portions: B = Bs +Bm +Bc, where Bs is the bits needed for header

information, Bm is the bits needed to code the motion vectors, and Bc is the bits

for DCT parameter coding. The portion of bits that we can control is only Bc.

In [54], the bit allocation between Bc and Bm is also discussed (this means motion

6Or more appropriately, intra and inter MBs, but in this work we only consider intra and inter
transitions at the frame level. In addition, only baseline mode, no advanced modes like the PB
mode are considered in our work.
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compensation should also be controlled). We do not consider this problem here. In

the remaining part of this chapter, B and Bi refer to DCT bits only.

Distortion Model: In H.263, the DCT coeÆcients within a macroblock are quan-

tized with one quantizer Qi. Assuming the DCT coeÆcients distributed uniformly

within one macroblock, we use the following expression to measure the coding dis-

tortion for one frame:

D =
MX
i=1

�i(kQi
2); (2.33)

where kQi
2 refers to the objective quantization errors with k being a constant and

Qi being the quantizer, �i is a subjective importance factor for macroblock i. In

this work, we decide �i for each MB according to the support map s(x; y) obtained

through our segmentation algorithm, i.e., we assign higher � to those MBs labeled

as head region and lower � to those labeled as shoulder and background regions.

Encoder Model: In this work, we use the following equation to model the func-

tional relationship between an H.263 encoder's bit consumption Bi and its quantizer

Qi:

Bi = ai�
2
iQ

bi
i ; (2.34)

where �2i is the (motion compensated) standard deviation of the luminance of the

macroblock, ai and bi are two constants. According to our experiment as well as

results reported in available papers [102, 26, 108], the empirical value of bi is in the

range of �1:5 to �2. In practice, we �nd bi = �2 is a good compromise between

computational complexity and modeling accuracy. In addition, because most motion

estimation modules produce SAD (standard absolute deviation) as a byproduct, we

use MAD (mean absolute deviation) in place of the standard deviation � to save
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computation time. Here the de�nition of SAD and MAD are

SAD = min
dx;dy

nx=16X
x=1

y=16X
y=1

joriginal(x; y)� previous(x+ dx; y + dy)j
o
; (2.35)

MAD =
1

256
SAD; (2.36)

where (dx; dy) is the motion vector, and original(x; y) and previous(x; y) refer to

pixel at the position (x; y) in the current and the previous frames, respectively.

More speci�cally, we use

Bi = aIMAD2
iQ

bi
i (2.37)

to approximate Eq. (2.34) in our implementation. In our experiments, we �nd that

the behavior of Eq. (2.34) and that of (2.37) are quite similar but the latter one is

much easier to obtain. In addition, because both of them are empirical rather than

theoretical, the accuracy of modeling also depends on proper choice and adaptation

of model parameters like ai, which we will discuss later.

R-D Optimization: With distortion model Eq. (2.33) and encoder model Eq. (2.34),

it is easy to solve the R-D optimization problem with the Lagrange method:

S = D + �B =
MX
i=1

Di + �
MX
i=1

Bi: (2.38)

Setting @S
@Bi

= 0, we have:

�iai�
2
i

B2
i

= ��
k
= constant: (2.39)

If we let

wi =
q
�iai�2i ; (2.40)



55

then the optimal bits allocation to each MB can be obtained as

B̂i =
wiPM
k=1wk

�B; (2.41)

where �B is the average bits allocated to each frame. This equation shows that the

optimal bit allocation B̂i to MB i is proportional to its subjective important factor

�i and its objective complexity �2i , which is in accord with our intuition.

2.6.3.2 Temporal Adaptation

In the bit allocation weight equation (2.40), the subjective factor �i is used to control

the bit allocation so as to introduce spatial adaptation. In most videoconference

cases, the background is relatively static and it is reasonable to reduce its temporal

updating rate while still maintaining good visual quality. The bene�t is that we

can avoid spending bits on visually unimportant information. In some cases, for

example, when the background itself is static, the bits we used for the background

account for nothing but white noise. Even when there are changes in the background,

it does not bring much visual degradation to remove some temporal high frequencies

in the background.

Under this consideration, we classify the P frames in H.263 into PO and PF

frames. In PO frames only the foreground object MBs are coded, while in PF

frames all the MBs in the full frame are coded. PF frames work as anchors for

PO frames and their temporal relation is illustrated in Fig. 2-16 where possible I

frames are also included. The parameter TPF (time between two PF frames) should

be adjusted according to the estimation of background motion. In this work we

measure TPF as the number of PO frames between two adjacent PF frames. Also

notice that PO and PF control can be easily integrated into bit allocation Eq. (2.41)

by assigning �background = 0 for PO MBs and �background 6= 0 for PF MBs.
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Figure 2-16: Temporal scalability: PO and PF frames illustration. At the PO
frames, only the foreground object's MBs are coded, while at the PF frames, all the
MBs of the whole frame are coded. Thus the temporal updating frequency of the
background is lower than that of the foreground.

2.6.3.3 Adaptive Quantization

In the above discussion, we derive an optimal bit allocation to each MBs but how

to choose proper quantizers to achieve the allocation remains a problem. Actually,

since the encoder model is only an empirical one, there are no clear theoretical

functions like Q = f(B) or B = f(Q). In addition, due to the real time nature of

H.263, it is not appropriate to introduce trial coding to estimate quantization model

parameters as was suggested in [26]. There should always be some online feedback

mechanism in the rate control module in order to make sure that the actual bit rate

does not exceed the available bandwidth. In this work, we propose two adaptive

quantization schemes to realize our bit allocation.

Scheme One: Scheme one is developed based on Telenor's TMN5 model. We

adapt Telenor's feedback rate control scheme as follows:

Qt;i = �Qt�1;s(i)(1 + �G +�L); (2.42)

where

�G = (Bt�1 � �B)=(2 �B); (2.43)
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�L = 4(
iX

k=0

Bt;k �
iX

k=0

B̂t;k)=R: (2.44)

Compared with Telenor's scheme Eq. (2.32), we maintain di�erent average quan-

tizers �Qt�1;s(i) for di�erent segmented regions s(i). The idea is that the quantizers

should be similar between neighboring frames for the same type of regions. Another

change is that we use a di�erent cumulative target rate
Pi

k=0 B̂t;k to generate the

local adaptive factor, not a uniform allocation any more.

In the encoder model Eq. (2.34), parameter ai is assumed to be MB dependent.

In the implementation of scheme one, we try to classify the MBs into di�erent

groups according to their complexity �2i :

g(i) =
�2i
Gth

; (2.45)

where Gth is a threshold to divide MBs into groups and g(i) is the group index of

macroblock i. The average ai is tracked and updated for each group individually as

�at;g(i). When encoding MB i at the time t, we have

at;g(i) = �at�1;g(i): (2.46)

Note that in quantization model Eq. (2.34) we set bi as -2 and only ai is used

to account for input adaptation. By grouping the MBs by their complexity and

estimating model parameters individually for each MB group, we can better control

the performance of this empirical model.

Scheme Two: Another way to control the quantizer Qi is to make use of the

empirical encoder model Eq. (2.34) directly. From Eq. (2.34), it is easy to derive
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the Qi expression in relation to bit allocation Bi:

Qi =

s
ai�2i
Bi

: (2.47)

So according to this empirical encoder model, we can allocate optimal Bis as well

as the Qis that are used to realize the optimal bit allocation. In practice, in order

to �t the empirical model to actual input data distribution, we have to add a linear

feedback term and set the actual quantizer as:

~Qi =

s
ai�2i
Bi

(1 + �G +�L); (2.48)

where the linear term (1 + �G + �L) is as de�ned in Eq. (2.32). In addition, the

encoding model parameter ai is also adapted by groups as in scheme one.

Implementation Issues: In H.263, the encoding quantizer can be adjusted at

three layers: picture layer (QUANT), group of block (GOB) layer (GQUANT) and

macroblock (MB) layer (DQUANT). Among them, both QUANT and GQUANT

are 5-bit absolute values, while DQUANT is a 2-bit value that re
ects the quantizer

di�erence from the previous one. It is not, therefore, possible to set the quantizer

of a macroblock arbitrarily as indicated in the previous two adaptation algorithms.

The practical implementation is realized in a constrained domain if a bitstream

compatibility is desired.

In our implementation, macroblocks are processed by GOBs. Each GOB contains

one horizontal stripe of MBs. First for each MB i within the current GOB, its Qi

is calculated according to equation (2.42) or (2.47). An average quantizer is then

obtained by

�Q =
X

i2GOB
Qi=

X
i2GOB

1: (2.49)
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The GOB quantizer is set to �Q and DQUANT for each MB is then set in a best

e�ort way.

In videoconference applications, the MBs in a GOB (a horizontal MB stripe)

tend to belong to two classes: either the background and the head regions or the

background and the shoulder regions. Because the background is assumed to be

relative static, background MBs are skipped in most of the cases and they do not

in
uence the GOB quantizer �Q as de�ned in equation (2.49). Therefore, �Q is ob-

tained only for one class of MBs, either head region MBs or shoulder region MBs.

These MBs tend to have similar quantizers and the 2-bit DQUANT is enough to

represent their di�erence.

2.6.4 Experimental Results

We implemented a simulation version of our region-based H.263 encoder on a PC

with a hardware system as described in Section 2.5.. As mentioned already, because

of the online feature of our segmentation algorithm, we could not use standard

video sequences in our testing. Instead we used the 800-frame testing sequence we

described in Section 2.5. and all the experiments in this chapter were based on this

testing sequence.

In the experiment, our region based algorithm was compared with Telenor's

TM5 [100]. In our algorithm, two di�erent adaptive quantization schemes are used

to realize the optimal bit allocation budget as was discussed in Section 2.6.3.3. In the

following discussion, we refer to these two algorithms as scheme one and scheme two.

We use tmn-2.0 to represent Telenor's standard H.263 implementation because their

latest software implementation is Version 2.0. In addition, all the three algorithms

used in the experiments used the baseline mode, no advanced modes are used. The

target frame rate was 10 fps, and the bit rate was set to 32 kbps (kilo bits per
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second). The parameters used in our algorithm were Gthreshold = 200, TPF = 30.

The subjective factors used were �head = 4, �shoulder = 1, �background = 0 for PO

frames and �head = 1, �shoulder = 1, �background = 1 for PF frames.

Fig. 2-17 shows the bit allocation of a typical PO frame by one of our region

based algorithms (scheme one). We number the images from left to right and top to

bottom. Fig. 2-17(a) is an original frame (the 295th frame of the testing sequence),

Fig. 2-17(b) is the grayscale display of the MAD (mean absolute deviation) of MBs

(the brighter, the bigger), Fig. 2-17(c) is the bit allocation budget according to

Eq. (2.41) and Fig. 2-17(d) is the actually achieved bit allocation by the adaptive

quantization scheme one, which was discussed in Section 2.6.3.3. Note that (d) is

not strictly equal to (c) due to the error in the empirical encoder model and the

nature of the feedback control mechanism that is used to �t the model with the

actual data.

To better evaluate the encoder quality, we introduce the concept of region-based

PSNR and de�ne it as

PSNR = 10 log10
n 2552S(sk)P

sk(x;y)=1[I(x; y)� Î(x; y)]2

o
;

where I(x; y) and Î(x; y) are the original and the decoded image pixel's scalar value

(only luminance factor Y is considered in this experiment), S(sk) is the size of blob
k's support map and can be de�ned as

S(sk) =
X

(x;y)2I

sk(x; y):

With region-based PSNR, we try to compare the decoded image quality of our

algorithmwith that of the Telenor's standard H.263 algorithm. The testing sequence

we used for explaining here is a 100-frame sequence (from the 220th to the 320th
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frame of the 800 frame testing sequence). To have a fair comparison of the rate

control mechanism, we treat the decoded video frame by frame. That is, for those

frames skipped by the encoder, their PSNR is calculated with the repeated previous

frame at the decoder. Fig. 2-18 shows the frame by frame comparison of the head

region PSNR of the three algorithms and Fig. 2-19 is the frame by frame comparison

of the regular PSNR (calculated over the whole frame) of three algorithms. From

these two �gures, we see that our algorithms (both scheme one and scheme two)

improve the head region PSNR by about 1 to 1.5 dB in the whole testing frame range

as compared with tmn-2.0. This gain comes at the expense of the loss of the regular

PSNR of our algorithms by about 0.5 to 1 dB, as compared with that of tmn-2.0.

The regular PSNR loss is due mainly to the PSNR loss in the background region,

which is always the biggest region in the image and thus has the largest in
uence

on the overall PSNR result. However, we also notice that within the comparing

frame range, tmn-2.0 skips more frames than our algorithms, which is re
ected in

the frequent negative peaks in its PSNR curve. In Fig. 2-20 the bit rate produced by

the three algorithms are compared. The curves indicate that both scheme one and

scheme two produce smoother rate than tmn-2.0. That means the alternation of

PO and PF frames scheme in our region-based algorithm does not bring higher bit

rate 
uctuation than tmn-2.0, and the feedback rate control scheme we used works

well. In Fig. 2-20, the average bit rate of tmn-2.0 is higher than that of our two

algorithms. That is because it skips more frames and thus has more bits to use for

each coded frame. In addition, when we compare our scheme one and scheme two,

we can see that scheme one is a little bit better than scheme two on the smoothness

of the bit rate produced, nevertheless their PSNR behaviors are quite similar.

To evaluate the PSNR performance more accurately, we list the frame by frame

average of the PSNR within the 100-frame range for all the three algorithms in
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coded frames rate (kbits/s) PSNR PSNR-head PSNR-s PSNR-b
Scheme one 91 31.84 32.86 33.66 29.72 35.75
Scheme two 90 32.04 32.84 34.02 29.25 36.40
Tmn-2.0 79 32.26 32.98 32.75 29.94 36.51

Table 2.1: Comparison of compression eÆciency of our algorithm and that of the
standard H.263. Rate is in kilo bit per second, PSNR is the peak SNR of the entire
frame in dB, PSNR-b is PSNR of the background region, PSNR-h is PSNR of the
head region and PSNR-s is the PSNR of the shoulder region.

Table 2.1. In Table 2.1, we can see that both scheme one and scheme two encode

about ten more frames than tmn-2.0. This means as a rate control algorithm, both

scheme one and scheme two are better than tmn-2.0. In addition, due to their region

adaptive bit allocation, both our algorithms produce higher head region PSNR than

tmn-2.0, the di�erence is about 1 dB, averaged over the 100 frames. In the regular

PSNR sense, our algorithms' performance is only about 0.2 dB below that of tmn-

2.0. Unlike the regular PSNR curve in Fig. 2-19, the average regular PSNR drop of

our algorithms is less because tmn-2.0 skipped more frames, which penalized itself

in the average performance evaluation. Obviously, because of the relative amount

of PSNR changes, we believe this result of our algorithm is surely interesting for

most videoconference applications.

Fig. 2-21 compares two reconstructed frames by the region based algorithm

scheme one (left) and tmn-2.0 (right). The region-based algorithm exhibits bet-

ter subjective quality in the head and facial region. In addition, the PO and PF

alternation maintains decent background quality and the overall trade o� is bene�-

cial to the subjective quality evaluation.

Because we did not have source code for a real time H.263 encoder, we did not

implement a real time system that combines the segmentation and H.263 encoding.

