

Delivering Object Based Audio-Visual Services

Hari Kalva

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in the Graduate School of Arts and Sciences

Columbia University

2000

© 2000

Hari Kalva

All Rights Reserved

ABSTRACT

Delivering Object Based Audio-Visual Services

Hari Kalva

We investigate the different aspects of end-to-end multimedia services: content

creation, server and service provider, network, and the end-user terminal. In the first

part of the thesis we present the study of system level issues including standardization

and interoperability, user interaction, and the design of a distributed video server. In

the second part of the thesis we investigate the systems in the context of object-based

multimedia services. We present a design for an object-based audio-visual terminal,

some of the features of which have been adopted by the MPEG-4 Systems

specification. We then present the study of the requirements for a file format to

represent object-based audio-visual content and the design of one such format. The

design introduces new concepts such as direct streaming that are essential for scalable

servers. In the final part of the thesis we investigate the delivery of object-based

multimedia presentations and give optimal algorithms for multiplex-scheduling of

object-based audio-visual presentations. We show that the audio-visual object

scheduling problem is NP-complete in the strong sense. The problem of scheduling

audio-visual objects is similar to the problem of sequencing jobs on a single machine.

We compare the problems and adapt job-sequencing results to audio-visual object

scheduling. We give optimal algorithms for scheduling presentations under resource

constraints. The constraints considered are the bandwidth (network constraints) and

buffer (terminal constraints). We present algorithms that minimize the resources

required for scheduling presentations. We investigate the structure of interactive

audio-visual presentations by considering event specifications and event extents. We

show that the only way to support interactivity is by reserving channel capacity to

deliver the interactive components of presentations. We also present algorithms for

computing the minimum auxiliary capacity required to support interactivity in object-

based audio-visual presentations.

i

Contents

Chapter 1 Introduction .. 1

1.1 INTRODUCTION...1

1.1.1 MPEG-1 ..1

1.1.2 MPEG-2 ..2

1.1.3 MPEG-4 ..3

1.1.4 DAVIC ...4

1.2 COMPONENTS OF A MULTIMEDIA SYSTEM ...4

1.2.1 Content Creation and Management ..5

1.2.2 Server and the Service Provider..7

1.2.3 Access Infrastructure...8

1.2.4 Content Consumer...9

1.3 CONTRIBUTIONS OF THE THESIS ...10

1.3.1 Video-On-Demand Systems...11

1.3.2 Object-Based Audio-Visual Services...12

1.3.3 Scheduling Interactive Presentations..14

Chapter 2 VoD Testbed: Interaction, Interoperability,

and Standardization ... 17

2.1 INTRODUCTION...17

2.2 SYSTEM OPERATION AND APPLICATION SERVICES.......................................18

ii

2.3 STREAM SERVICE AND THE DISTRIBUTED VIDEO PUMP21

2.3.1 Stream Service for Web Clients...23

2.4 STANDARDIZATION AND INTEROPERABILITY..24

2.4.1 Information Flows and Reference Points..25

2.4.2 Interoperability..26

2.5 CONCLUDING REMARKS...28

Chapter 3 Object-Based Audio-Visual Services....... 30

3.1 INTRODUCTION...30

3.2 COMPONENTS OF OBJECT-BASED PRESENTATIONS31

3.2.1 The Notion of an Object ..31

3.2.2 Scene Composition ..34

3.3 TERMINAL AND BITSTREAM DESIGN FOR OBJECT-BASED AUDIO-VISUAL

PRESENTATIONS ...35

3.3.1 Bitstream Architecture ..36

3.3.2 Audio-visual Terminal Architecture..37

3.4 SUPPORTING USER INTERACTION IN OBJECT-BASED PRESENTATIONS41

3.4.1 MPEG-4 User Interaction Model..42

3.4.2 Command Descriptor Framework ..42

3.5 STORAGE FORMAT FOR OBJECT-BASED AUDIO-VISUAL PRESENTATIONS ...46

3.5.1 Requirements for New Generation Multimedia Formats....................47

3.5.2 IIF – A Format For MPEG-4 Media...50

3.6 A COMPARISON WITH MPEG-4 SYSTEMS..56

3.7 DELIVERING OBJECT-BASED PRESENTATIONS ...61

iii

3.8 CONCLUDING REMARKS...63

Chapter 4 Scheduling Object-based Audio-Visual

Presentations... 65

4.1 INTRODUCTION...65

4.2 SCHEDULING AUDIO-VISUAL OBJECTS ..67

4.2.1 System Model and Assumptions ..69

4.2.2 Notation...71

4.2.3 Problem Formulation..72

4.2.4 Complexity of audio-visual object scheduling75

4.3 CHARACTERIZING OBJECT-BASED AUDIO-VISUAL PRESENTATIONS............76

4.4 STARTUP DELAY AND TERMINAL BUFFER..78

4.4.1 Residual Data Volume...80

4.5 SCHEDULING ALGORITHMS ..82

4.5.1 Algorithm FullSched ...83

4.5.2 The GapSched Algorithm ..87

4.5.3 The IncSched Algorithm ..89

4.5.4 Algorithm MinC...92

4.5.5 Algorithm BestSched ...94

4.6 DISCUSSION AND RESULTS ...95

4.7 STARTUP DELAY AND CAPACITY COMPUTATION ...97

4.8 BUFFER AND CAPACITY COMPUTATION ...99

4.9 CONCLUSION ..101

iv

Chapter 5 Scheduling Interactive AV Presentations

.. 103

5.1 INTRODUCTION...103

5.2 EVENT SPECIFICATION ...106

5.3 THE MINC-I ALGORITHM...107

5.4 DYNAMIC SCHEDULING AND RESOURCE RE-NEGOTIATION........................110

5.5 ALGORITHM ADJUSTSCHEDULE ...112

5.6 CONTENT CREATION ..113

5.7 CONCLUSION ..115

Chapter 6 Conclusions and Future Work............... 116

References ... 121

v

Acknowledgements

I would like to express my sincere gratitude to my advisor Prof. Alexandros

Eleftheriadis for his support and direction. He provided not only technical and

professional support but more importantly the moral support and friendship, without

which I could not have possibly succeeded.