In our experiment, we used Telenor's H.263 source code, which itself is for simu-

lation purpose and needs much optimization for real time performance. Thus an
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experimental result for the complexity of our region based H.263 encoder is not yet

available. However, as our segmentation algorithm runs at 30 fps for sub-sampled

QCIF size video and most commercial H.263 software run at around 20 fps for QCIF

video on average Pentium PCs, it is reasonable to believe that we can combine the

segmentation and H.263 encoding into one system and still attain the frame rates

around 8-10 fps for QCIF video. This is work we expect to do in the near future.

(a) (b)

(c) (d)

Figure 2-17: Bit allocation of a typical PO frame by one of our region based al-
gorithm (scheme one). (a) is an original frame, (b) is the grayscale display of the
MAD (mean absolute deviation) of MBs (the brighter, the bigger), (c) is the bit
allocation budget according to equation (2.41) and (d) is the actual achieved bit
allocation by the adaptive quantization scheme one.
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Figure 2-18: Frame by frame comparison of the head region PSNR of three algo-
rithms. The light solid curve is for scheme one algorithm; the dark solid curve is
for scheme two algorithm and the dashed curve is for tmn-2.0 algorithm.
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Figure 2-19: Frame by frame comparison of the frame level PSNR of three algo-
rithms. The light solid curve is for scheme one algorithm; the dark solid curve is
for scheme two algorithm and the dashed curve is for tmn-2.0 algorithm.
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Figure 2-20: Comparison of the bit consumption of the three algorithms. The light
solid curve is for scheme one algorithm; the dark solid curve is for scheme two
algorithm and the dashed curve is for tmn-2.0 algorithm. The average bit rate of
tmn-2.0 is higher than that of our two algorithms. That is because it skips more
frames and thus has more bits to use for each coded frame.

2.7. Concluding Remarks

In this chapter, we proposed a simple online video segmentation algorithm for video-

phone applications. This algorithm uses feasible limitation on its application domain

but gets good results with relative low computational complexity. Because of its

low complexity and real time performance, this segmentation algorithm is especially

useful for introducing content-based processing in real time video coding. One di-

rect application of this segmentation algorithm is MPEG-4 VO creation. Another

application is to apply this segmentation algorithm to traditional DCT based video

coders. In our experiment, an H.263 compatible simulation encoder is implemented

that makes use of the segmentation results in its rate control. Spatial and temporal

adaptation are introduced and an improvement in subjective quality is observed.

Our work shows that it is possible to combine the segmentation and traditional
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coding systems into an integrated intelligent coding system while still maintaining

real time performance on an average PC platform.

(a) (b)

Figure 2-21: Comparison of a typical pair reconstructed frames. (a) is the recon-
structed 260th frame (of the testing sequence) with algorithm scheme one; (b) is
the reconstructed 260th frame with tmn-2.0. The facial region of the left image (a)
is clearer than that of the right image (b).

An interesting point worth noticing is that we can use the discussed segmentation

algorithm as an optional module for traditional videoconference systems. That is,

when the segmentation module loses track or can not �t the detected foreground

to its internal blob model (for example, when there are multiple persons in the

scene), it turns itself automatically back to the initialization loop and the H.263

encoder in the system works in its regular mode. However, when the segmentation

module �nds its expected foreground successfully and changes back to the tracking

loop, the segmentation output is then available as an option to support region based

rate control for the H.263 encoder. This way, our segmentation algorithm can be

incorporated into general-purpose videoconferencing systems without any concern

that the tracking failure of the segmentation module will bring any negative in
uence

to the whole system.
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Chapter 3

Automatic Model-based Anchorperson Detection

3.1. Introduction

The amount of multimedia data is increasing every day with a rapid speed around

the world. The growing requirement for eÆcient indexing and management of mul-

timedia data becomes an urgent problem. Though a fully automatic indexing and

management approach is still hard to achieve in the general case, many research

projects have already obtained good results on constraint domain problems, for

example, automatic analysis of broadcast news videos. So far, the most optimistic

direction for automatic news indexing and management seems to be combined multi-

modal signal analysis, i.e., the combined analysis of video, audio, as well as close

caption data [34, 61]. In this chapter, we discuss our work on visual information

analysis, especially anchorperson detection1.

The role of anchorperson detection for broadcast news management has already

been discussed by several researchers. For example, Zhang [32] developed a news

indexing system based on anchorperson detection. In his work, simple temporal

1Part of this work was �nished when the author stayed as a summer intern with AT&T Labs.
It is, therefore, part of a comprehensive news analysis project [34], which tackles video, audio and
text in order to obtain optimal analysis results.
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and spatial templates are designed and matched to actual video frames. Detected

anchorperson frames are used as temporal transition positions for indexing of in-

dividual news story units. In [31], Hanjalic et al. also discussed an anchorperson

detection algorithm based on key frames obtained from scene change detection algo-

rithms. Their major observation is that anchorperson frames are always similar in

their spatial setup and they also have the largest temporal frequency among the key

frames. The common limit in these approaches, however, is that they all have strong

assumptions on patterns to be detected. In Zhang's approach [32], anchorpersons

can only appear in certain positions and the setup of the frame background is also

�xed. While in [31], the backgrounds cannot change for the frames to be detected

as anchorperson frames.

In this chapter, we design a new anchorperson detection algorithm that works in

much more general cases, i.e., we do not assume the �xed positions of anchorpersons

or static backgrounds. In our work, the anchorpersons are models with respect to

two aspects: a spatial model and a temporal model. The spatial model is created to

represent anchorperson on individual frames. In order to accommodate variations

between di�erent anchorperson frames as well as capture consistency among them,

a statistical model is designed with respect to the shape and color distribution of

anchorpersons. The anchorperson detection problem is then modeled as a statistical

pattern detection problem. Intuitively, the anchorperson detection problem is re-

lated to the real-time videophone segmentation work discussed in Chapter 2 in that

the objects can be represented with the same head-and-shoulder pattern. Therefore,

the same shape model can be used. However, the major di�erence here is that the

videophone segmentation problem is an online one while the anchorperson detection

problem is an o�ine one. To �t the model with a video frame in an o�ine matter,

extra e�orts are needed to reduce the complexity of the high dimensional searching
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problem to a manageable level.

In addition to its spatial model design, our algorithm detects anchorpersons by

imposing a temporal model analysis module right after the spatial model analysis

module. This is illustrated in Fig 3-1. Their relation is that the spatial module

detects frames containing "head-and-shoulder" patterns, while the temporal module

further analyzes the temporal frequencies of these "head-and-shoulder" patterns.

Only those patterns with high temporal frequencies are detected as anchorpersons.

As indicated in Fig 3-1, the overall processing modules of the system are cascaded

so that the handling of spatial and temporal information is separated, which is

more eÆcient than previous approaches [32, 31]. As is shown in Fig 3-1, the

spatial module, i.e., the head-and-shoulder model �tting is carried out on individual

frames. This is more eÆcient as compared with a model �tting in both spatial

and temporal domains. Systematically, this model-�tting module is placed right

after a scene-change detection and key frame detection module. The input video

is �rst �ltered with the key-frame detection module, and then the anchorperson

detection module runs only on the detected key frames. Because the key frames

constitute only a fraction of the overall video data, the anchorperson detection

algorithm can be designed on top of fully decoded image frames without incurring

much computation and storage burdens. As for the key-frame detection module,

algorithms that run in the MPEG compressed domain such as [74, 75] can still be

used to gain computational eÆciency. In addition, the temporal analysis module is

applied only to the positive output frames of spatial analysis module, which makes

the whole detection algorithm very eÆcient.

We develop this chapter by discussing the spatial model design and the solution

of the complexity problem in model �tting in Section 3.2.. In Section 3.3. we describe

temporal model analysis module. In Section 3.4. we present experimental results on
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Scene Cut Detection

Key Frame Selection

Spatial Model Fitting

Temporal Model Fitting

Anchorperson Frames

Video Frames

Frames in Scene Cut Units

Key Frames

Frames with "Head-and-Shoulder" Patterns

Anchorperson Frames

Figure 3-1: Illustration of the relationship of the spatial analysis module, temporal
analysis module and the related preprocessing modules
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actually video data from NBC Nightly news, and �nally in Section 3.5. we conclude

the chapter.

3.2. Spatial Module: Statistical Model-based Pattern De-

tection

3.2.1 The Model Design

Based on the real time segmentation work as discussed in Chapter 2, a straight-

forward solution for anchorperson detection problem is to apply the blob model

and the shape model we developed there directly to the problem. However, for

news video analysis problem, we have to work o�ine with no clues to build up a

background model. In addition, the blob model does not help much neither for

detection problem as it did for tracking problem. Only the shape model remains

valid. But to apply the shape model as developed in Section 2.3.2 to the detection

problem, the shape model has to be searched over the video frame in di�erent scales

and at di�erent positions [20], which is not a feasible approach.

In order to reduce searching complexity, we combine shape detection with a face

detection problem, i.e., in addition to �tting to a head-and-shoulder type shape

model, we require that the anchorperson object to be detected also have a face

region that returns positive by our face detector. This way, the scale and the

position in which the shape model to be used for shape �tting can be normalized

with respect to the detected face regions, i.e., their sizes and positions. This idea can

be better illustrated by Fig. 3-2, in which the rectangle represents the face region.

The contour of the object is �rst normalized with respect to the scale and position

of the face region and then compared to the head-and-shoulder shape model.

As such, the anchorperson detection problem is then decomposed into two sub-
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Face

region

head-and-shoulder

‘contour

Figure 3-2: Illustration of the modeling of anchorpersons with a face model and a
head-and-shoulder shape model.

problems: a face region detection and a statistical shape model �tting.

3.2.2 Face Region Detection Problem

Face region detection is a problem discussed by many papers in the literature. A

simple but reliable approach as reported by many papers [105, 39, 5, 112, 2] is

skin color detection. In this work, we take a skin color detection approach similar

to [105]. Color is modeled within the projected (Cb, Cr) space from the (Y, Cb,

Cr) space. The skin color vector vc = (Cb; Cr) is assumed to have a 2D Gaussian

distribution:

P (v) =
1p

2�j�cj1=2
expf�(v �C0)�c

�1(v�C0)
Tg

where the average vector C0 and covariance matrix �c are obtained via training

examples. Unlike the Bayesian approach used in [105], we take a simple threshold

on P (v) for each pixel and a binary image is produced to represent the location of

skin color regions. After that, morphological �lters are employed to remove the noise
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regions as well as to merge adjacent regions. The produced possible skin regions are

then further �ltered with a shape analyzer that imposes shape constraints, i.e., a

valid face region's containing rectangle should only be in a reasonable aspect ratio

range. For this work, we set this acceptable range to be [0.9, 1.8).

The Gaussian skin color model is trained on three days of NBC Nightly News

video data (about 200 out of 1500 frames) and then tested on another three days of

data. Fig. 3-3 shows three representative output frames we have in our experimental

results. Fig. 3-3(a) is a detected face region corresponding to an actual anchorperson

frame, while in 3-3(b) the detected region is a face, but not a face of an anchorperson.

In 3-3(c), the detected region has skin-like color, but it is not a face at all.

(a) (b) (c)

Figure 3-3: Representative results of face region detection.

To �lter out the outputs in the cases of (b), (c), a shape model is further designed

to �nd the coherency of anchorperson objects. That is, in addition to containing

a face region in skin color, we assume that most anchorperson frames can be rep-

resented as a typical head-and-shoulder pattern. As in most cases, anchorpersons

always face directly towards the camera, this assumption is valid in most of the

time, if not all of the time, according to our observation. We impose this constraint

by a Gaussian shape modeling.
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3.2.3 Shape Modeling of Head-and-Shoulder Patterns

Similar to color modeling, the shape modeling in this work is also based on a Gaus-

sian assumption and a parameter training based on valid examples. This is quite

similar to the shape modeling work we used in Section 2.3.2. We formulate this mod-

eling algorithm in three steps: vectorization, statistical representation and training.

Vectorization The vectorization algorithm is copied from Section 2.3.2 except for

a face region based normalization process. As discussed in the previous section, our

shape modeling is designed in addition to a skin color modeling module. Therefore,

for each valid head-and-shoulder pattern, a detected containing rectangle of the face

region is already available. To make the shape vectors comparable, the actual shapes

are �rst normalized with respect to their face rectangles before any quantization is

done. Because the process of normalizing removes the shape di�erence introduced

by di�erent scales and spatial positions, the normalized shapes can be compared

directly with respect to their absolute contour positions. This comparability can be

easily maintained by a simple vectorization scheme.

Given a valid anchorperson frame to be used as a positive sample of our shape

modeling, suppose its detected face region is denoted by (x0; y0; w; h), where (x0; y0)

is the center of the rectangle and w and h are its width and height respectively.

Then the process of normalization can be represented as a linear mapping func-

tion m(x0; y0; w; h), which transforms the detected face region into an one by one

rectangle centered at (0,0).

After the shape normalizing transformation, the shape is vectorized on the trans-

formed coordination with a stripe-based algorithm as discussed in Section 2.3.2.

That is, with N stripes, the shape contour is vectorized into a 2N dimensional fea-

ture vector v. If we denote the contour of the anchorperson object as C, then the
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process of vectorization can be expressed as:

v = f(x0; y0; w; h;C): (3.1)

That is, the vector v is obtained by �rst normalizing C with respect to face region

(x0; y0; w; h) and then quantizing with the stripe-based algorithm.

Statistical Representation With above vectorization algorithm, the shape vec-

tors of the valid anchorperson patterns are modeled as a 2N dimensional Gaussian

distribution, characterized by a mean vector �vs and a covariance matrix �s. In prac-

tice, the mean �vs and covariance �s are obtained through a set of training shapes.

A suÆcient measure of the likelihood is Mahalanobis distance:

D(~v) = ~vT�s
�1~v: (3.2)

where ~v = vs � �vs.

Training In practice, we obtain the shape vector statistics by training. Training

data is collected from one week's NBC Nightly News data. Anchorpersons are

segmented manually with an interactive segmentation tool [63], with totally about

140 of them segmented. Their shapes are used as positive samples.

In Fig. 3-4, we visualize the produced shape statistics, i.e., mean �vs and covari-

ance matrix �s by calculating the eigen-decomposition of �s. In each sub�gure,

three shapes are overlaid that correspond to three vectors: �vs, �vs + ai�I, �vs � ai�i,

where ai is a weighting factor and �i is the i-th eigenvector. From sub�gure (a)

to (d), the eigenvectors used are the �rst, second, third and fourth of the system,

respectively. Readers can observe the distribution of shape changing along the �rst

several principal eigenvectors and have a general sense of the shape model built up
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in this work.

(a) (b)

(c) (d)

Figure 3-4: Visualization of the shape statistics created by shape training.

3.2.4 Model Matching

So far, we have built up Gaussian models for the anchorperson pattern in the sense

of its face color and shape statistics. Model matching is then a two-step process.