I acknowledge with gratitude the support and advice of Prof. Dimitris Anastassiou

and Prof. Shih-Fu Chang. I would like to thank them especially for giving me an

opportunity to work in the ADVENT project and encouraging me to pursue my PhD.

I would like to thank the following people for their technical discussions and

collaboration on a number of projects: Lai-Tee Cheok, Patrick Ngatchou, Aizaz

Akthar, Li Tang, Steve Jacobs, and Javier Zamora.

Finally, I would like to express my gratitude to my family for their support and

understanding.

1

Chapter 1

Introduction

1.1 Introduction

Multimedia systems and services are becoming more common with the advances and

availability of computer and communications technology. The advances in computing

and communications and the emergence of the Internet have spurred the growth of

multimedia services into the main stream. Widespread interest in multimedia services

came about with the success of Moving Pictures Experts Group (MPEG) technologies

and the realization that digital media delivery allows value-added services along with

high quality programming over existing cable and telephony infrastructure. This

interest resulted in significant research on packet video in general and video-on-

demand in particular [32][60][24][31]. The success of multimedia systems and

services today can be owed to the standardization of the core technologies: MPEG-1,

MPEG-2, most recently MPEG-4, and to certain extent the Digital Audio Visual

Council (DAVIC) standards.

1.1.1 MPEG-1

The MPEG-1 standards were the first in the series of standards developed by the

MPEG committee. The MPEG-1 standard was intended for video coding at 1.2 Mbps

and stereo audio coding at around 250 kbps [5][6], together resulting in bitrates

compatible with that of a double-speed CD-ROM player. The typical frame size for

MPEG-1 video is 352x240 at 30 frames per second (fps) non-interlaced. Larger frame

2

sizes of up to 4095x4095 are also allowed resulting in higher bitrate video streams.

The multiplexing and synchronization of the MPEG-1 audio and video is done as

specified in the Systems part of the MPEG-1 standard [7]. Since MPEG-1 was

intended for digital storage media such as CD-ROM, the MPEG-1 Systems was not

designed to be tolerant to bit errors. Furthermore, to keep the overhead small, the

MPEG-1 Systems streams contain large variable length packets. To deliver MPEG-1

streams over the Internet, specialized mapping of MPEG-1 streams on to the payload

of Real-time Transport Protocol (RTP) packets has been specified [39][66][109].

MPEG-1 was optimized for applications at about 1.5 Mbps on a reliable storage

medium such as CD-ROM and as such not suitable for broadcast quality applications.

To address the requirements of broadcast television and high quality applications, the

MPEG committee began its work on MPEG-2 in 1992.

1.1.2 MPEG-2

The MPEG-2 standards include significant improvements over MPEG-1. Like its

predecessor, MPEG-2 standards have several parts, nine in all [63]. The most

important of these are video, audio, and systems. The significant improvements in

MPEG-2 video over MPEG-1 video are: support for interlaced and progressive

coding, 4:2:2 and 4:4:4 chrominance modes, higher frame sizes, scalability, and many

additional prediction modes [10]. While MPEG-1 is optimized for storage-based

applications, MPEG-2 is more generic and intended for a variety of applications. The

MPEG-2 Systems specification now includes program streams, suitable for

applications over a reliable medium, and transport streams with fixed length packets

suitable for networked delivery. The part six of the MPEG-2 standard, Digital Storage

3

Media Command and Control (DSMCC), specifies protocols for session management

and application signaling. Application signaling messages enable VCR-like control of

MPEG streams as well as features such as file access, application discovery, and

application download.

Because of its flexibility and support for a wide range of applications, MPEG-2 has

been highly successful. MPEG-2 has been universally adopted for high-quality audio-

visual applications including digital broadcast TV, DVD, HDTV, and digital cinema.

1.1.3 MPEG-4

Traditionally the visual component of multimedia presentations was mainly

rectangular video, graphics, and text. Advances in image and video encoding and

representation techniques [8][9][94] have made possible encoding and representation

of audio-visual scenes with semantically meaningful objects. The traditionally

rectangular video can now be coded and represented as a collection of arbitrarily

shaped visual objects. The ability to create object-based scenes and presentations

creates many possibilities for a new generation of applications and services. The

MPEG-4 series of standards specify tools for such object-based audio-visual

presentations [20][106]. While Audio and Video parts of the standard specify new

and efficient algorithms for encoding media, the Systems part of MPEG-4 makes the

standard radically different by specifies the tools for object-based representation of

presentations. The most significant difference in MPEG-4 standards is the scene

composition at the user terminal. The individual objects that make up a scene are

transmitted as separate elementary streams and composed upon reception according

4

to the composition information delivered along with the media objects. These new

representations techniques will need novel ways for delivery, scheduling, and QoS

management.

1.1.4 DAVIC

The Digital Audio Visual Council (DAVIC) was formed in 1994 to standardize

technology and systems for end-to-end digital delivery services such as video-on-

demand (VoD). Because of the large scope of the standard, DAVIC followed a

toolbox approach to standardization [48][46][47]. Instead of standardizing a

monolithic system, in the toolbox approach, the system is envisioned as a collection

of sub-systems and components. The toolbox approach allows highly customized

systems built only with a subset of tools in the standard. This model, in addition to

allowing scalable systems enables the sub-systems to be used in systems where the

system itself is not compliant to the standard. Following a one-functionality one-tool

approach, DAVIC defined subsystems, adopted technology for the subsystems, and

specified interfaces for the subsystems. The tools specified by DAVIC include all

components of the end-to-end digital audio-visual systems including physical

interfaces, access networks, transport protocols, information representation, security,

and billing.