In the �rst step, possible face regions are detected, which can be represented with

their containing rectangles (x0; y0; w; h)i. In the second step, for each face region

a corresponding head-and-shoulder shape vector ~v is searched in a 2N dimensional

feature space (2N is the length of the feature vector) to maximize certain criteria,



77

which is easily converted to a model-based shape detection problem as follows:

~v = argmax
~v

f�iEinternal(~v) + �eEexternal(~v)g (3.3)

where Einternal is the model energy term that represents the shape ~v's similarity to

our trained anchorperson shape model. We set it as Einternal = D(~v), where D is

de�ned in Eq. 3.2. The external energy term, Eextermal, consists of image feature

related measures that represents our subjective judgements on anchorperson image

features. It is related to the shape vector ~v through a mapping function:

C = f 0(x0; y0; w; h; ~v); (3.4)

where C denotes the object contour and the function f 0(x0; y0; w; h; �) is the inverse
of the mapping function f(x0; y0; w; h; �) as speci�ed in Eq. 3.1. Based on this

mapping function, the external energy function is further de�ned as a function of

contour C:

Eexternal(~v) = Eexternal(C) = �1Egradient(C)+�2Esymmetry(C)+�3Ehomogenity(C):

In above equation, Egradient is the image gradient measure on the shape contour,

Esymmetry is the color symmetry measure and Ehomogeneity is the color homo-

geneity measure of the anchorperson regions de�ned by its contour information.

Among them, the �rst term is the typical term for edge detection problems and the

second and third terms are domain speci�c terms we added to improve the stability

of the solution. The intuition is that the color of anchorperson regions should be

symmetric as well as homogeneous. The weighting factors �i are determined in an

empirical way.
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In practice, the searching problem as expressed in Eq. 3.3 is carried out in a vector

space of 2N dimension, where N is the number of stripes we use to subsample the

anchorperson shape. To obtain good shape representation quality, N is generally

chosen to be greater than 25 in our experiments. This is a typical high dimensional

minimization problem, which has been discussed by a number of papers on statistical

shape modeling. Cootes et al. [20] proposed to use an adjusting vector with each of

its components corresponds to an adjustment along a normal to the model boundary

toward the strongest image edge. Kass et al. [50] used a potential image to guide the

searching process. Kervrann and Heitz [51] used a simulated annealing algorithm

to locate the minimization status of their shape model. Jain et al. [47, 46] designed

a deterministic gradient descent algorithm in their work of deformable template.

In this work, our shape model as de�ned in Eq. 3.3 includes grayscale gradient

information as well as additional constraints such as symmetry and homogeneity,

which are hard to be represented as a gradient vector or potential �elds. Therefore,

we use a more general sense minimization algorithm: downhill simplex algorithm [30].

An interesting feature of this algorithm is that it is purely based on the evaluation

of function values f(x), rather than function derivatives.

To further reduce the searching complexity of the problem, an eigen-deocomposition

process is employed to compress the dimensionality of the shape feature vectors.

That is, we eigen-decompose the covariance matrix �s in Eq. 3.2 as

�s = �T��;

where � is the eigenvector matrix and � is the corresponding diagonal matrix of
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eigenvalues. Then the Mahalanobis distance expression is converted to:

D =
2NX
i=1

b2i
�i
;

where b = �T~v is the new vector under the orthogonal transform. Due to the energy

compression feature of eigen-transform, we can further simplify the above equation

into

D =
kX
i=1

b2i
�i
;

where k� 2N . In this sense, the original 2N dimension shape vector ~v is projected

to a k dimension subspace by setting ~v =
P

k

i=1 bi�i, where �i is the i-th eigenvector

of the covariance matrix. For the same reason, our shape detection problem as

de�ned by Eq. 3.3 is also reduced to a searching problem in a k dimension vector

space.

In this work, k is chosen to be six and the downhill simplex algorithm [30] is used

to �nd the global minimal point in this 6-dimensional subspace. On convergence

of searching, the �nal energy term f�iEinternal + �eEexternalg is thresholded to

determine whether a valid head-and-shoulder pattern is detected. In practice, we

�nd this shape matching process can e�ectively remove the detection error intro-

duced by simple skin color based face detection (for example, the detection errors

as shown in Fig. 3-3(c)).

3.3. Temporal Analysis Module

At the system level, to further distinguish anchorperson pattern from other head-

and-shoulder patterns, temporal analysis is carried out to compare the detected

head-and-shoulder patterns in the temporal direction. Only those with high tem-

poral frequency are decided to be anchorperson frames while others are discarded.
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This can be realized with the following steps.

1. Generate a feature vector f(t) for each detected head-and-shoulder pattern

frames at the time t. This can be based on di�erent heuristics, i.e., color,

texture, etc. of the head-and-shoulder regions. To accommodate certain 
ex-

ibilities in the color and location of the regions, in our work, the head-and-

shoulder regions are divided into uniform bins. Each bin contributes to the

feature vector by its two most important colors.

2. For two head-and-shoulder patterns located at di�erent temporal locations of

t1 and t2, de�ne their similarity (or distance) measure as:

jf(t1)� f(t2)j:

3. Using this distance measure, an unsupervised clustering algorithm [101] can

be run over the feature vector set. This will cluster the feature vectors into

groups. Only these groups with feature vector number above a threshold is

declared as an anchorperson.

3.4. Experimental Results

The algorithm is tested on three days (03, 05, and 08 of Feb. 1999) video data

from NBC Nightly News 2 in our experiments. In Fig. 3-5 to Fig. 3-8, we show

some processing results. In Fig. 3-5 to Fig. 3-8, (a) is the key frame with detected

face regions, (b) is the initial head-and-shoulder object contour (~v = 0 as de�ned

in Eq. 3.3), and (c) is the �nal detected anchorperson after searching and temporal

analysis. Fig 3-5 and Fig. 3-8 are two detection examples with complex backgrounds.

2Data was captured o� the air and digitized and downscaled at AT&T Labs.
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In Fig. 3-7 the anchorperson tilts his body while in Fig. 3-6 the result of face region

detection is not so accurate, but after the searching process, the �nal contours all

converge to the actual head-and-shoulder patterns.

On all the three days' data, the detection performance is recall = 95% and

precision = 91% in the sense of valid head-and-shoulder pattern detection. Here

recall is the percentage of the total number of valid patterns as judged by human

beings that are actually detected by our algorithm, while precision is the percentage

of the total number of valid patterns detected by our algorithm that are actually

valid according to human judgement. After temporal analysis stage, the anchorper-

son detection performance is changed to: recall = 91% and precision = 97%. That

is, temporal analysis e�ectively removes fault-alarms introduced in the head-and-

shoulder pattern detection stage, but it cannot remedy the miss from that stage.

The major cause of detection miss, according to our observation, comes from poor

results of face region detection.

(a) (b) (c)

Figure 3-5: Processing results of anchorperson detection on NBC nightly news, date
03/03/99, frame 464.
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(a) (b) (c)

Figure 3-6: Processing results of anchorperson detection on NBC nightly news, date
03/05/99, frame 456.

(a) (b) (c)

Figure 3-7: Processing results of anchorperson detection on NBC nightly news, date
03/05/99, frame 497.

(a) (b) (c)

Figure 3-8: Processing results of anchorperson detection on NBC nightly news, date
03/08/99, frame 468.
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3.5. Concluding Remarks

In this chapter we developed a model-based anchorperson detection algorithm for

broadcast news video indexing. This model accommodates more variations in the

shape, scale and location of the anchorpersons to be detected, as compared with

previous reported approaches. Our experiments indicate that this algorithm work

well on a large variety of frame setups. However, in order to further improve the

performance, we �nd it is important to improve the accuracy and detection rate of

the face region detector. This is part of the work that we will further investigate in

the next chapter.
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Chapter 4

Model Based Human Face Detection

4.1. Introduction

The detection of human faces from images and videos is also an interesting research

topic for multimedia content analysis. In the past two chapters of this thesis, we

studied the model designs for the segmentation and detection of head-and-shoulder

patterns. In Chapter 3, in order to detect the head-and-shoulder patterns, a human

face detector is designed to model the face patterns as skin-type color regions in

appropriate aspect ratio. In this chapter, we investigate better ways to detect

human faces.

In the literature, face detection algorithms generally come in two categories, i.e.,

texture based approaches and color based approaches.

Texture based works try to detect face directly from the grayscale information

contained in the picture. In general, most texture based methods are developed from

face recognition algorithms (a good survey of face recognition and related detection

algorithms can be found in [14]), because in the recognition sense, color information

does not help much in distinguishing di�erent individual's faces. Intuitively, how-

ever, it is the face texture that we human beings use to recognize di�erent persons.

Typical examples based on this observation includes the Sung and Poggio's [97]
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system developed at MIT AI lab and the Rowley and Kanade [88] system developed

at CMU Robotics Institute. Both systems use similar preprocessing algorithms and

multi-scale searching mechanism, except that Sung and Poggio's system uses multi-

modal Gaussian clustering method as classi�er while Rowley and Kanade's system

uses neural network as classi�er. Similar systems available in the literature also

include: Lew's work [56] that uses information theory, Collobert et al.'s [33] and

McKenna's [73] works that use neural networks, Yang and Ahuja's work [113] that

uses factor analyzer and Osuna et al.'s work [86] that uses support vector machine

(SVM) as classi�ers. They all reported close detection performance on some com-

mon testing pictures, for example the CMU testing database. In addition, Ne�an

and Hayes [83] reported the use of Hidden Markov Model (HMM) for face detection.

Moghaddam and Pentland [78] suggested to use eigen-space decomposition meth-

ods for face detection purpose. However, both of the works have recognition as the

purpose of their systems, their detection algorithms are only tested on some high

quality mug shots that are used for recognition purpose.

In general, most texture-based algorithms are training example based. They

have good detection accuracy within the scope of their training set but their missing

rate climbs high for testing data outside the training data set. For example, most

texture-based algorithms detect only faces in frontal views with limited tilt and

rotation.

In contrast, color-based detection algorithms try to model human skin color in

di�erent chromatic spaces (RGB, YCbCr, HSV, etc.) with various statistical mod-

els. In the literature, typical skin color modeling works include: mixture of Gaus-

sian [85], linear region approximation [39], Bayesian minimal cost decision rule [105],

etc. In addition to color modeling, a number of recent works seek to include addi-

tional heuristics such as texture, symmetry, region ratio, region segmentation and
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merging, etc. [5, 112, 2]. Compared with texture-based approaches, color-based al-

gorithms are easier to design and more popular in the multimedia community. They

generally have good detection rate, but su�er from high false alarm rates when the

backgrounds have skin like colors.

In addition, some interesting works stand in between these two categories. Menser

and Muller [76] used a skin color model to generate a skin tone probability image, on

which they apply principle component analysis (PCA). That is, they propose to an-

alyze the texture of the probability image rather than the luminance image. Wang

and Chang [105] proposed to detect human faces directly on compressed MPEG

macroblocks. In their work, JPEG pictures and MPEG I frames are partially de-

coded (entropy decoded and de-quantized) to restore DCT parameters in their block

structure. Their algorithm then works directly on the decoded DCT parameters.

Color information is used as the major detection clues in their algorithm. A skin

color model is created at the macroblock level in the YCbCr color space. In ad-

dition, they also use some texture information by grouping the DCT parameters

into bins and evaluating the energy distribution patterns based on bin statistics. In

general, their approach shares the same problem with those color-based algorithms

designed in the pixel domain, i.e., it has a high detection rate as well as a high false

alarm rate.

In this chapter, we propose a face detection algorithm that combines both color

and texture information. In order to speed up the processing, we design the algo-

rithm to work on the compressed DCT domain in a similar way as Wang's [105] work.

However, our work extends theirs by building up an independent texture-based de-

tection module in the compressed DCT domain, i.e., we study how to map the

successful texture-based face pattern detection algorithms such as [97, 88, 113, 86]

from the traditional pixel domain to the DCT transform domain. With the new
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texture-based detection model included, face detection problems can be solved more

reliably in the compressed domain, as compared with Wang and Chang [105] work.

We believe this algorithm is especially valuable for fast content analysis of large

amount of visual media data stored in the compressed formats such as JPEG and

MPEG. In the following, when mentioning compressed DCT domain, we refer to

JPEG [103] pictures and MPEG I frames [38] that are partially decoded (entropy

decoded and de-quantized) and have their DCT parameters restored in 8 pixel by 8

pixel block structures, if not expressed clearly otherwise.

To conform to the phrases and the structures of the whole thesis, we still refer

to this approach as model-based face detection. Because in this work, we create

statistical models for both texture-based and color-based face detection algorithms.

The di�erence between the modeling works in this chapter and those blob models in

Chapter 2, however, is that the face models used here are all example-based or data-

driven models, while the blob models are semantic-based models, i.e., we assume

that the head-and-shoulder patterns can be represented with two blobs. Similarly,

the shape model and the color model used in Chapter 3 are also example-based

models.

The structure of this chapter is as follows. In Section 4.2. we discuss in detail

the texture-based face detection algorithm design in the compressed DCT domain.

In Section 4.3., the texture-based face model is extended to include color informa-

tion and a new combined texture-based and color-based face detection algorithm is

developed with experimental results. Finally in Section 4.4. we conclude the chapter.

4.2. Texture Based Face Detection in the DCT domain

In this work, we seek to map the successful texture-based face detection algorithms

from the original pixel domain to the transformed DCT domain. Therefore, before
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going directly to the DCT domain, we �rst take a close look at the available works

in the pixel domain.

4.2.1 General System Structure and Complexity

In the available face detection works designed on the pixel domain, successful algo-

rithms such as [97, 88, 113, 86] generally share the same processing procedures and

structures.

In these works, the face pattern is represented as a rectangle or square window of

pixel plane. In order to detect face patterns, the systems scan the input image plane

at all locations. That is, the image is divided into multiple (possibly overlapping)

subimages of the model window size. Each window is compared with a previously

trained \face" model to tell whether it is a face pattern or not. In order to detect

faces in multiple scales, the input image is downscaled to a series of scales (for

example, by scales of 1:2n; n = 1; 2; : : :) and the detection process is repetitively

applied to each scale. Or in other words, to tell a windowed image a face or not,

the window is always �rst scaled to the size of the model, and then compared with

it.

The details of this processing 
ow chart are illustrated in Fig. 4-1. As we can

see from Fig. 4-1, to detect faces, the input image is scaled and cropped to generate

a windowed image pattern. The pattern is processed with a preprocessing module

to remove illumination noise and normalize the grayscale ranges. The normalized

image pattern is then fed to a classi�er to see if it is a face pattern. To create a

face model, a database of frontal faces is generally used. Each face is scaled and

moved to align its common facial feature points such as corner of eyes, tip of nose,

etc. to speci�ed positions in the model window. The windowed image pattern is

then processed by a preprocessor, and �nally applied to train a classi�er.
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In all the four detection systems [97, 88, 113, 86], their basic structures are

generally the same (as indicated in modules covered by the dashed rectangle in the

left (Group A) of Fig. 4-1). The only di�erent part is the classi�er, i.e., classi�er's

internal structure, its training and detection operation (as indicated in modules

covered by the dashed rectangles in the right (Group B) of Fig. 4-1.

Training

Faces

Scale and crop

at multiple

locations

Face

Pattern

Input

Image

Windowed

Image

Align Prreprocess

Prreprocess

Normalized

Pattern

Normalized

Pattern

Model

Train

Common Modules (Group A)
System Dependent Modules

(Group B)

Face

Model

Classifier

Model

Test

Figure 4-1: Illustration of common face detection procedures in the pixel domain

Based on the summery as depicted in Fig. 4-1, the detection complexity is M

times of the processing in Group A plus the processing in Group B. M depends on

the image size, the model size, and the range of the face sizes that are to be detected

by the system.