1.2 Components of a Multimedia System

A general multimedia (audio-visual) system can be segmented into four physical

and/or logical components: the content, including representation and management,

the server that delivers the content, the network that carries the content, and the user

terminal that plays the content. In interactive systems, these components

5

communicate and cooperate to playback the content. There are several international

standards bodies specifying and standardizing the technology for end-to-end

multimedia services. Figure 1.1 shows the components of an end-to-end multimedia

system. The components can be physical and/or logical but have well-defined

interfaces between them. The figure shows three such interfaces, with each of the

components possibly containing more interfaces. Designing a system as a set of

subsystems connected at published interfaces is necessary for the development of

systems with such a broad scope. This also allows multiple vendors and service

providers to provide components and services.

1.2.1 Content Creation and Management

The content creation process is a creative process akin to creating TV programming.

As the amount of content on a system grows, it becomes difficult to manage the

content in terms of searching, editing, compiling, and delivering. Content

representation techniques should take these factors into consideration. With

broadband access becoming common, service providers will be able to deliver high

quality audio-visual content to PCs. The major consideration for content creators is

Content
Creation and
Management

Server and
Service
provider

Access
Infrastructure

Content
Consumer

Source (Encoder) Channel Sink (Decoder)

CS SA AC

Figure 1.1 Components of a Generic Multimedia System

6

the ability to deliver and playback content on multiple platforms (TVs and PCs).

Content representation techniques should allow delivery of alternative representations

of content based on terminal resources.

Object-based representation of content allows reuse of objects in creating new

presentations. As the amount of content grows, the ability to search through the

objects and locating the right one becomes difficult. The MPEG-4 Systems layer

includes a meta data stream called object content information (OCI) stream, which

can be used by content management systems for object location and retrieval. Content

management should include tools that allow users to search for content based on the

visual or textual description of objects [34][113]. Based on QuickTime, the MPEG-4

content interchange format [23] is a flexible format for representing multimedia

presentations. The MPEG-4 file format maps the MPEG-4 Systems layer to the

QuickTime architecture creating an efficient format that allows access to MPEG-4

features.

Creating object-based audio-visual presentations is not as straightforward as creating

MPEG-2 content for TV broadcasting. The features of object-based presentations

results in content with complexity that varies with the structure of the presentation.

The content can be as simple as multiplexed audio and video (e.g., MPEG-2 audio

and video multiplex) or as complex as a presentation composed of a large number of

objects of different types with dynamically changing scenes and user interaction. The

complexity of object-based presentations cannot be characterized just by bitrate. The

7

complexity of a presentation depends on the number of objects in the presentation, the

type of objects, the dynamics of object addition and deletion, and user interactivity.

One important consideration during content creation is the suitability of content for

delivery over networks with different capacities and to terminals with different

computing, display, and storage resources. During the content creation process,

authors should specify alternative representations for objects so that the servers can

deliver appropriate objects based on the feedback from the terminals and the network.

Determining the alternative representations for presentations dynamically is a

difficult problem especially when considering both terminal and network resources.

1.2.2 Server and the Service Provider

The basic function of the servers is to manage sessions between the server and clients

and to provide available services. The server is also responsible for publishing the

content and services available for clients and to provide support for user interaction.

The main consideration in server design is scalability. Columbia’s VoD testbed [32]

includes a distributed server that can deliver content to a range of client platforms and

also scales well. The scalability of a server also depends on the type of content it

delivers. With object-based services, servers have to manage multiple object delivery

in a single presentation as opposed to delivering a single MPEG-2 transport stream in

applications such as video on demand. The complexity of a server increases when

interactivity is supported, especially for object-based services. When an object is

added to a presentation as a result of user interaction, the server has to locate the

object, retrieve it, and then deliver it to the client. The ability of servers to perform

these functions efficiently depends on the object scheduling techniques and also the

8

underlying content representation format. For simple cases that do not include

interactivity, objects can be efficiently delivered using techniques such as direct

streaming that pre-compute transport layer packet headers [23][21][22]. These

techniques may not be as useful when objects are added asynchronously as a result of

user interaction.

Another important design consideration is the server’s ability to support content and

service discovery. The application server in Columbia’s video-on-demand server is

designed as a collection of services that users discover as they browse the content and

services available on the server. With object-based representation, and functionality

provided by frameworks such as MPEG-4 Systems, the distinction between content

and applications is blurring. The content can now include instructions on how to

respond to user interaction. Servers will be able to support different applications just

by supporting interactive object-based content.

1.2.3 Access Infrastructure

 The access network between a server and a client carries the encoded content to the

end-user. The configuration of the access network depends on the operating

environment. The configuration of the access network varies with available end-user

connectivity. Some common access networks include: end-to-end ATM, Internet,

satellite, cable, DSL, LMDS, and MMDS. The main problem involving access

networks is resource reservation and renegotiation. In networks such as the Internet

that do not yet support resource reservations, techniques such as dynamic rate shaping

can be used to reduce the object bitrate based on the state of the network [71]. Even in

9

networks supporting QoS, techniques such as media filtering can be used in

negotiating and re-negotiating QoS under resource constraints [27][26]. With object-

based representation of audio-visual content, adapting content to meet network

constraints can be done more efficiently, for example, by structuring presentations to

contain objects with priorities proportional to their significance in the presentation.

Delivering object-based services may involve establishing and tearing down

connections as objects in presentations are added and deleted. MPEG-4 specifies a

delivery framework called DMIF that allows efficient object communication [4]. The

DMIF framework also allows development of applications without regard to the

underlying network. Not all networks are suitable to carry real-time multimedia

traffic. The properties of data networks and their suitability to carry multimedia

traffic are summarized in [56][57].

1.2.4 Content Consumer

The content consumer, usually a user terminal with an attached monitor, is the last

component of the multimedia delivery chain. These end-user devices are connected to

access networks and may have an upstream connection for server interaction and

signaling. The digital TV infrastructure uses MPEG-2 transport streams for delivering

multiplexed audio, video, and images. For digital TV, the terminals would include

MPEG audio and video decoders to playback the content. With object-based audio-

visual representation, the presentations can contain many different media types and it

is impractical to have a terminal with hardware decoders for all the possible media

types. Terminals supporting object-based presentations would have to include

10

software decoders and even programmable processors for efficient decoding. The

buffer models have to change to accommodate multiple objects in presentations. With

object-based multimedia content and the support for user interaction, the user

terminals are becoming more and more complex. Innovative architectures and

representation techniques are needed to enable sophisticated applications. The design

and architecture of a terminal for object-based audio-visual presentation is presented

in [52]. The proposed architecture is a low complexity design and uses a simple

format to hierarchically represent multimedia presentations. The MPEG-4 standards

define a set of profiles and levels to allow simpler decoders that handle only a sub-set

of the media types.

1.3 Contributions of the Thesis

The contributions of this thesis are in the area of audio-visual communications and

fall under two categories: 1) Traditional audio-visual systems and 2) object-based

audio-visual systems. Traditional here refers to systems using digital audio and video

(rectangular) as opposed to object-based audio-visual systems. This classification also

highlights the flexibility, and at the same time the complexity, as a result of the object

based representation of content. The contributions to the traditional audio-visual

systems area are the design and architecture of the VoD application server, the

distributed video pump architecture for traffic localization, and contributions to

DAVIC standardization and interoperability. Our contributions in object-based audio-

visual services area are: 1) contributions to the MPEG-4 Systems standards in the

form of terminal and bitstream architecture and server interaction model, 2)

11

scheduling algorithms for object-based presentations, and 3) scheduling algorithms

for interactive audio-visual presentations.

1.3.1 Video-On-Demand Systems

Our contributions to the traditional audio-visual services area are in the design and

development of Columbia’s VoD testbed. We designed an application server that

allows users to browse, select, and playback content available on a server. The

application server is based on DSMCC user-user communications model [13] and

provides the user interaction support as a set of services. The services are classified

based on the functionality supported: directory service allows browsing a server

directory, file service provides access to files on the server, and stream service is for

controlling media playback. We designed the stream service with an interface to use

the services of a video-pump. We specified the CORBA (Common Object Request

Broker Architecture) [2] interface on the video pump to be able to launch the video

pump service on remote systems, thus making the distributed video-pump possible.

Our distributed video-pump design is an effective tool for traffic localization on

networks. By replicating the media streams, the video-pump closest to the client can

be launched thereby limiting the traffic to that segment of the network. For web-

browser-based clients and clients without CORBA support, we designed the system

with CORBA services running on the server and with a DSMCC interpreter between

the client and the server. This allows the same server to be used for a variety of

clients.

12

The distributed VoD system architecture and design for localization are discussed in

detail in Chapter 2.

1.3.2 Object-Based Audio-Visual Services

The main distinguishing feature of object-based audio-visual services is the ability to

represent scenes and presentations as a collection of objects composed at the user

terminal. Composition at the terminal implies ability to access and interact with

individual objects. These features of object-based presentations blur the distinction

between applications and content. This paradigm shift in content representation and

playback enables the next generation of audio-visual applications and services. New

techniques are necessary to deliver these services. Supporting interactive

presentations puts additional burden on the system. We investigate object-based

audio-visual services considering the complexity, flexibility, authoring, and delivery

issues. We investigate the problem of scheduling object-based presentations under

network and buffer constraints and present algorithms for multiplex-scheduling

object-based presentations.

1.3.2.1 Scheduling Object-based Presentations

Scheduling is a complex problem and has been studied in different application

domains including operations management, transportation, flight scheduling, and

even video scheduling in VoD systems. The nature of object-based content makes it

difficult to deliver compared to MPEG-2 delivery. The complexity of an MPEG-4

content is an important factor that influences a server’s performance. In case of

MPEG-2 content, the average bit-rate and peak bit rate are a good indication of the

13

server resources required to deliver the stream. We show that an MPEG-4

presentation cannot be characterized by individual or cumulative bit rates of the

objects alone. For example, an MPEG-4 presentation may consist of a sequence of

large JPEG images with accompanying audio. Such presentations tend to be very

bursty over networks. Since objects may span any arbitrary time period during a

presentation, the bit-rate of MPEG-4 presentations can be highly variable depending

on the content and structure of the presentations.

Our investigation of the scheduling problem in the context of object-based audio-

visual presentations addresses the folowing issues: 1) is a presentation schedulable

with given resources, 2) what are the additional resources required to schedule a

presentation, 3) what is the minimum channel (buffer) capacity required to deliver the

presentation, 4) does the presentation remain schedulable when an object is added,

and 5) will dropping an object make the presentation schedulable. We investigate the

problem and propose a family of algorithms to solve these problems. We formulate

the object-scheduling problem by considering individual access units (frames) of

audio-visual objects, with precedence constraints on access units within an object. We

found similarities with problems in job-shop scheduling. We show that the object-

scheduling problem is NP-complete in strong sense. Even though the problem is NP-

complete, we use efficient heuristics used in job-shop scheduling to find buffer-

optimal schedules.

14

We first introduce the “FullSched” algorithm to determine the schedulability of a

presentation with given resources. This algorithm can be re-purposed to compute the

minimum resources required to make the presentation schedulable. We then introduce

the “GapSched” algorithm that computes schedules incrementally. We prove the

buffer-optimality of both of these algorithms. The GapSched algorithm is especially

useful during content creation to quickly determine whether adding an object violates

any of the resource constraints. We introduce the concept of residual data volume to

compute a lower bound on the capacity required to deliver the presentation. Starting

with this lower bound on the channel capacity, we use the MinC algorithm to

compute the minimum channel capacity required to deliver the presentation. For un-

schedulable presentations, if additional resources cannot be acquired, the only

alternative is to drop objects or object instances to make the presentation schedulable.