However, the essence of the complexity issue is the size of the face model, which

determines directly the complexity of the classi�er, i.e., how complex the classi�er

should be, in order to separate the face patterns from the nonface patterns. Though

there is no clear measure available to judge the complexity of face pattern classi�-

cation, most reported papers use similar face model sizes. For example, Sung [97]

uses a (masked) 19-pixel by 19-pixel square window, Rowley [88] uses a (masked)

20-pixel by 20-pixel square window, and Collobert et al. [33] uses a 15-pixel by
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25-pixel rectangle window. Therefore, the face detection problem is (at most)1 a

2-dimensional pattern classi�cation problem at the size of about 20 pixels by 20

pixels. If we stack up the pixels row by row as in [97], the problem is then converted

to a 1-dimensional pattern classi�cation problem in the feature space of about 200

to 400 dimension.

4.2.2 Feature Representation in the Block DCT Domain

4.2.2.1 The DCT Transform

In principle, pattern detection models should not be in
uenced by converting the

problem to the DCT domain if we do not consider the blocks and quantization

errors incurred. Because DCT is an orthonormal transform, both the Euclid dis-

tance and the Mahalanobis distance are unchanged after the transform. If we follow

the Gaussian clustering approach as discussed in [97], it is easy to prove that the

Gaussian model remains a Gaussian model in the DCT domain. Let's suppose the

feature vectors xi (in the pixel domain) have a Gaussian distribution as N(x0;�),

and the DCT transform matrix is denoted as C. Then the corresponding feature

vector x0 in the DCT domain is x0i = C � xi. Because this is a linear transform, the
created variants x0i still have a Gaussian distribution N(x00;�

0), with the new mean

x00 = C � x0 and the new covariance matrix �0 = C � � �Ct.

In addition to the invariant feature, the DCT domain is better than the pixel

domain for pattern classi�cation problems in that DCT transform reduces the de-

pendence between individual components and compresses the feature energy to the

low frequency parameters. Therefore, it is much easier to choose feature components

from DCT parameters than from direct pixel values.

1Sung's [97] work indicates that the classi�cation problem can be projected to subspaces in
much lower dimensions. But there is no clear quantitative boundary on how low this dimension
could be.



91

4.2.2.2 Block Quantization Problem

However, to apply model-based algorithms directly to the compressed domain of

JPEG and MPEG, a major problem to overcome is that the image frames are

divided into 8 by 8 blocks before DCT transform. Therefore, any detection work

based on DCT parameters has to be done at the locations of blocks rather than

pixels. That is, the blocks reduce the spatial resolution of the system by 8, which

makes it hard to detect small faces without fully decoding the image from the block

based DCT parameters to pixels. We refer to this problem as block quantization in

this work.

Figure 4-2: Illustration of the block quantization problem in face detection.

More speci�cally, the block quantization problem in
uences face detection in the

following three aspects.

First, because the DCT parameters are organized in a block structure, in order

to detect a face, a face model cannot be used to search the picture pixel by pixel.

Instead, this search can only be done block by block in the DCT domain. This

problem is better illustrated in Fig 4-2, in which the rectangle in light solid lines
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represents the actual location of a face, while the rectangle in dark solid lines is

the closest searching window that the system can arrive at based on 8 by 8 block

quantization. Therefore, in order to detect faces that are not aligned with block

positions, we need to introduce certain translation invariant feature in face model

training. Or in other words, when training the face model, more images patterns

should be included as positive training examples than the corresponding procedure

that used in the pixel domain.

Second, in addition to the feature aligning problem, block quantization also

introduces some background noise when the searching window is not well aligned

with the actual face region, which in
uences the accuracy of both model training

and detection.

Third, in the block-based DCT domain, it is hard to obtain resolution transfor-

mation. Though several papers [53, 77, 27] have discussed the issue of fast resolution

transform in the compressed DCT domain, it is still too expensive to carry out res-

olution transforms in arbitrary ratios, e.g., to down-sample the image by a ratio

of 1.2. Therefore, in order to detection faces in multiple scales, we have to design

models individually for each scale. We call this solution as a multi-model approach

in this work, as compared to the multi-scale approach commonly used in the original

pixel domain.

To sum up, the block quantization reduces the distribution density of the face

patterns in the feature space, as well as introduces background noises and scaling

problem. Therefore, to detect human face patterns within the block based DCT

domain is more diÆcult than to do it in the pixel domain.
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4.2.2.3 Feature Vector Design

In this work, we design face detection as a 1-dimensional vector classi�cation prob-

lem similar to Sung's [97] system. In the DCT domain, feature vectors are created

directly from (block based) DCT parameters as follows. Suppose the size of the face

model is M block by M block and the desired length of the feature vector is N ,

then in each DCT block, the lowest d DCT parameters are used for feature vector

creation, where

d = N=(M �M):

This is better illustrated in Fig. 4-3, in which the lowest d DCT parameters from

each block is stacked up to form a N dimension feature vector.

Figure 4-3: Illustration of the feature vector creation from DCT parameters

In order to choose the �rst few low frequencies from a 2-D DCT block, we number

the 64 DCT parameters according to the typical DCT quantization table design as

reported in [99], i.e., the larger the quantizer is, the less important its corresponding

DCT parameter is for low frequency representation of the picture. In Eq.4.1, we

show the positions of the �rst 16 parameters.
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Based on the complexity analysis in Section 4.2.1, the complexity of face detec-

tion problem should be processed adequately over a rectangular window of 19x19

pixels, therefore, the feature vector length in this work should be in the range of

200 to 400. For example, if a 5 block by 5 block face model is to be created, and we

choose the feature vector length to be 300, then for each DCT block, its lowest 12

DCT parameters are used to create the feature vector for training and classi�cation.

In principle, this approach of choosing the lowest few DCT parameters in each

block is actually to downscale the windowed image to a unit model size, saying 19

pixel by 19 pixel, as used in the pixel domain. In other words, to tell if a windowed

image pattern is a face or not, in the pixel domain, the face is downscaled to the

unit model size, e.g., 19 by 19 pixel, and compared with the face model. In the

DCT domain, the correspondence is that the low frequency DCT parameters in

each block of the windowed image pattern are used to form a feature vector, which

is then compared with the face model. In this mapping, as long as the lowest few

DCT parameters have maintained the image features at the resolution of 19 by

19 pixels (approximately)2, we have reason to believe that those parameters have

maintained the necessary information for face detection, based on our complexity

analysis in Section 4.2.1. The bene�t in this domain mapping is that unlike the

bilinear downsampling in the pixel domain, choosing the lowest few DCT parameters

2That is, if the image is decoded with only these low frequent parameters and then downscaled
to 19 by 19 pixels, the image quality is still comparable with direct downloading the original image
in the pixel domain.
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is an easier and better way to do downsampling in the DCT domain. This is also

noticed and discussed by Dugad and Ahuja [27] in their paper on fast DCT domain

downsampling design.

To better illustrate this problem, we design a simple experiment on Lena image

(256 pixel by 256 pixel, grayscale). In the DCT domain, we maintain only the �rst

N low frequencies (according to the sequence de�ned in Eq.4.1) in each DCT block

and truncate the rest into zero. The truncated image is then converted back into

the pixel domain and its restored quality is compared with the original image by

PSNR. In the pixel domain, we �rst downscale the image into a smaller size of M

by M , and then upscale it back to the original size of 256 pixel by 256 pixel with

bilinear interpolation. After that, the restored image is compared with the original

image with PSNR. Here these two processes are two di�erent approaches to do

downscaling and upscaling. If we impose that the feature vector of the downscaled

image in both domains should be the same3, then the parameter M and N should

have the following relation:

N = 32 �
p
M:

In our experiment, the feature vector length is changed from 1 to 16 per DCT

block, and the corresponding PSNR data for both pixel and DCT domain is shown

in Fig.4-4. We could see from the �gure that given the limitation of the same

feature vector length, the corresponding downscaled image generated in the DCT

domain has better PSNR quality than that generated in the pixel domain. One

straightforward explanation for this di�erence is the energy compression feature of

the DCT transformation.

3We assume the feature vector in the pixel domain is obtained by stacking up the pixel values
row by row, as is de�ned by Sung in [97].
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Figure 4-4: Comparison of the image downscaling performance in the pixel domain
and in the DCT domain (with Lena image). The \+" curve is the DCT domain
data and the \o" curve is the pixel domain data.

In addition, it is also worth noticing that the DCT curve in Fig.4-4 is not strictly

convex, which indicates that a simple truncation of the high frequent parameters is

not the best approximation of the image in the DCT domain (certain �lters may

improve the quality). However, as compared with the performance curve de�ned in

the pixel domain, the truncation-based approach is much better.

4.2.3 Face Detection System Design

Based on the analysis in Section 4.2.1, a multi-model DCT domain face detection

system is designed that combines algorithm capabilities and performance eÆciencies.

4.2.3.1 Multi-Model Detection System

Due to the block quantization problem as discussed in Section 4.2.2.2, model-based

face detection in the block-based DCT domain faces two problems, i.e., aligning

problem and scaling problem.
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For the aligning problem, because the block size is 8 pixels, there are totally 64

possible spatial setups at the every searching position in the DCT domain. This is

depicted in Fig. 4-5, in which the square in dashed lines is the ideal cropping window

based on face feature aligning, the square in light solid lines is the model window

at the closest searching position based on DCT block structure. The square in dark

solid lines is an 8-pixel by 8-pixel block, in which the top-left corner of the dashed

window has to lie. There are, therefore, 64 possible positions. To solve the aligning

problem, one might train 64 models for one model size, with each one representing

a face pattern at a di�erent aligning position.

Block based model window

Actual face feature based  model window

Figure 4-5: Illustration of possible di�erent spatial relations between the actual face
feature based model window and the DCT block based model window.

However, this approach is obviously not eÆcient because 64 models are hard to

store as well as to apply. In addition, there are redundancies in the 64 models as the

spatial neighboring models are similar to each other. Therefore, a trade-o� has to

be made between model eÆciency and model accuracy. In addition, to overcome the

scaling problem in the DCT domain, multiple models have to be created in order to

detect faces in di�erent scales, which further improves the burden of choosing too

many models in one scale.

In this system, we create face models in six scales, and the model windows are

designed to be squares in side length of 5, 6, 7, 8, 9, and 10 DCT blocks. That is,
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faces in the range of 40 by 40 pixels to 80 by 80 pixels are covered by the system. For

each scale, one face model is trained for faces in all the possible aligning positions,

i.e. the model represents variations in di�erent face features as well as in di�erent

aligning positions (all the 64 possible positions).

The processing procedures for each model size is generally the same as those in

the pixel domain (refer to Fig. 4-1), except that the works are moved to the DCT

domain. We illustrate the DCT domain detection procedures and model training

procedures separately in Fig. 4-6 and Fig. 4-7. The details of the processing modules

are discussed in the following sections.
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the current location

with current model size

Partial

decode

Figure 4-6: Illustration of the face detection procedures in the DCT domain.

4.2.3.2 Preprocessing and Masking in the DCT Domain

To remove the signal variance introduced by di�erent illuminations and di�erent

grayscale dynamic range, a number of preprocessing steps are used in the works

designed in the pixel domain. In the DCT domain, we �nd it also possible to im-

plement their correspondences. More speci�cally, our system includes the following
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Figure 4-7: Illustration of the face model training procedures in the DCT domain.

preprocessing steps:

1. Masking. Similar to Sung's [97] work, we introduce binary face masks on

top of DCT blocks. For face patterns, these masked blocks often represent

background regions. Removing them from the feature vectors ensures that the

subsequent modeling work does not wrongly encode any unwanted background

structures. Based on di�erent sizes of the face model, di�erent masks are

designed to represent di�erent spatial resolutions. In Fig. 4-9, we show the six

masks we used in our system for face models in six di�erent scales. Note that

the face models are actually in di�erent sizes. They are scaled to the same

size in Fig. 4-9 for ease of illustration. Each block in the model windows is of

size 8 pixel by 8 pixel.

2. Illumination Linear Factor Correction. In order to remove shadowing

e�ect, a 2-dimensional linear function is �tted to the DC plane of the face

region in the DCT domain. The �tted function is then removed from the DC

plane.

3. Histogram Equalization. This nonlinear process is applied directly to the

DC components of the face region DCT blocks. In addition, the AC compo-

nents in each block are changed linearly to reduce the block e�ects. That is,
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for each DCT block, if its DC component d is mapped to d0 according to the

histogram equalization, then its AC components ai are also mapped linearly

to a0i with a0i = ai � d0=d.

(a) (b) (c)

Figure 4-8: An example of preprocessing results on block based DCT domain

(a) (b)

(c) (d)

(e) (f)

Figure 4-9: Illustration of binary face masks design for models in di�erent sizes.
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Fig. 4-8 shows an example of preprocessing (the picture is taken fromOlivetti face

database4). Fig. 4-8(a) is a cropped face region, (b) is the face region with a grayscale

linear factor removed, and (c) is the �nal result of face region preprocessing. We

can see that the shading in the original face is e�ectively removed (in sub�gure (b)).

In addition, the histogram equalization based on DC components introduces certain

blocking e�ect, but the general quality is acceptable (in sub�gure (c)).

4.2.3.3 Distribution Based Classi�er Design

For face detection purpose, a number of classi�ers have been used. These include:

unimodel Gaussian [78], multimodel Gaussian [97], neural networks [88, 73] and

support vector machine (SVM) [86]. Among them, neural networks and support

vector machine have been shown to have theoretical merits for high dimensional

vector classi�cation problems. Especially SVM is proved capable of �nding optimal

classi�cation boundary that minimizes structural risk [9]. However, both neural

networks and SVM are hard to train, i.e., to organize the positive and negative

training samples in order to make the classi�er converge to the optimal status.

In this work, we have to train multiple face models for faces in multiple scales,

therefore, we choose to use multimodal Gaussian model as classi�er, which is a

trade-o� between model training complexity and classi�cation performance.

The essence of multimodal Gaussian model is to approximate the feature vector

distribution with a number of Gaussian clusters. Though Gaussian distribution

is a general purpose statistical model that has been extensively used, unimodel

Gaussian distribution is shown by Sung [97] inadequate to model face patterns'

distribution in high dimensional feature space. Multimodal Gaussian model is a

natural extension of unimodal Gaussian models that has worked well in complex and

4http://www.cam-orl.co.uk/facedatabase.html
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high dimensional distribution problems. It also has moderate training complexity

as compared with neural networks and SVMs. In this work, in order to improve

classi�cation performance, we use two groups of multimodal Gaussian models to

approximate separately the distribution of face patterns and nonface patterns.

Positive Training Samples The basic idea of this approach is to approximate

the distribution of face feature vectors with high dimensional Gaussian clusters.

To study the distribution of face patterns in the DCT domain, 300 frontal faces

are collected from various sources, such as MIT face database, Yale face database,

Olivetti face database, University of Sterling face database5 and some anchorperson

images from the NBC news video database stored at AT&T Research Labs. Four

feature points of each face, i.e., the inner and outer corners of both eyes, are marked

manually. Each face is moved and scaled to align these feature points with speci�c

positions in a model window. The face image is then cropped with the model win-

dow, and converted to the DCT domain. After that, the feature vector is obtained

from the DCT parameters as described in Section 4.2.2.3. Because we train only

one model for one modeling window size, feature vectors should also be created to

represent face patterns whose feature points are not perfectly aligned with the face

model. In this work, we use 16 out of 64 possible spatial aligning positions for each

training face to generate training samples. In addition, to make use of the sym-

metric property, each training face is 
ipped and used as a new training sample.

Therefore, in this system, totally 16 � 2 � 300 = 9600 feature vectors are used as

positive training samples.