Because of the object-based representation of the presentations, dropping an object

may compromise the integrity of the content. Like in the case of MPEG-2, dropping

frames is still possible for continuous media objects in a presentation. We provide

guidelines to structure presentations in ways that makes it easier for systems to

deliver alternative representations to meet resource constraints. Determining the

alternative representations for presentations is a difficult problem to be considered for

future extensions.

1.3.3 Scheduling Interactive Presentations

The nature of object-based audio-visual systems makes it possible to create

application with dynamic addition and deletion of objects. This addition and deletion

of objects is effected when a user interacts with the presentation. We investigate the

15

characteristics of interactive audio-visual presentations and discuss the issues in

delivering interactive presentations. We present algorithms for adding and releasing

resources upon object addition and deletion. The interactivity considered here is the

user interaction that affects the resources consumed by the server and the network.

We present algorithms to determine the schedulability of interactive presentations and

the minimum capacity required to deliver an interactive presentation. By computing

the resources required for the interactive and core components of a presentation

separately we could determine whether a presentation can be fully supported. This

allows content creators to design the presentations with relatively independent core

and interactive components so that the substance of the presentation is not affected

even without the interactive component.

When user interaction is allowed, the resulting asynchronous events affect object

delivery and add to the burstiness of the traffic depending on the content. When

delivering interactive component presentations, there are two options: 1) reserving the

required capacity at session startup 2) acquiring necessary bandwidth after an event

happens. The scheduling choice depends on the bandwidth availability, content

design, and the applications’ tolerance to the events ignored by the server. If

bandwidth is available on-demand, the most efficient way is to acquire necessary

bandwidth when an event happens. When bandwidth availability cannot be predicted,

the best way is to reserve required bandwidth at session startup. Even though the

reserved capacity is wasted when the anticipated events do not happen, reserving

resources assures the delivery of the interactive component of the presentation. An

16

acceptable compromise would be to prioritize events and reserve bandwidth for

higher priority events and request additional bandwidth when a lower priority event

happens.

We introduce three new concepts: event specification, event window, and event

extents to describe object-based presentations as a set of events and analyze these

events to determine the resource requirements for interactive presentations. Resources

for interactive components can be allocated by resource reservation or by resource

negotiation after an event happens. If resources have to be acquired for every object

added as a result of an event, the object addition cannot be guaranteed and depends on

the probability of acquiring the required resources. We also propose guidelines to

create interactive presentations for efficient use of network resources.

Our contributions in the area of traditional audio-visual services have also been

published in [57][56][32][86][80][82][88][87]. The contributions in the area of

object-based audio-visual services also appear in: [19][23][21][22][52][53][73][74]

[77][78][79][85][84][75][76][83][81][89].

17

Chapter 2

VoD Testbed: Interaction, Interoperability, and
Standardization

2.1 Introduction

Columbia’s video on demand testbed has served as a platform for research on audio-

visual communications including video servers [105][104], video transmission

[120][119], Internet video delivery [71], and standardization and interoperability

[54][87][82]. The heterogeneous nature of the testbed gives an opportunity to work

with a system consisting of a range of clients, servers, and networks. In this chapter

we describe our contributions toward the development of Columbia’s VoD testbed.

The VoD testbed is a client server system with clients and servers connected over a

heterogeneous network. The testbed has various types of client platforms including

digital set-top-boxes, PCs/Workstations with hardware and software decoders, and

mobile computers with wireless connectivity. The network consists of IP and native

ATM networks. The wireless network runs IP and Ethernet protocols. The server runs

on an SGI Onyx running a general-purpose operating system (IRIX) and delivers

PCs/Workstations

Mobile platforms
(laptops)

Set-top-box

DRS

Video Server
(MPEG)

Clients Networks Servers

Figure 2.1 Components of the VoD Testbed

TCP

IP

UDP

ATM Ethernet

Physical layer
(OC3 Single mode,

TP, COAX, Wireless)

AAL 5

18

MPEG-2 video and audio multiplexed into MPEG-2 transport streams. The server

also includes a dynamic rate-shaping module that scales down the video bitrate in real

time. This module is used to reduce the video bitrate when delivering to terminals

with fewer resources such as mobile clients. Figure 2.1 shows the components of the

VoD testbed in the client, network, and the server domain. The server can deliver

streams to the clients on one of the networks the client is attached to. The wide area

connectivity of the testbed was used to study the effects of video delivery over wide

area networks.

In the rest of this chapter we will discuss our contributions made towards the

development of Columbia’s VoD testbed. In Section 2.2 we present the system

operation and discuss the design and imlementation of the application server. In

Section 2.3 we present the distributed server functionality and user interaction support.

Finally in Section 2.4 we briefly describe the DAVIC 1.0 efforts in standardizing

VoD like services and discuss the design considerations for interoperability.

2.2 System Operation and Application Services

Figure 2.2 shows the high-level diagram of the VoD system. It is divided into two

domains, the Level 1 and Level 2 domains. The Level 2 domain contains the client

Application
Server

Video pump

CORBA
Interface

Client
terminal

Network

L1 Gateway

Server

Figure 2.2 High-level System Diagram

19

(set-top-box) and the server equipment while the rest falls in the Level 1 domain. The

Level 1 domain consists of access networks, head-ends, resource managers, and

network managers. The Level 1 domain provides a set of gateway services to the

components in the Level 2 domain. This Level 1 gateway functions are bundled into a

service/system called the Level 1 gateway. The Level 1 gateway can be seen as a

directory service that allows the clients to discover servers. This view of the VoD

systems follows from the telephony systems and the earlier work on video dial tone.

Within a server, there might be one or more services available for clients. The

functions that enable the service discovery by the end-user are the Level 2 gateway

functions. In Figure 2.2, Level 2 gateway functionality is part of the application

server.

The application server provides a set of services to the clients. The services provided

in Columbia’s testbed are based on DSM-CC user primitives [12]. DSM-CC is a set of

network and user primitives specified in part 6 of the MPEG-2 standard. The network

primitives allow session setup and management while the user primitives are used for

application signaling between a client and a server once a session is established. The

user primitives are typically carried over a signaling channel. The application server

supports the core DSM-CC services: service gateway, file service, directory service,

and stream service. The service gateway is the root service a client first attaches to.

Once connected to the service gateway, a client can select file service, to upload or

download files (e.g., HTML or text files) from the server. In our VoD testbed, we

used the file service to provide news reports in text form to clients. Directory service

20

allows a client to navigate a server and browse through the available content. The

stream service is central to VoD applications and delivers videos to clients. The

interfaces to these services are specified in Interface Definition Language (IDL) and

we used CORBA [2] as a natural choice to implement these interfaces.

The system operation consists of the following steps:

1. A client first connects to its default Level 1 gateway. The Level 1 gateway is the

first service clients connect to before session establishment. The Level 1 gateway can

reside anywhere on the network and provides a list of servers available. Once the

client selects a server, the L1 gateway establishes the initial session and drops out.

The client is now connected to the service gateway on the server that provides Level

2 gateway services. The service gateway authenticates the clients’ access to the

service and provides a client with the root directory service that contain directory, file,

or stream services. The services are mapped directly onto a UNIX file system.

Directory service is a UNIX directory, file service is available for all the files, and

stream service is available for media streams.

2. From the root directory, clients can navigate the server using the directory service

discovering the additional directory, file, and stream services. If a directory is

selected, the server returns a reference to the directory object. The client can then use

the Directory::List operation to view the directory contents. When an item

from the list is selected (using the Open operation), the server returns a reference to

the selected object. The directory List and Open operations are sufficient to

navigate the server and discover additional content.

21

3. If a file is selected, the server returns the selected file to the client. The actual file

transfer can be done either on the signaling channel or for large files, a new data

connection can be established. In the VoD testbed, the file service was used to

provide a sample news service. The news headline is mapped to a file name; if the

client selects the file, the server returns a reference to the file object to the client. The

client then has the option to either view or save the file. Since the file service is a

generic file transfer application, this can be used to download new applications from a

server.

4. The server identifies the stream service by examining the file extension. Files with

the extension .inf contain the meta data about the stream service. The meta data

includes alternative video pumps for the stream and enough information to setup a

downstream connection and reserve resources for stream delivery. Just like in the

case of file and directory service, the server returns a reference to the stream object

when a client selects the stream service. The stream object supports an interface to

enable VCR-like controls. The process involved in stream delivery is described in the

next section.

2.3 Stream Service and the Distributed Video Pump

Figure 2.3 shows the functional diagram of the VoD system. A session starts when

the client selects the one of the servers listed by the Level 1 gateway and a bi-

directional channel is established between the service gateway and the client. All the

clients accessing the same server connect to the same application server and the

service gateway. When a client chooses the stream service, an MPEG-2 transport

stream is opened for delivery. The application server does not see the actual media

22

data. The application server has access to the meta-data for the media streams and

whenever it sees these meta-data files it presents them to the clients as stream objects.

The meta-data includes bitrate, title, video type, audio type, primary source URL,

alternate sources, preferred video pump, production credits, and even reviews. A

client with a reference to the stream object has to invoke the Open and Play

methods to start stream playback. The stream service implementation has a video

pump factory that creates video pumps to stream the requested video. The video

pump itself has an IDL interface and communicates with the stream service using the

IDL interface implemented using CORBA. When a client chooses to pause a stream,

it invokes the Pause operation on the stream service that, in turn, passes the message

along to the pump to pause the stream delivery. The clients do not communicate

directly with the video pump for stream control except for receiving the streams. All

stream control messages reach the pump through the stream service.

The IDL interface supported on the video pump makes the server a distributed VoD

server. The meta-data on the application server has the address of the video pump.

Figure 2.3 Stream Service in the VoD System

Application Server

Service Gateway

Directory Service

File Service

Stream Service

L1Gateway Client 1

Client 2

Client i

Pump i

Pump 1

Pump 2

IDL Interface

23

The address is nothing but the IP address or machine name the stream service uses to

launch the video pump. The video pump factory in the stream service launches a

video pump for every stream request it receives. A video pump can be launched

anywhere on the network irrespective of the location of the application server. By

replicating the content on several locations on the network, network traffic can be

localized to certain network segments by launching a video pump closest to the client.

This feature can also be used for load balancing on the machines running the video

pumps.

2.3.1 Stream Service for Web Clients

Since a web browser is the most common application/interface people are accustomed

to, it is a logical choice for clients running on PCs and workstations. Browser based

clients are also easy to deploy on a wider scale. Since web browsers typically do not

support CORBA, we developed a command dispatcher and a DSM-CC interpreter on

the server side that acts as an intermediary between a Web server (HTTPD) and the

video server. The DSMCC interpreter can be viewed as a client proxy capable of

interpreting DSMCC messages and formatting the output with HTML for the Web

client. Each client request goes through the HTTP server, which launches the

command dispatcher script to communicate with the DSMCC interpreter. The

Network
Browser

Player

HTTPD Command
Dispatcher

Video Server DSMCC
Interpreter

Figure 2.4 Application Signaling in Browser-based Clients

TCP port IDL Interface

24

DSMCC interpreter processes the message by making the appropriate CORBA calls

to the application server and passing the results back to the command dispatcher.

There is a one-to-one mapping between service interfaces and client command codes.

The commands called by the clients include the port number on which the DSMCC

interpreter is listening. This browser-based interface is also used with devices that act

as passive decoders and do not have an easy way of communicating with the server.