Clustering Algorithm We cluster the face feature vectors into six clusters of

Gaussian distribution. The clustering algorithm used here is similar to K-means

5Most of them are downloadable from http://www.cs.rug.nl/~peterkr/FACE/face.html
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algorithm, except that the Euclidean distance measure is replaced by a logarithmic

Gaussian distance measure. If we denote each cluster with a Gaussian distribu-

tion G(vi;Ci). A new feature vector's distance to each cluster is de�ned to be a

logarithmic Gaussian distance as:

d =
1

2
(N ln 2� + ln jCij+ (v� vi)

T
C�1

i (v� vi));

where N is the dimension of the feature vectors. Because N is a rather high di-

mension in this problem (200 � 400), we actually use Karhunen-Loeve transform to

reduce the above equation into a lower dimension problem as:

d =
1

2

"
M ln 2� +

M�1X
k=0

ln j�kj+
M�1X
k=0

y2k
�k

#
;

where y2k are the principle components and �k are the corresponding eigenvalues. M

is the number of eigenvectors used to approximate the system. Generally we have

M � N .

The detailed clustering steps are as follows.

1. Initialize the clustering process by grouping the feature vectors into six groups

in Euclidean distance space, i.e., a vector is put into the group whose center

is the closest to it among the six groups. And the covariance matrix for each

cluster is initialized to be unit matrix.

2. Re-compute the data centers of each cluster to be the center of the current

cluster partition.

3. Based on the current cluster centers and covariance matrixes, re-assign the

data partition by assigning the feature vectors to the cluster that is closest to

it in the logarithmic Gaussian distance space. If the di�erence between the
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new data partition and the old one is bigger than a threshold and the inner

loop time (Step 2 and Step 3) is less than the maximal time, goto Step 2,

otherwise goto Step 4.

4. Re-compute the covariance matrixes of the 6 clusters based on the current

data partition.

5. Based on the current cluster centers and covariance matrixes, re-assign the

data partition by assigning the feature vectors to the cluster that is closest

to it in the logarithmic Gaussian distance space. If the di�erence between

the new data partition and the old one is bigger than a threshold and the

outer loop time (Step 2 to Step 5) is less than the maximal time, goto Step

2. Otherwise, return the created mean vector and covariance matrix of each

cluster.

In Fig. 4-10, we give the clustering results on the 9600 face feature vectors. The

model size used is 5 blocks by 5 blocks. Fig. 4-10(a) to (f) are the average faces of

the six clusters at the time of convergence. Because only the 4 lowest frequent DCT

parameters (the choice of 4 will be discussed later in this section) in each block are

used for feature vector creation, the block e�ect is noticeable. But in general the

six mean faces represent mainly the variances in face textures rather than those in

di�erent spatial aligning positions.

Negative Training Samples In our experiments, we �nd many face like \non-

face" patterns in our testing examples that can not be simply separated from face

patterns by thresholding. In order to reduce the misclassi�cation rate, we further

create a multimodal Gaussian model for these face like negative patterns.

The training samples are collected in a boot-strap fashion. That is, the positive

face model is �rst created by the clustering algorithm as previously discussed. Based
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(a) (b) (c)

(d) (e) (f)

Figure 4-10: Average faces of the six face clusters when the face model size is 5
blocks by 5 blocks.

on this model, a face detector is designed, which is then applied to the training

pictures. The nonface patterns misclassi�ed as faces by the face detector are used

as negative samples.

In this way, we collect about 9000 negative nonface samples and cluster them into

eight clusters. The clustering algorithm used is the same as positive face sample

clustering. The clustering result of model size 5 blocks by 5 blocks is shown in

Fig. 4-11, in which each sub�gure represents an average nonface pattern for the

eight clusters.

Classi�cation The classi�cation problem is based on the distance measures from

the input feature vector to the positive and the negative clusters. Let's denote the

input vector as v, the six positive clusters as N(C(p)
k ;v(p)k ), k = 1; 2; � � � ; 6, and the

eight negative clusters as N(C
(n)
k ;v

(n)
k ), k = 1; 2; � � � ; 8. Then a 6-dimension positive

distance vector could be de�ned as d(p) = (d
(p)
1 ; d

(p)
2 ; � � � ; d(p)6 ), where

d
(p)
k =

1

2
(N ln 2� + ln jCj+ (v � v

(p)
k )

T
C�1(v � v

(p)
k )); (4.2)
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Figure 4-11: Average nonfaces of the eight nonface clusters when the face model
size is 5 blocks by 5 blocks

where N is the dimension of the feature vector v. In practice, because the input

feature vectors are in high dimension, the covariance matrixC is always decomposed

with KL transform:

C = T�T�1;

where T is the eigen-matrix and � is the diagonal matrix of eigenvalues. With only

the �rst M eigenvectors of the eigen-matrix T used to span the feature space, the

distance Eq. 4.2 is decomposed into two parts: the distance in the feature space

(DIFS) and the distance from the feature space (DFFS),

DIFS =
1

2

"
M ln 2� +

M�1X
k=0

ln j�kj+
M�1X
k=0

y2k
�k

#
;

DFFS =
1

2

"
(N �M) ln 2� + (ln jCj �

M�1X
k=0

ln j�kj) + �2

�

#
;

where yk is the principle components and �
2 = jjvjj�PM�1

k=0 y2k is the residue. � is a

weighting factor based on the estimation of eigenvalues �k; (k =M;M + 1; � � � ; N).
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In this work, the distance measure is therefore de�ned as:

d
(p)
k =

1

2

"
N ln 2� + ln jCj+

M�1X
k=0

ln j�kj+ �
�2

�M

#
; (4.3)

where � is an adjustable weighting factor.

Similarly, an 8-dimension negative distance vector is de�ned as d(n) = (d
(n)
1 ; d

(n)
2 ; � � � ; d(n)8 ),

with respect to the eight negative clusters.

Therefore, the classi�cation problem is reduced from a high dimension problem

(N = 200 � 400) to a lower dimension problem with N = 14, which is then solved

with a simple minimal distance classi�cation algorithm in our work, i.e., if

min
k=(1;���;6)

d
(p)
k � min

k=(1;���;8)
d
(n)
k ;

the pattern is detected as a face, otherwise it is a nonface.

In implementing the classi�er on practical face images, we tried to select feature

vectors of a variety of lengths. Based on the complexity analysis in Section 4.2.1,

the complexity of the face detection problem requires feature vectors of length in the

range of 200-400 dimensions. However, we notice that when feature vectors coming

from various spatial aligning positions are included as positive training samples (due

to the block quantization problem), the high frequency DCT parameters become

unstable in both face model training and face detection functions. In order to

illustrate this problem, an experiment is carried out to measure the separability

feature between the 9600 positive samples and the 9000 negative samples under the

condition of di�erent feature vector lengths.

The measure we used here is the divergence measure as de�ned in [37]. The

divergence measure of two Gaussian distributions N(v1;C1) and N(v2;C2) is given



108

as

Div =
1

2
(v1 � v2)

T (C�1
1 +C�1

2 )(v1 � v2) +
1

2
tr[(C1 �C2)(C

�1
2 �C�1

1 )] (4.4)

To study the in
uence of the feature vector length on the separability of the

problem, both the 9600 positive samples and the 9000 negative samples are projected

to the six positive clusters, which generates two groups of feature vectors in Gaussian

distribution (in R6). Their divergence is then computed according to Eq. 4.4. In

this experiment, we used a model size of 5 blocks by 5 blocks (40 by 40 pixels). The

feature vector length is changed from 23 to 230, or 1 parameter per DCT block to

10 parameters per DCT block. The corresponding divergence is computed and their

relation is illustrated in Fig. 4-12.
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Figure 4-12: Illustration of the relation between the feature vector length and the
divergence of the face and nonface patterns.

From Fig. 4-12, we notice that the divergence increases with the feature vector

length from 1 to 5 (parameters per block), and then drops when the feature vector
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model size model size masked block parameters feature
(in block) (in pixel) numbers per block vector length

1 5 40 23 4 92
2 6 48 32 3 102
3 7 56 45 2 90
4 8 64 60 2 120
5 9 72 77 2 154
6 10 80 92 1 92

Table 4.1: Feature vector length at di�erent model sizes

length further increases. That is, the more DCT parameters are included into the

feature vector, the less likely that the face patterns are able to be separated from the

nonface ones. This problem comes mainly from the high frequency components in

each DCT blocks. When we try to build up one model to represent face patterns in

all the 64 di�erent spatial aligning positions (with respect to the current model win-

dow), the high frequent parameters in the feature vectors experience large variation

from sample to sample, which makes them contribute negatively to the separation

problem. As indicated by Fig 4-12, for the speci�c case of model size 5 block by 5

block, the ideal feature vector length should be 4 to 5 DCT parameters per block,

or of about 100 parameters for the entire feature vector.

Based on this observation, we determine the feature vector lengths for all the

6 models in our system, which is listed in Table. 4.1. Note that the feature vector

lengths are all shorter than those used for pixel domain detection. This di�erence

is mainly, as have already been pointed out, due to the block quantization problem

in the DCT domain.
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4.2.4 Experiments

The texture based face detection algorithm is tested on a variety of pictures, which

include: CMU database6, CMU online face database7, key frames of news video

clips from CNN and NBC as well as pictures downloaded from Internet and scanned

from magazines and books. Though coming from di�erent sources and formats, the

pictures are all compressed into JPEG format with Adobe Photoshop 5.0 (quality

option medium, quantizer index 3) before processed. Some detection results are

shown in Fig 4-13.

Compared with pixel-domain detection algorithms, our algorithm is less accurate

because of the block quantization issue, especially the false detection rate is relatively

high. This can be seen from Fig 4-13. To overcome this problem, we seek to combine

the texture-based algorithm with a color-based algorithm.

4.3. Combined Color-Based and Texture-Based Face Detec-

tion in the DCT Domain

4.3.1 Generating Color Similarity Map

Color-based face detection work in the DCT domain was �rst discussed by Wang

and Chang [105]. In this work, our basic design is similar to theirs, except that we

do not try to setup a threshold at the color detection stage.

We assume the color pictures in JPEG and MPEG I frames under study are

compressed in 4 : 2 : 0 format. The pictures are partially decoded to restore their

DCT parameters in the block structures. The skin color is modeled and detected at

the macroblock level. That is, in each macroblock, the DC components of the Cb

6http://www.ius.cs.cmu.edu/IUS/eyes usr17/har/har1/usr0/har/faces/test/

7http://www.ius.cs.cmu.edu/IUS/usrp0/har/FaceDemo/gallery-inline.html
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(a) (b)

(c) (d)

(e) (f)

Figure 4-13: Several detection results of our texture-based face detection algorithm
(in the compressed domain)
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and Cr blocks are used as the average chromatic feature vector. A Gaussian model

N(vs;Cs) for the skin color is created by training over a manually labeled picture

database. Based on this skin color model, a color similarity map is generated for

each picture at the macroblock level. For macroblock (i; j), if we denote its color

feature vector as v(i;j), then its skin color similarity map entry is

color(i; j) = �1

2

h
ln 2� + ln jCsj+ (v(i;j) � vs)

T
C�1

s (v(i;j) � vs)
i

(4.5)

In this way, a skin-color similarity map is created for an input picture at the mac-

roblock level.

4.3.2 Color Constrained Face Pattern Detection

With the color map available, the face detection problem is further extended from

previous texture domain to the color domain. That is, given an input color picture in

its YCbCr format, we can apply the texture-based pattern detection on the Y com-

ponent and the skin-color map based pattern detection on the CbCr components8.

Because both detection designs have a statistical expression, it is easy to combine

them with a statistical framework. In other words, the color-based and texture-

based detection modules could be designed to work independently of each other and

they processing results could be combined statistically for the system to generate

the �nal results. This processing structure is shown in Fig. 4-14, which we refer to

as parallel merging structure.

In contrast, an alternative approach is sequential merging structure. We show

its 
owchart in Fig. 4-15. Though theoretically the parallel structure has the merit

8Because the skin-color similarity map is a map of scalar values, it is straight-forward to design
a face pattern detection algorithm based on this similarity map, which should be, in principle, the
same as the one we have designed on the texture map.
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Figure 4-14: Parallel merging structure for combined face detection system

of delayed judgment and thus better detection performance, sequential structure is

simpler and faster. In addition, the chromatic detection module is not a balanced

module as compared with the texture detection module in the detection accuracy

and reliability sense9. Therefore we follow the sequential structure in our system

design. As indicated in Fig.4-15, a simple thresholding function is applied right

after the color analysis module to generate a skin color map as follows. Given a

windowed image pattern W, its average skin-color similarity

P
(i;j)2W color(i; j)P

(i;j)2W 1
;

(where color(i; j) is de�ned in Eq. 4.5), is compared with a threshold T . Only the

windows with an average similarity higher than the threshold are further processed

by the texture analysis module as discussed in Section 4.2..

Texture

Analysis

DCT

Blocks

Chromatic

Analysis
Threshold Final Result

Figure 4-15: Sequential merging structure for combined face detection system

This combination, though simple, is better than both texture-only and color-

9In this work, we do not spend time to create an example based face pattern on top of the
skin-color similarity map as we do in Section 4.2. on top of the texture map (though it is possible).
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only algorithms. Compared with texture-only algorithms, the color similarity map

o�ers an additional constraint, which eliminates false alarms in the background

without a skin-color appearance. Compared with color-only algorithms, the texture

analysis module helps reduce false alarms introduced by skin-like backgrounds. In

addition, the texture analysis module is also useful in locating faces when skin-

like backgrounds are close to actual faces, in which case the simple shape analysis

modules commonly used in the color-based algorithms always fail.

4.3.3 Experiments

We tested our face detection algorithm based on combined texture and color infor-

mation over many pictures. The testing picture set we used in Section 4.2.4 is also

used here, except the CMU database and CMU online database are not used be-

cause they are grayscale pictures. In Fig. 4-16 and Fig 4-17, we show some detection

results on pictures from various sources.

To evaluate the performance of our algorithm quantitatively, we use the key

frames of one day's NBC Nightly News (Feb. 18, 1999, totally 586 frames) as our

testing data set. Within this data set, there are 42 faces and 36 of them are frontal

and upright ones that are within the coverage of our texture-based face model. The

detection performance is listed in Table 4.2. In Table 4.2, the new combined texture

and color based face detection algorithm is compared with the color-based detection

algorithm that we discussed in Section 3.2.2. Because the color-based algorithm

works in the pixel domain, while the combined texture and color based detection

algorithm works in the compressed DCT domain, the comparison is focused on the

detection performance, but not the spatial location accuracy of the detected faces.

As we can see from Table 4.2, the combined texture and color based algorithm

has less false alarms than the color-based algorithm because the texture processing
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4-16: Face detection examples
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(a) (b)

Figure 4-17: Face detection examples, continued
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color based detection color & texture based detection

total faces 42 36
face detected 34 30
face missed 7 5
false alarm 9 4

detection rate 81% 83%
detection accuracy 79% 88%

Table 4.2: Performance of the combined color and texture based face detection
algorithm

module has removed some false alarms introduced by the skin-color backgrounds.

In addition, less faces are missed by the combined color and texture based algorithm

than by the color-based algorithm. This di�erence is mainly due to the di�erent

ability of the two algorithms to detect faces surrounded by skin-like backgrounds.

That is, in color-based algorithms, skin-color regions are �rst detected with a skin-

color model based detector and then processed with a shape analysis module. Only

the regions have speci�c aspect ratios are accepted as face regions. When some

skin-like backgrounds are close to the actual faces, the detected skin-color regions

always get connected, which makes the shape of the detected regions no longer have

a face-like shape. In contrast, the texture based approach is not in
uenced by the

backgrounds, as long as they do not look like face patterns in the grayscale sense.