2.4 Standardization and Interoperability

With interest in video-on-demand services increasing and with several planned VoD

trials, the companies with vested interests in the success of VoD formed a consortium

called the Digital Audio Visual Council (DAVIC) in 1994 to develop standards and

specifications for the systems to provide broadband multimedia services. DAVIC

defines its purpose as: “to advance the success of emerging digital audio-visual

applications and services, initially of the broadcast and interactive type, by the timely

availability of internationally-agreed specifications of open interfaces and protocols

that maximize interoperability across countries and applications or services”[48]. The

DAVIC concept of Digital Audio-Visual Applications and Services includes all

applications and services in which there is a significant digital audio video component.

DAVIC started out mainly in response to the industry interest in video on-demand in

the early 90s and apparent lack of standards to ensure interoperability among the

various systems and implementations. By the time DAVIC published its first

specification in 1995, video on-demand was no longer seen as the killer application it

was originally thought. However, the technologies and standards DAVIC was

developing are the core to support any form of audio-visual services.

25

 Figure 2.5 shows the DAVIC subsystems and the reference points between the

subsystems. DAVIC specifies everything necessary to support the core audio-visual

services it defines; left to right, content provider to the content consumer, and top to

bottom, physical layer of the transport to the application layer. Content providers

produce content, which is distributed to the consumers by service providers. The

delivery system supports the delivery of content to service providers and consumers.

DAVIC specifies and/or develops technologies to build these subsystems and defines

reference points and interfaces between (and also within) the subsystems. The

conformance points A1 – A11 are the reference points and any DAVIC compliant

system should be conformant at these points.

2.4.1 Information Flows and Reference Points

The subsystems were specified in an evolutionary manner with each new set of

DAVIC specifications adding functionality to the previous set. To facilitate this

evolutionary approach, reference points, interfaces, and information flows were

Content
Provider

 Delivery Service
Provider

 Service
 Consumer

Delivery
S1

S2

S3

S4

S5

A 1 A 9 A10 A11

Figure 2.5 Components of a DAVIC System

26

introduced between the subsystems. The information flow between the subsystems is

divided into five logical flows based on the nature of the information. Figure 2.5

shows the information flows and reference points between the subsystems. Only

reference points A1, A9, A10, and A11 are shown in the figure. There are also

reference points that are internal to the subsystems.

The S1 information flow corresponds to the principal service information, e.g., an

MPEG-2 transport stream carrying audio and video. The S2 flow corresponds to the

application control information, S3 corresponds to session control, S4 to connection

management, and S5 corresponds to billing and other management functions. The S1

flow is unidirectional from the service provider to the service consumer (STU) while

the other information flows are bi-directional. Future versions of the specification are

expected to include a bi-directional S1 flow supporting applications such as video

conferencing. The five logical information flows may use a single physical channel or

more than one physical channel.

2.4.2 Interoperability

There are many organizations developing standards for multimedia tools including

international authorities such as ISO [1] and ITU-T [69]. Multimedia tools refer to

components of systems required to enable multimedia presentations and services;

MPEG-2 video, MPEG-1 audio, and ATM are some examples of tools for video,

audio and networking. Most of the current standards (tools) are developed, for the

most part, independently by the standards body concerned. It is rather difficult to

ensure that the tools developed independently can be combined to facilitate a single

27

multimedia presentation. DAVIC plays the role of an integrator by providing

specifications that bind the various standards enabling multimedia applications and

services.

A DAVIC tool is a technology that supports a single DAVIC functionality. For

example, ATM is a tool to transport audio-visual data in the core network. Following

a one-functionality one-tool policy, DAVIC selects the best technology available to

support its functionalities. DAVIC also develops tools to support the functionality

that cannot be achieved by the existing technology. Because of the diverse nature of

the standards it is dealing with, interoperability of the systems and subsystems was

taken up as a part of the standardization process.

To achieve its goal of global deployment of DAVIC systems and services, DAVIC

places special emphasis on interoperability. Since the DAVIC specification is made

up of a number of independently developed standards, it is important to ensure that

these standards work when used together in DAVIC components and systems. The

work related to verifying the specification and its interoperability was undertaken by

the interoperability sub-group. The charter of the interoperability sub-group was to

verify that the specification does not have any ‘gaps’ and to provide guidelines for

conformance testing. Towards this end, DAVIC is promoting a series of public

interoperability events. We organized the first multi-platform global interoperability

event at Columbia University in New York in June 1996 [87] [82].

28

Eight organizations from around the world participated in this event, cross-connecting

their servers and clients on Columbia’s testbed [32]. Even though the

implementations were not fully DAVIC compliant, the interoperability experiments

gave valuable feedback to DAVIC to clarify and improve the specification [103]. The

heterogeneous nature of Columbia's VoD testbed made it an ideal choice for

conducting multi-platform interoperability tests. Since the testbed uses open standards

for networks and server interfaces, it was relatively easy for connecting the systems

from participating organizations. Furthermore, the wide area connectivity of the VoD

testbed was essential to test the system functionality over wide area networks. The

detailed results of the interoperability experiments can be found in [82]. The feedback

from the subsequent interoperability events at the Tokyo Electronics Show [90] and

Telecom Interactive were also taken into account in improving the specifications.

2.5 Concluding Remarks

In this chapter we presented the contributions made toward the development of

Columbia's VoD testbed. The key contributions made are the design of the

application server for VoD services, distributed video pump, application signaling,

adapting the system for browser-based clients, and contributions toward the

development of DAVIC standards by means of proof of concept implementations and

interoperability experiments.

Separating the resource-intensive video delivery using a well-defined interface and its

implementation using CORBA is essential for scalable servers and localizing

bandwidth-intensive video traffic. With streaming media over the Internet becoming

29

more common, traffic localization together with congestion control mechanisms is

necessary to prevent congestion collapse in networks. The ability of a system to

support popular platforms, particularly the Internet, is critical for the large-scale

deployment of any system. Modular design allowed us to reuse most of the

components in adapting the system for browser-based clients. The user interaction

support was limited to VCR-like controls. In Chapter 3 we contrast this against the

generic user interaction supported in object-based audio-visual systems.