As a result, the combined texture and color based algorithm exhibits better

detection rate (i.e., the ratio of correctly detected faces v.s. total faces that should

be detected) as well as better detection accuracy (i.e., the ratio of correctly detected

faces v.s. the total detected faces) in this experiment.

4.4. Concluding Remarks

In this chapter we mainly developed a texture-based face detection algorithm that

works in the compressed DCT domain. This is a new work on compressed domain
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processing. Our work is based on the previous face detection works designed in the

pixel domain, but we discussed major problems we met in the compressed DCT

domain, such as block quantization problem, feature vector selection, preprocessing

design in the DCT domain, and multi-model based system structure. Due to the

block quantization problem, we have to use shorter feature vector than the face

detection designs in the pixel domain. Therefore, the proposed texture-based de-

tection algorithm is not as good as its counterparts in the pixel domain. To solve

this problem, we proposed to combine the texture-based algorithm with the face

color detection algorithm we discussed in Chapter 3. Experiments indicate that

the combined texture and color based detection algorithm works better than both

texture-only and color-only algorithms.

To sum up, this work is interesting because it �rst proposed to do traditional

pattern detection work on the compressed DCT domain, which is a promising re-

search direction for multimedia content analysis. In addition, in this work we also

proposed, for the �rst time, to combine texture and color information for face de-

tection. This is especially useful for multimedia processing, in which most visual

data are in color formats.

However, several problems in this work still need further study in the near future.

First, in this work, we simply choose to represent faces in one model size with

one model. Therefore, the model has to represent variations in di�erent faces as

well as variations in di�erent spatial aligning due to the block quantization prob-

lem. This has reduced in some degree the accuracy of model representation and

therefore in
uenced the performance of the system. A possible way to overcome

this problem is to increase the number of models created for faces in one model

size. For example, use di�erent models to represent face patterns in di�erent spatial

aligning positions. This will, at least improve the detection rate as close to those
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pixel domain algorithms as possible.

Second, the classi�er we used in this work is still quite simple. Better classi�ers

such as neural networks and support vector machines are all interesting alternatives

to the clustering algorithm used. We plan to try one of them on one model size �rst

to see if continuous works are necessary to apply newer classi�er to the multi-model

detection framework.

Third, we do not discuss the relation between quantization degradation in DCT

parameters and detection accuracy. In our experiments, many testing pictures are

downloaded directly from the Internet in compressed JPEG formats. So far, ac-

cording to our observation, as long as the image quality is acceptable to average hu-

man beings, the quantization degradation does not in
uence detection performance.

Though better quantitative results are desirable, a major problem to overcome is

how to separate the di�erent factors that in
uence image quality, i.e., compression

loss and problems in the imaging stages.
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Chapter 5

Interactive System Design for Video Object

Segmentation

5.1. Introduction

In the previous chapters of this thesis, we discussed various model-based algorithms

for segmentation and detection of video objects. Model-based solutions have been

shown capable of solving the segmentation and detection problems in the constrained

application domains and on speci�c objects such as head-and-shoulders and human

faces. However, it is hard to design appropriate models for segmentation purpose

in the general sense.

Actually, segmenting and detecting objects from image and/or video data has

been under intensive research in the computer vision and image processing commu-

nity. Numerous algorithms are available in the literature. However, it is becom-

ing widely accepted recently that fully automatic segmentation is diÆcult. Instead,

more and more semi-automatic approaches are designed for the applications in which

fully automation is not a compulsory requirement. This is especially true for multi-

media applications as compared with traditional computer vision applications such

as robotic vision, remote sensing, industry automation etc. In multimedia industry,
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semi-automatic algorithms are especially useful in the media authoring stages. For

example, in IBM's HotVideo [109] and HyperVideo from Veon [110] systems, video

objects are de�ned in a semi-automatic way in the authoring stage. Each video

object is then associated with a content related hot link that is similar to HTML

hotlinks. When the user click on the video objects at the time of playback, the

system then jumps to follow the hotlinks. IBM has included in its HotVideo system

a browsing tool as well as an authoring tool. Chalom and Bove also designed a

semi-automatic segmentation system [12, 11] to identify and track objects at MIT

Media Lab, which they later used to create a hyperlink video system [23]. In addi-

tion, under MPEG-4 framework, large amount of video object contents have to be

created with semi-automatic approaches.

As such, many papers and systems have been published according to the idea of

semi-automatic segmentation. For example, [12, 22, 116, 42, 10], etc. These papers

all sidestepped full automation and designed tracking algorithms to work along with

user interaction. However, though their contribution to the \tracking" (algorithm)

part of the problem is di�erent, their user interaction models are all very simple,

i.e., the user de�nes a VO in the �rst frame, and then lets the computer track the

VO temporally. This model cannot meet the requirements of interactive authoring

tools. For example, a common problem is that no quality criteria are proposed for

the computer to detect the loss of tracking and thus ask for additional user input.

Instead, the user has to observe the tracking course from time to time and o�er new

input when he or she �nds it necessary.

In this chapter, we propose a new \interpolation" approach for semi-automatic

video object segmentation, and discuss an authoring tool prototype design based

on this approach. Our focus is to design the algorithm and the user interaction

models at the same time, which helps to solve the eÆciency problem in interactive
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authoring systems. In our system, the user de�nes a video object by specifying

its contour on multiple anchor frames rather than only on the �rst frame. The

computer then uses input information from multiple anchor frames to \interpolate"

the VO contours on every frame. Compared with pure tracking approaches, the

interpolation approach o�ers more \interaction points" between the algorithm and

the user. From the algorithm's point of view, the algorithm makes use of user input

more eÆciently, because each user de�ned contour contributes to VO de�nitions

on those frames before as well as after it, while in the tracking case, a user input

only in
uences the frames after it. From the user's point of view, the new approach

makes the system performance more predictable because the user can de�ne a VO

on frames where large occlusion or motion occurs and most tracking algorithms are

likely to fail. In addition, it is more controllable in that with two or more input

VO contours, the possible interpolated contours can be e�ectively limited to certain

searching regions.

More speci�cally, the problem can be de�ned as follows. Given two input con-

tours Cb and Ce of a video object on frame b and frame e, try to �nd the object

contours Ci on frames i, i = b+1; b+2; � � � ; e�1. We call it a \contour interpolation"

problem. As a comparison, the \contour tracking" problem is formulated as: given

an input contour Cb, try to �nd the object contour Ci on frame i, i = b+1; b+2; � � � ; e.
It is natural to consider an interpolation problem as two tracking problems, i.e., to

maximize the use of input information on two frames, we can track the input con-

tour from Cb to Ce also well as from Ce to Cb. In this sense, all the available VO

tracking algorithms can be used. However, how to merge the results from these two

directional tracking and produce a �nal best result is obviously an open problem.

To maximize the use of user input on two frames, we use active contour models

(snakes) [50] in our interpolation algorithm. In a snake model, a planar curve is
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parameterized with nodes and local energy functions are de�ned for each node. The

�nal shape and position of the curve is determined by the global minimization of the

snake's energy. In our work, a traditional snake model is extended in the following

ways. First, we use nodes to represent snakes and we design a \contour matching"

algorithm to match the node-representations of two user input contours. Based

on contour matching, contour temporal smoothness and shape similarity criteria

are de�ned. Later discussion will show that these criteria are essential for merging

multiple tracking results. Second, we extend the 2-dimensional snake model to

a 3-dimensional model in which new energy terms that re
ect spatial temporal

constraints are included. Third, a \parametric neighborhood template" is designed

to improve the robustness against background edge noises during the active contour

tracking course.

The algorithm design in this work is directly in
uenced by the work [40], in

which the idea of contour matching was �rst proposed. In our work, we further de-

velop their contour matching algorithm by introducing di�erent local motion mod-

els. Based on contour matching, the interpolation problem is then modeled as a

bi-directional snake tracking problem and a merging problem. In addition, similar

work on spatial/temporal active snake model can be found in [60], [36], [16], [59],

etc. In [60], e�orts were made to combine the active contour model with motion

estimation. Quality criteria were also suggested to evaluate the quality of contour

tracking. However, their experimental results were not good because no node neigh-

borhood information was used. Lin and Kung [59] proposed a concept of circular

viterbi and applied it to fuse information from motion analysis, edge information

and active snakes in order to track and video objects. Chiueh et al. [16] used similar

snake technique to track video object contours for annotation. Fu and Tekalp [36]

tried to solve the occlusion problem in active contour tracking by segmenting the
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contours into multiple segments. They used neighborhood information for motion

estimation and got better results than [60]. We will later show in this chapter that

their work can be included in ours as a speci�c case of our parametric template.

The user interface model in this work is related to the work in [81]. In their sys-

tem, the user selects key points and the computer grows the corresponding contour

segment that links the key points. The current key point is moved by the user until

the contour segment grown by the computer is desirable. This process involves both

the computer's searching as well as the user's decision. It is an eÆcient model for

user/machine interaction. In our system, an improved active searching mechanism

(Interactive Rubberband) is designed for the user to de�ne the initial VO contours

on anchor frames. In addition, an iterative interpolation mechanism is designed for

the user to o�er error feedback to the interpolation algorithm.

This chapter is organized as follows. In Section 5.2., we introduce the contour

representation and contour matching algorithm. In Section 5.3., we discuss in detail

our contour interpolation algorithm based on contour matching. Then in Section 5.4.

we summarize the user interaction models employed in the system. Experimental

results are presented in Section 5.5., and in Section 5.6., we present concluding

remarks.

5.2. Contour Representation and Matching

5.2.1 Contour Representation

In this work, a contour is represented by a vector array fvs;kg, (s = 0; 1; � � � ; N),

where k is the temporal location and s is the spatial index of contour pixels. The

spatial location of each contour pixel is denoted by vector vs = (xs; ys). In addition,

for concise representation and easy matching, a contour can also be represented with

subsampled nodes as fvSk(i);kg, where Sk : i 7! j, i 2 [0; 1; � � � ; Ns], j 2 [0; 1; � � � ; N ]
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is the subsampling function related to temporal position k. For example, a uniform

subsampling function is de�ned as Sk(i) = i � unit, where unit is the subsampling
unit. In this work, we name fvs;kg the pixel representation and fvSk(i);kg the node
representation. Note that the node representation is actually a �rst order polynomial

approximation of the pixel representation.

5.2.2 Contour Matching

The purpose of contour matching is to �nd the correspondence between two contours

Cb, Ce, which are the contours of the same video object at the di�erent temporal

locations (b and e). This is essential for interpolating the object contours between

them. In the pixel representation, the length of Cb and Ce is not necessarily the same

and pixel by pixel correspondence can not be created. Therefore, we use subsampled

node representation for the contour interpolation study and contour matching algo-

rithms are used to �nd the correspondence between the two subsampled contours.

Mathematically, the matching process can be de�ned as follows. Given two input

contours: Cb = fvs;bg, Ce = fvs;eg in the pixel representation, and a subsampled

node representation for the �rst contour fvSb(i);bg, �nd the corresponding node rep-

resentation for the second contour fvSe(i);eg. Here the matching of the nodes of

two contours can be expressed with the mapping function fm : vSb(i);b 7! vSe(i);e,

i 2 [0; 1; � � � ; Ns]. Generally, we �x the node representation of the �rst contour Cb

by uniform subsampling (Other subsampling algorithms are also possible, see [95]

for a detailed discussion), and the matching process is reduced to �nding the corre-

sponding subsampling function Se(i) for the second contour.

In order to �nd the mapping function fm, we de�ne a local energy term for

each matched node pair. The �nal matching result is determined by the global

minimization of the matching energy of the two contours. This is similar to the
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matching approach in [40]. In this work, we assume the motion of the considered

video object is nonrigid globally, but rigid locally, and the shape of its two contours

is similar locally everywhere. This assumption is true in general if the motion of

the video object is not too fast in relation to the temporal distance between the two

frames on which the contours Cb and Ce are de�ned. Two rigid motion models, i.e.,

translation and aÆne, are possible for local matching energy de�nition.

TranslationMotionModel: If we denote the motion vector between two matched

nodes as MVi = vSb(i);b � vSe(i);e, then the matching energy term is de�ned as

Ei = �jjMVi �MVi�1jj+ �(Se(i)� Se(i� 1))2

where the �rst term is the smoothness evaluation of the motion vectors of two

neighboring nodes, the second term is an elastic constraint on the distance of two

neighboring nodes, and �; � are two weighting factors.

AÆne Motion Model: In contrast to the translation model, the aÆne model

needs three motion vectors to de�ne. Here we denote the aÆne mapping function

as Ai = AÆnei(MVi�1;MVi;MVi+1). Under this function, the local contour seg-

ment fvs;bg, s 2 [Sb(i � 1); Sb(i + 1)) is projected to a pixel set fv0e(s)g, while
its corresponding contour segment in frame e is denoted as pixel set fvSe(s);eg,
s 2 [Se(i� 1); Se(i+ 1)). Then the matching energy term is de�ned as

Ei = �D
�
fv0e(s)g; fvSe(s);eg

�
+ �(Se(i)� Se(i� 1))2;
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where the operator D(�) is the distance measure of two sets, which we de�ne as

D(A;B) =
h X
vi2B

min
vj2A

jjvi � vjjj+
X
vj2A

min
vi2B

jjvj � vijj
i
=2: (5.1)

In practice, Eq. (5.1) can be implemented in an iterative manner for each pixel.

Here we de�ne d(vi; A) = minvj2A jjvi�vjjj, and denote dn(vi; A) as the n-th value
for d(vi; A) in the iteration. At the initialization stage,

d0(vi; A) =

8><
>:

0 if vi 2 A

+1 otherwise
:

The iteration is then de�ned as

dn+1(vi; A) = min
vj2N(vi)

�
dn(vj; A) + jjvi � vjjj

�
;

where N(vi) is the 8-neighborhood set of pixel vi.

With the de�nition of local matching energy terms, the matching problem is

converted to an energy minimization problem. This can be easily solved by the DP

algorithm [7], which we do not discuss in detail here. In practice, the aÆne model is

more complex than the translation model, but the quality is better, especially when

the subsampling distance between neighboring nodes is big. In Fig. 5-1, we show

a result of contour matching under the translation model. Fig. 5-1(a) is the 50th,

5-1(b) is the 70th frame of the Carphone sequence. The green lines are the contours

and the red lines link the matched node pairs.
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(a) (b)

Figure 5-1: Results of contour matching for the Carphone sequence. (a) is the 50th
and (b) is the 70th frame of the Carphone sequence. The green lines are the user
speci�ed contours and the red lines link the matched node pairs.

5.3. Contour Interpolation Algorithm

5.3.1 Localized Energy Minimization Model

The essence of Kass' snake model [50] is to de�ne a local energy term for each con-

tour node, and the shape of the contour is determined by minimizing the total snake

energy globally. When we go from a 2-dimensional spatial snake to 3-dimensional

spatial/temporal snake, it is possible to extend the local energy terms from 2D to

3D as well. In this work, we study the extended local energy terms as intraframe

energy terms and interframe energy terms, respectively. From now on, because no

subsampling issue will be involved, snakes are assumed to be in the node represen-

tation. The node representation notation fvSk(i);kg is simpli�ed to fvi;kg whenever
possible.

Intraframe Energy: As usual, the intraframe energy terms include two parts, a

gradient term and a smoothness term:

Eintra;i = �edgeEgradient;i + �smoothEsmooth;i: (5.2)
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In this equation, the �rst gradient term is de�ned as

Egradient;i =
Z S(i)

s=S(i�1)

255

(10 + jj 5 (c(vs))jj)ds;

in which 255 and 10 are two empirical values. c(v) is the color vector of node v.

The second smoothness term is de�ned as

Esmooth;i =
� 2jjvS(i�1) + vS(i+1) � 2vS(i)jj
jjvS(i�1) � vS(i+1)jj+ jjvS(i) + vS(i+1)jj

�2
;

which is designed to eliminate the in
uence of the node distance on the contour

smoothness measure.

Interframe Energy: In available papers on temporal active contour tracking [60,

36], generally employed interframe energy terms include optical 
ow, motion smooth-

ness, interframe color, etc. A basic problem in these approaches is that most of

their node energy de�nitions are based only on image features at the node's posi-

tion rather than on its neighborhood. This makes the color and especially motion

information generally not accurate. Ideally, the contour nodes' neighborhood should

be observed in order to track them from frame to frame. However, a problem here

is, di�erent from typical point tracking problems, contour nodes are most likely lo-

cated on the boundary of a moving object, so their neighborhood is not constant.

In order to capture the consistency through the tracking course, we introduce a

concept of Parametric Neighborhood Template. A parametric template T is de�ned

as a data structure including two arrays: a vector array fdv0;dv1; � � � ;dvng and

a weighting array fw0; w1; � � � ; wng, in which a vector dvI represents the position

of the i-th pixel in the neighborhood and wi represents its contribution weight to

template measurements. For each contour node vi;k, a parametric template Ti;k is
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de�ned and kept updated frame by frame through the tracking course.

With the de�nition of parametric template Ti;k, the color of two temporally

neighboring contour nodes vi;k, vi;k�1 can be compared as

Di�c(vi;k;vi;k�1; Ti;k) =X
dvj2Ti;k

wjjjc(vi;k + dvj)�c(vi;k�1 + dvj)jj; (5.3)

where c(v) is the color vector of node v. In addition, we de�ne the motion vector

at node vs;k as

MV (vi;k; Ti;k) =
X

dvj2Ti;k

wj �MV (p)(vi;k + dvj)=
X

dvj2Ti;k

wj; (5.4)

where MV (p)(vi;k) is the estimated motion vector at vi;k. If we do not consider

occlusion, a simple way to determine the weights of template T is to set wj for those

neighboring pixels inside the contour as 1 and for those outside the contour as 0.

This can be illustrated in Fig. 5-2. For the occlusion case as was discussed in [36],

we can easily switch the weights by setting inside weights to 0 and outside weights

to 1. In general cases, both the size and the weights of the parametric template can

be adjusted 
exibly to get the best results of the contour node tracking.

Weight=0

Weight=1

Figure 5-2: Illustration of parametric template concept. During the tracking course,
both the size and weights of the template can be adapted.
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Based on parametric template, the interframe energy terms for each contour

node are enumerated as follows.

1. Color Similarity: Ecolor;i;k = Di�c(vi;k;vi�1;k; Ti;k). Here function Di�c() is

de�ned in Eq. (5.3).

2. Optical Flow: Eoptical;i;k = MV (vi;k�1; Ti;k�1) � MVi;k�1. Here the �rst

term MV (vi;k�1; Ti;k�1) is de�ned in Eq. (5.4) and we assume forward motion

estimation is used. The second term is MVi;k�1 = (vi;k � vi;k�1).

3. Motion Smoothness: Emotion;i;k = jjMVi�1;k +MVi+1;k � 2MVi;kjj. This is a
smoothness measure for motion vectors on the spatially neighboring nodes. It

is accurate for local motion in the translation form.

4. Shape Sti�ness: Eshape;i;k = jjangle(vi�1;k�1;vi;k�1;vi+1;k�1)�angle(vi�1;k;vi;k;vi+1;k)jj,
where angle(vi�1;vi;vi+1) is the angle based on the three spatially neighbor-

ing nodes. This term measures the local shape similarity. It is accurate if the

local motion is in the rotation form.

5. Temporal Smoothness: Etemporal;i;k = jjvi;k�1 + vi;k+1 � 2vi;kjj. This is the
smoothness measure for the three temporally neighboring nodes.

The interframe energy Einter is then the weighted sum of above terms.

Search Algorithm for Minimization: With the de�nition of local energy terms,

the contour interpolation problem can be expressed as an energy minimization prob-

lem as follows. Given two contours fvi;bg; fvi;eg, (b < e; i = 0; 1; � � � ; Ns), �nd the

contour nodes fvs;kg, (k = b + 1; � � � ; e � 1; s = 0; 1; � � � ; Ns), that minimize the

global energy
P

s;k(Einter;s;k + Eintra;s;k).

Though it is natural to extend the local energy terms from 2D to 3D, the increase

in computational complexity is an important problem. In the 2D case, each node vi's
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local energy is de�ned in relation to two neighbors, i.e., Eintra = f(vi�1;vi;vi+1),

while in the 3D case, the local energy terms for each node vs;k is de�ned in relation

to eight neighbors! This change is illustrated in Fig. 5-3. If each node has a search

region of n, the local searching complexity then increases from n3 to n9, which makes

global minimization algorithm diÆcult to design. Though powerful algorithms such

as simulated annealing should still be able to solve this minimization problem, the

slow speed of convergence makes it inappropriate for an interactive segmentation

tool.

(i+1,k-1)

(i,k-1)

(i-1,k-1) (i-1,k)

(i+1,k)

(i,k)

(i+1,k+1)

(i-1,k+1)

(i,k+1)

Figure 5-3: Spatial temporal neighborhood of a contour node for the local energy
de�nition. In the �gure, i is the spatial index and k is the temporal index.

In this work, a sub-optimal solution is obtained by converting the contour in-

terpolation problem into two tracking problems: a forward tracking from Cb to Ce

and a backward tracking from Ce to Cb. They are also referred to as bi-directional

tracking in this work. When converted to a tracking problem, the neighborhood def-

inition of the current pixel (i; k) cannot include nodes in a neighboring frame that

has not been processed. Therefore, we shift the neighborhood de�nition in Fig. 5-3

by one frame. For example in the forward tracking model, if the current node is

(i; k) in Fig. 5-3, then its eight nodes are (i+1; p); (i; p); (i�1; p), p = k�2; k�1; k

(not including (i; k)). Among them, six are already �xed and only two variable

nodes (i+1; k+1) and (i� 1; k+1) will in
uence its local energy. This is the same

as the case with the intraframe energy Eintra;s. Therefore, it is easy to design a
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search algorithm with DP. After the bi-directional tracking, another search process

is used to �nd the optimal contours out of the previous tracking results.

5.3.2 Bi-directional Tracking

In the tracking model, each node vi;k's total node energy can be written as

Etotal;i;k = fE(vi�1;k;vi;k;vi+1;k) (5.5)

because the other six neighboring nodes vi+p;k�2, vi+p;k�1, p = (�1; 0; 1) in the

previous frames are all �xed. This energy expression is similar to those used for

2D active contour models, except that the detailed expression of fE is di�erent.

Therefore, we use the DP algorithm similar to that used in [7].

Limited Search Region v.s. Searching Complexity According to [7], the

local energy expression in Eq. (5.5) is a second order expression in the sense that

it includes two neighboring nodes as variables. In this case, a two-element vector

(vi+1;vi) is used as the status index for DP. The DP search is then carried out as

follows

Si(vi+1;vi) = min
vi�1

h
Si�1(vi;vi�1) + fE(vi�1;vi;vi+1)

i
:

Note that the frame index k is omitted in the above expression because no temporal

information is involved. If the search size for each node is n and the total number

of nodes in each contour is m, the complexity of DP is O(mn3). Obviously, the

search size n is an important factor in the overall complexity and should be limited

as much as possible.

Two clues are used to limit the search size in our work. First at the global level,

a search stripe can be created for each matched node pair. This is illustrated in

Fig. 5-4. For ease of discussion, the temporal orbit of the matched node is projected
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Temporal orbit

Search Height

Search width

Frame"e"Frame"b"

X axis

Y axis

Motion vector

Local search area

Global search stripe
Temporal orbit

Y axis

X axis

Frame "e"Frame "b"

Search height

Search width

(a) (b)

Figure 5-4: Global and local search region limitation. The two grayed circles repre-
sent the matched node pair. The size of the global search region is determined by
\search height" and \search width", while the local search region is determined by
motion estimation.

into one frame. On this frame, a search stripe is de�ned. Note that the de�nition

of a search stripe is di�erent according to di�erent spatial location of the matched

node pairs. In Fig. 5-4(a), and 5-4(b), two basic types of search stripe de�nitions

are depicted. The orientation of width and height are di�erently de�ned as well

based on the di�erent orientations of the matched node pairs. In practice, both

the width and height of the global search stripe can be determined by the user in

an interactive way, according to the motion of video object. That is, if the motion

is more like a pure translation, the height of the stripe S
(G)

height may be reduced,

otherwise it is increased. The bottom line is that the global search region should be

at least big enough to cover the temporal orbit of the node's motion. In addition,

in the case of large search stripes that exceed a certain threshold, the global search

stripe is further re-sampled to reduce the overall search size. The two axes \x"

and \y" used for resampling are marked in Fig. 5-4(a) and 5-4(b). Note that the
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parallelogram search region de�nition is more eÆcient than a strictly rectangular

one in the computational sense, while without much performance degradation.

Once the global stripes are de�ned for node pairs, the tracking of nodes is con-

strained within their stripes on every frame. In addition, at the local level, the local

search region is further determined frame by frame by the forward motion vector at

the current frame. In our work, the determination of S
(L)

height and S
(L)

width is based

on S
(G)

height and S
(G)

width, and the local search is carried out on top of the re-sampled

grids created for the global search stripe, i.e. the re-sampled grids along the \x"

and \y" axes.

In above two clues, the global stripe limits the possible location of the local search

region. Note that in the pure \interpolation" case, both the width and height of

the global search stripe is zero. Therefore, the global search stripe is actually a

generalization of interpolation.

Closed Contour Problem Until now, the discussed contours Ci are all by default

open. In practice when contours are constrained to be closed, the minimization

search used for tracking purpose can be approximated with two-pass open contour

searching. That is, for a closed contour Ci; i = 0; 1; 2; � � � ; n, node C0 = Cn, its

minimization status can be found as follows. First break the closed contour at node

C0, use previous algorithm to process open contour Ci; i = 0; 1; 2; � � � ; n� 1, which

produces a temporary contour C 0
i. Second, close C 0

i by setting C 0
n = C 0

0 and then

break it half way at node C 0

(n=2), this produces an open contour C 00
i . C

00
i is further

processed with the open contour algorithm and the �nal result is obtained.
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(a) (b)

(c) (d)

Figure 5-5: Illustration of the necessity of bi-directional tracking and result merging.
(a), (b) are the user de�ned VO on the 118th and the 132nd frame of the Carphone
sequence. (c) is the tracked object contour on the 125th frame by forward tracking.
(d) is the tracked object contour on the 125th frame by backward tracking.

Contour created by tracking

User defined contour

Contour tracking path

DP merging path

Figure 5-6: Illustration of DP approach for merging the bi-directional contour track-
ing. Each circle represents a contour C

(d)
k , DP searching is used to �nd an optimal

path in the temporal direction that has the best merit quality.
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5.3.3 Merging of Multiple Results

Though the bi-directional tracking approach reduces the searching complexity, its

limitation is that it only makes use of user input in one frame (either Cb or Ce) at a

time. Due to the error accumulation, the tracked contour Ck always degrades when

k approaches e, if tracked from Cb to Ce, and vice versa. Actually we have observed

that if the object's motion involves self-occlusion and/or uncovering, sometimes it

is very diÆcult for the active contour model to track its contour in one direction,

but easy to do it in the other direction. Fig. 5-5 is such an example. In Fig. 5-5,

(a), (b) are the user de�ned VO on the 118th and the 132nd frame of the Carphone

sequence. From frame 118 to frame 132, the man's left ear was uncovered because

of the rotation of his head. If we track the object contour forward, i.e. from the

118th frame to the 132nd frame, the uncovered ear was not included as part of the

video object. This is depicted in Fig. 5-5(c). On the other hand, if we track the

contour backward, i.e. from the 132nd frame to 118th frame, the motion is reversed

and the uncovering motion of left ear changes to occlusion, which is easy for the

active contour tracking algorithm to handle. The result of backward tracking for

frame 125 is shown in Fig. 5-5(d). Note that the left ear is correctly included as

part of the video object.

Therefore, a good algorithm to merge the results from the two tracking processes

is important. In this work, an eÆcient DP algorithm is designed for the merging job.

The problem may be de�ned as follows. Given two set of contours fC(1)
k g, fC(2)

k g,
(k = b; b+1; � � � ; e), that are created by two contour tracking processes (one from Cb

to Ce and the other from Ce to Cb), �nd a contour set Ck, (k = b; b+1; � � � ; e; Ck =

C
(1)
k or Ck = C

(2)
k ) that meets certain merit criteria as the �nal output of contour

interpolation. In the terminology of DP, we can say that the target is to �nd an

optimal path from Cb to Ce that maximize the merit criteria.
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In this work, the merit criteria for each candidate contour include two terms: a

temporal smoothness energy term ET , and a shape merit energy term ES, i.e.

Emerge(Ck) = �T �ET (Ck) + �S � ES(Ck): (5.6)

The �rst term is de�ned in a localized form:

ET (Ck) =
i=NsX
i=0

jjvi;k�1 + vi;k+1 � 2vi;kjj; (5.7)

where Ns is the number of nodes in each contour. Note that ET (Ck) is di�erent

from previously de�ned Etemporal in that ET (Ck) is de�ned for each contour while

Etemporal is de�ned for each contour node.

The second term of Eq. (5.6) is based on the shape similarity comparison between

two contour pairs: (Cb; Ck) and (Ck; Ce). If we denote the shape similarity measure

of two contours Ck and Cl as shape(Ck; Cl), then the ES term can be written as

ES(Ck) =
h
w1(k) � shape(Cb; Ck) + w2(k) � shape(Ce; Ck)

i
; (5.8)

where w1(�) and w2(�) are two weighting functions. They are designed as a linear

function of frame indices k, b, and e. In addition, the shape similarity measure used

here can be de�ned based on two interframe node energy terms Eshape and Emotion,

as discussed in Section 5.3.1. At the contour level, this expression is de�ned as

shape(Ck; Cl) =
i=NsX
i=0

�1[(vi;k � vi;l)� (vi�1;k � vi�1;l)]

+�2[angle(vi�1;k;vi;k;vi+1;k)� angle(vi�1;l;vi;l;vi+1;l)]:

In the above Eq.s (5.6)-(5.8), Emerge(Ck) is actually de�ned in relation to three
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contours: Ck�1, Ck and Ck+1. Therefore, it is easy to solve the minimization problem

with DP. Here Fig. 5-6 is used to illustrate the DP based merging algorithm. In

Fig. 5-6, each circle represents a contour C
(d)
k , DP searching is used to �nd an

optimal path in the temporal direction that has the best merit quality, i.e., in the

sense of temporal smoothness and shape similarity.

5.4. User Interaction Model

In a typical semi-automatic system, the user's role includes two important functions.

One is to give the initial data for the computer to begin the computation, the other

is to correct the computer's errors. In our system, these two functions are handled

by Interactive Rubberband and Iterative Interpolation, respectively.

5.4.1 Interactive Rubberband

In available image authoring systems, two types of solutions are common for a

user to specify an object contour in an image (or a video frame). In one of them

(Type One), the user speci�es every point of the contour, while the computer does

nothing but record the positions of each mouse click and links the positions with

line segments. Typical examples include the polyline drawing in XFIG and free

style drawing in PHOTOSHOP. This type of solution gives the user full control of

the shape and position of the contour, but ignores the computational power of the

computer. Obviously, it is tedious to input an accurate contour point by point. On

the other hand, in the other type of solutions (Type Two), the image is modeled

as grids and the contour as paths linking the grids. The user has only to select a

starting point and an ending point of a contour segment, the computer �nds the

whole segment by searching the minimal cost path that links the two points. This

can be done with either dynamic programming or graph searching algorithms such
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as Dijkstra's algorithm [21]. Publications belonging to this type include [81], [72],

[80], etc. Compared with Type One solutions, Type Two approach relieves the

user's labor by introducing computer searching during the interaction. However,

its problem is that the user has less control on the contour. Sometime when the

gradient information within the image is complex, an intended contour segment may

be attracted to an erroneous strong neighboring edge, which is totally undesirable.

In addition, the \Active-Scissors" approach de�ned in [81] requires the computer to

calculate the optimal path to every pixel within the image every time a new contour

point position is chosen by the user. This is not eÆcient if the size of image is big

and real time performance is hard to achieve.

To overcome the problems while retaining the bene�ts of above two groups of

solutions, we design an Interactive Rubberband tool, which is a hybrid of the two of

them.

An Interactive Rubberband is in principle a dynamic graph searching edge de-

tection algorithm that is similar to the second of the above mentioned two types of

solutions. The di�erence is that it comes with an adjustable containing rectangle

that limits the range of graph searching. This is illustrated in Fig. 5-7. The user

moves the current moving point, which, together with the �xed point, determines a

containing rectangle. Graph searching is then carried out within the rectangle and

a contour segment is grown to link these two points. Compared with the Active-

Scissors approach in [81], Interactive Rubberband is more eÆcient because it limits

the graph searching range to the neighborhood of the desirable contour segment.

Moreover, the user can control the result of graph searching by adjusting the width

of the rectangle, e.g., if there is strong noisy edges in the neighborhood, the user

may get rid of them by narrowing the containing rectangle. In the extreme case,

the width can be set to one, then the Interactive Rubberband reduces to above type
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one solution. In this sense, the Interactive Rubberband is a generalization of the

previous type one and type two solutions.

contour segment

Temporarily grown

Rubber width

Moving point

Fixed point

Figure 5-7: Illustration of active rubberband. The containing rectangle is deter-
mined by two points: a �xed point and a moving point, and the rubberband width.
The width of the rubberband is adjustable by the user.

5.4.2 Iterative Interpolation

Though in experiments the discussed interpolation algorithm showed good perfor-

mance, error is inevitable in practice, especially when the two anchor frames on

which the user speci�es object contours Cb and Ce are far away in the temporal

direction. Iterative interpolation is found to be a good solution to this problem.

In general, the reasons for errors in interpolation are complex. However, in the

interpolation algorithm based on bi-directional tracking, a video object contour can

always be reliably tracked from Cb to a certain C(b+t1), and from Ce to a Ce�t2 , where

t1 > 0 and t2 > 0. If b+t1 turns out equal to e�t2, the problem is solved. Otherwise,

we can move the Cb to C(b+t1), and Ce to Ce�t2 , and begin the interpolation again.

In this way, the interpolation is done iteratively until the two contours Cb and Ce

converge. This process can be better illustrated in Fig. 5-8. In Fig. 5-8, points
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P (1) and P (2) are a matched node pair on contours Cb and Ce. After the �rst

round of interpolation, point P (1) is correctly tracked to P (3) and P (2) to P (4).

At this stage, the user changes the Cb to the temporal position at P (3) and Ce to

the position at P (4), sets the global search parameters accordingly, and begins the

interpolation again. As depicted in the �gure, the global search area in the second

round for point pair P (3)� P (4) is much smaller than that of P (1)� P (2). This is

an important factor that helps the iterative interpolation process converge.

Search Area 1

Search Area 2 P(2)

P(4)

P(3)

P(1)

Figure 5-8: Illustration of iterative interpolation. Point P (1) and P (2) are a matched
node pair on initial contours Cb and Ce. After the �rst round of interpolation, point
P (1) is correctly tracked to P (3) and P (2) to P (4). Their corresponding contours
are used as new Cb and Ce and the interpolation is done iteratively until converges.

In Fig. 5-9, a practical example is given on the Foreman sequence to show how

the iterative interpolation works. In the �rst interpolation round, the user spec-

i�es Cb on frame 50 and Ce on frame 100, the global searching parameters are

height = 15(pixels), width = 4(pixels). Sub�gures (a) to (e) are results on frames

80, 84, 87, 90, 94 in this round. Obviously, the tracking result is poor from frame 80

to 94, mainly because a strong neighboring edge has attracted the snake erroneously

(due to space limits, other frames are not included in the �gure). To overcome the

error, the user moves Cb to frame 80 and Ce to frame 94, and change the global



143

searching parameters to height = 4, width = 4. Based on the contours on frame 80

and 94, the results after the new interpolation round on frames 84, 87, 90 are shown

in sub�gures (f), (g), (h), respectively. Obviously, the second interpolation round

improves the accuracy of tracked contours if we compare the contours in sub�gures

(b), (c), (d) with those in (f), (g), (h). It is worth noticing that in the second

round of interpolation, the user does not have to tell the computer laboriously what

exactly a correct contour is. Instead, the user just chooses new anchor frames on

which the tracked contours are correct, and changes the global searching param-

eters accordingly (limits the global searching area as much as possible). It is the

computer's work to do the interpolation again based on new user input information!

5.5. Experiments

The discussed video object annotation system is implemented on PCs running Win-

dows 95. Experiments are carried out over MPEG-4 testing video sequences as well

as sequences from a library used by Columbia's VideoQ1 system.

First, we compare the e�ect of parametric template for active contour tracking

on Carphone sequence. In the experiment, single direction forward tracking is used.

In Fig. 5-10, the left column is the tracking result without and the right column is

the result with the parametric template. The �rst row is the beginning user input

contour in frame 0, the following two rows are the tracked results for the 43rd and

47th frames. Obviously, the parametric template improves the tracking robustness

in complex boundary conditions.

Fig. 5-11 shows the results of tracking result merging on the Mother-Daughter

sequence. The user de�nes VO contours on frame 75 and 180. The �rst row is the

result of backward tracking from frame 180 to frame 75, and the second row is the

1http://www.ctr.columbia.edu/VideoQ
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interpolation results that merge bi-directional trackings. The frame numbers, from

left to right, are 170, 160, 150, 130 and 90. We can see that from frame 180 to

160, the merged results are taken from backward tracking, while from 160 to 75,

the merged results are taken from forward tracking (which is not shown here due to

the space limit). That is, the merged interpolation results are better than tracking

results on either direction.

Fig. 5-12 is a fully �nished segmentation result on the �rst 100 frames of the

Foreman sequence. Sub�gures (a)-(h) are the produced contours on frame 10, 20, 30,

40, 60, 70, 80, 90. To �nish the segmentation, the user speci�ed three initial contours

on frame 0, 50 and 100. One additional iteration is involved in the interpolation

between frame 0 and frame 50, and frame 50 and frame 100, respectively.

In practice, the computational complexity of the algorithm depends on the size

of the searching area and the complexity of the contours. In our experiment, a

200-MHz Pentium is used, the average speed of the interpolation algorithm is about

0.01 second/node and/or 0.6 second/frame (tested on several MPEG-4 sequences in

QCIF size).

5.6. Concluding Remarks

In this chapter, an interactive authoring system is designed for video object segmen-

tation and annotation. This system features a new contour interpolation algorithm,

which makes better use of user inputs and has more stable performance than tradi-

tional single directional tracking algorithms. In addition, eÆcient user interaction

models are built for both initial data input and machine error feedback. Our exper-

iments show that this prototype system works eÆciently both from the machine's

and the user's point of view, in that it elegantly balances the use's decision making

capability and the computer's processing and searching power.
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 5-9: An example of iterative interpolation on the Foreman sequence. In the
�rst round, the user speci�es Cb at frame 50 and Ce at frame 100, the global search
parameters are height = 15(pixels), width = 4(pixels). (a) to (e) are results on
frames 80, 84, 87, 90, 94 at this round. In the second round, previous contour result
on frame 80 is used as Cb and contour result on frame 94 is used as Ce, the global
search parameters are reduced to be height = 4, width = 4. The new interpolation
results on frame 84, 87, 90 are showed in (f), (g), (h), respectively.
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 5-10: Comparison of the e�ect of parametric template on active contour
tracking. The left column is the tracking result without and the right column is the
result with parametric template. First row is the beginning user input contour in
frame 0, the following two rows are the tracked results for the 43rd and 47th frames.
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(a) (f)

(b) (g)

(c) (h)

(d) (i)

(e) (j)

Figure 5-11: Illustration of tracking results merging. The user de�ned VO contours
on frame 75 and 180. The �rst column is the result of backward tracking from frame
180 to frame 75, and the second column is the interpolation results that merged bi-
directional tracking results. The frame numbers, from top to bottom, are 170, 160,
150, 130 and 90.
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 5-12: Illustration of a full segmentation result on the Foreman sequence. The
frame numbers are 10, 20, 30, 40, 60, 70, 80, 90 for sub�gures (a)-(h).
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Chapter 6

Conclusion and Future Work

In this thesis, we have designed several analysis algorithms for video object detection

and segmentation in the general framework of multimedia content analysis. The

algorithms are developed in two directions, i.e., fully automatic algorithms and

semi-automatic algorithms.

In automatic analysis research, our works are mainly focused on model-based

algorithm design. Because video content analysis has been a diÆcult problem in

image understanding and computer vision research, general-purpose algorithms are

hard to design. Instead, in our work, we have tried to design detection and seg-

mentation algorithms based on di�erent multimedia applications. By constraining

the application domain or the problems to be solved, we could represent the video

objects to be detected or segmented with some well-de�ned templates and/or mod-

els. This way, the diÆcult video analysis problems become tangible with reason-

able computation resources. Speci�cally, we have designed video object detection

and/or segmentation algorithms for three multimedia applications: (1) Real-time

VO segmentation for videophones and videoconferences. (2) Automatic anchorper-

son detection and segmentation for broadcasting news indexing and retrieval. (3)

Automatic face detection from the compressed DCT domain. All of them are highly

structured patterns and have strong pattern features with respect to color, texture
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and shapes.

For videoconference applications, we have designed a foreground and a back-

ground model and an online tracking mechanism to create and track the model

parameters for both foreground and background models. In our system, the back-

ground model is a simple 2D array of pixels, each has an independent Gaussian dis-

tribution. The head-and-shoulder pattern foreground is modeled with a blob-based

region model and a shape model. Both models have a Gaussian assumption for

their feature vectors. In our experiments, this algorithm runs in real time on QCIF

(176 � 144) size videos on an Intel Pentium 200 MHz PC. Because this algorithm

is a real time VO segmentation algorithm, we also discussed two direct applications

of it, i.e., real time VO generation for MPEG-4 codecs and content-based bit-rate

control for traditional H.263 codecs.

Our work on automatic anchorperson detection is mainly designed for automatic

broadcasting news video indexing and retrieval. To capture the consistent features of

anchorpersons in various contexts, we proposed to model the anchorperson patterns

with respect to their color and shape features. The detection problem is decomposed

into a color-model based face region detection and a shape model based head-and-

shoulder pattern detection problem. The statistical shape model design in this

work is similar to what we used in the real time segmentation algorithm design for

videoconference applications. However, in the o�ine scenario, shape model �tting is

a much more expensive searching problem, which we solved with a downhill simplex

searching algorithm.

Similarly, our work on face detection also proposed a combined color and texture

based model design. Because video information in the multimedia world is always

colored data, we have tried to merge the two types of face detection algorithms in

the literature, i.e., the skin-color based face detection and the texture based face
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detection, in our work. Though each type of the algorithms has been discussed ex-

tensively in separate applications, our work has showed that they could be combined

to generate better detection performance. In addition, our face models, both color

and texture models are designed in the compressed domain of JPEG and MPEG

rather than in the pixel domain. This work, especially the texture model design

for face detection in the compressed domain is a new problem in the multimedia

content analysis research. Our work discussed a number of fundamental problems

in this area, such as block quantization problem, preprocessing in the DCT domain,

and feature vector selection and classi�cation in the DCT domain.

In semi-automatic analysis research, our major work is the design of an interac-

tive authoring system for semi-automatic video object segmentation and annotation.

This system features a new contour interpolation algorithm, which enables the user

to de�ne the contour of a video object on multiple frames while the computer inter-

polates the missing contours of this object on every frame automatically. Typical

active contour (snake) model is adapted and the contour interpolation problem is

decomposed into two directional contour tracking problems and a merging problem.

In addition, new user interaction models are created for the user to interact with

the computer. These include the Interactive Rubberband and the Iterative Interpola-

tion. Experiments indicate that this system o�ers a good balance between algorithm

complexity and user interaction eÆciency.

Though this thesis work has solved a number of problems in video content anal-

ysis, based on the available results, many problems are raised for further research

as well.

In automatic video analysis research, we believe application-oriented algorithm

design will continue to be a major research direction in multimedia community.

However, in order to obtain better performance, more e�orts are needed to combine
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the state-of-the-art techniques from areas of signal compression, computer vision and

pattern recognition. An interesting problem worth mentioning is the face detection

in the compressed DCT domain. Our work has shown that face detection directly

based on the block based DCT parameters is feasible. However, to obtain better

detection performance, more research work is necessary to investigate a better trade-

o� between model representation accuracy and representation eÆciency. That is,

it is not always good to create models in very high dimensional feature space with

high representation accuracy. One problem for it is that longer feature vector means

more computation power in model creating and �tting. Another is that quantization

errors will become dominate in pattern feature variance in high dimensional feature

space. Therefore, optimal determination of feature vector length is an important

topic that in
uences the performance of the detection algorithms. In addition, better

pattern classi�cation tools such as neural networks and support vector machine are

all good options to further improve the face detection performance.

Another interesting research topic for automatic video content analysis is to

make use of multimedia information fusion. That is, in multimedia systems, con-

tent analysis should not only be con�ned to video information. Additional media

forms, such as audio and text also o�er useful information. An appropriate appli-

cation example for that is automatic content analysis of broadcast news. Further

improvement on our model-based anchorperson detection work could be achieved

by incorporating works such as speech based speaker recognition and close caption

based topic identi�cation. Actually, one of our papers [67] has discussed some of

the related problems.

In the near future, general-purpose VO segmentation research will mainly be

based on semi-automatic system design. In order to make video objects popular,

VO segmentation systems should have friendly user interfaces as well as highly eÆ-
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cient processing algorithms. In this thesis work, our interactive system design uses

contour based object representation, which, though convenient for multiple tracking

information fusion, is not the only representation for general purpose VO segmen-

tation. Other VO representation schemes, such as region-based representation and

combined region and boundary-based representation are all interesting alternatives

that should be studied for better interactive segmentation system design.
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