30

Chapter 3

Object-Based Audio-Visual Services

3.1 Introduction

Image and video encoding has been totally transformed with the advent of new

coding and representation techniques [21][8][116]. Over the past several years, image

and video compression research has explored new methodologies for high

compression using high-level techniques [21][108]. These techniques depart from

traditional waveform coding, and attempt to capture more of the high-level structure

of visual content. This high-level structure has been referred to as objects, and

includes components of imagery that are directly associated with visual structures of

semantic significance, both simple and complex (e.g., a ball, a table, a man). This

next generation of coding techniques has made possible encoding and representation

of audio-visual scenes with semantically meaningful objects. This new paradigm of

object-based representation of audio-visual scenes/presentations will change the way

audio-visual applications are created.

Like any new technology, object-based representation of audio-visual scenes will

give rise to many technological challenges while providing feature-rich framework

for object-based audio-visual presentations. To appreciate the advantages of object-

based systems, we often compare and contrast object-based systems with non-object-

based digital audio-visual systems that are widely used today (e.g., digital TV and

31

HDTV). We refer to such systems as frame-based systems to reflect that fact that a

user terminal sees the presentation as a sequence of composed and encoded frames.

In this chapter we present some of the issues in the design and deployment of object-

based audio-visual services. First we present an overview of object-based

presentations and contributions made to the development of the MPEG-4 Systems

specification. We then present an overview of the MPEG-4 Systems layer to contrast

our proposals to the adopted solutions.

3.2 Components of Object-Based Presentations

3.2.1 The Notion of an Object

An object-based presentation consists of objects that are composed to create a scene;

a sequence of scenes forms a presentation. There is no clear-cut definition of what

constitutes an object. When used in the sense of audio-visual (AV) objects, an object

can be defined as something that has semantic and structural significance in an AV

presentation. An object can thus be broadly defined as a building block of an audio-

visual scene. When composing a scene of a city, buildings can be the objects in the

scene. In a scene that shows the interior of a building, the furniture and other items in

the building are the objects. The granularity of objects in a scene depends on the

application and context. The main advantage of breaking up a scene into objects is the

coding efficiency gained by applying appropriate compression techniques to different

objects in a scene. In addition to coding gains, there are several other benefits of

object-based representation: modularity, reuse of content, ease of manipulation,

object annotation, as well as the possibility of interaction with the objects in a scene.

32

To appreciate the efficiency of object-based presentations, consider a home shopping

channel such as the ones currently available on TV. The information on the screen

consists mostly of text, images of products, audio, and video (mostly quarter-screen

and sometimes full screen). All this information is encoded using MPEG-2

video/audio at 30 fps. However, if this content is created using object-based

technology, all static information such as text and graphics is transmitted only at the

beginning of a scene and the rest of the transmission consists of only audio, video,

and text and image updates that take up significantly less bandwidth. In addition to

this, the ability to interact with individual objects makes applications such as e-

commerce possible.

The key characteristic of the object-based approach to audio-visual presentations is

the composition of scenes from individual objects at the receiving terminal, rather

than during content creation in the production studio (e.g., MPEG-2 video). This

allows prioritizing objects and delivering individual objects with the QoS required for

that object. Multiplexing tools such as FlexMux [8] allow multiplexing of objects

with similar QoS requirements in the same FlexMux stream. Furthermore, static

objects such as a scene background are transmitted only once and result in significant

Person crossing the road

Scene
composition

Person crossing the road

Figure 3.1 Example of an object-based scene

33

bandwidth savings. The ability to dynamically add and remove objects from scenes at

the individual user terminal even in broadcast systems makes a new breed of

applications and services possible. Frame-based systems do not have this level of

sophistication and sometimes use makeshift methods such as image mapping to

simulate simple interactive behavior. This paradigm shift while creating new

possibilities for applications and services makes content creation and delivery

complex. The end user terminals that process object-based presentations are now

more complex but also more powerful.

Figure 3.1 shows a scene with four visual objects, a person, a car, the background,

and the text. In object-based representation, each of these visual objects are encoded

separately in a compression scheme that gives best quality for that object. The final

scene as seen on a user terminal would show a person running across a road and the

text at the bottom of the scene, just like in a frame-based system. To compose a scene,

object-based systems must also include the composition data for the objects that a

terminal uses for spatio-temporal placement of objects in a scene. The scene may also

have audio objects associated with (or independent of) visual objects. The

compressed objects are delivered to a terminal along with the composition

information. Since scenes are composed at the user end of the system, users may be

given control on which objects are played. If a scene has two audio tracks (in

different languages) associated with it, users can choose the track they want to hear.

Whether the system continues to deliver the two audio tracks even though only one

track is played is system dependent; broadcast systems may deliver all the available

34

tracks while remote interactive systems with upstream channels may deliver objects

as and when required. Since even text is treated and delivered as a visual object, it

requires far less bandwidth than transmitting the encoded image of the rendered text.

However the delivered text object now has to include font information and the user

terminals have to know how to render fonts. User terminals could be designed to

download fonts or decoders necessary to render the objects received.

3.2.2 Scene Composition

Scene composition can simply be defined as spatio-temporal placement of objects in

the scene. Spatial composition determines the position of objects in a scene while

temporal composition determines its position over time. Operations such as object

animation, addition, and removal can be accomplished by dynamically updating the

composition parameters of objects in a scene. All the composition data that is

provided to a terminal can itself be treated as a separate object.

Since the composition is the most critical part of object-based scenes, the composition

data stream has very strict timing constraints and is usually not loss tolerant. Any lost

or even delayed composition information could distort the content of a presentation.

Treating the composition data as a separate data object allows the system to deliver it

over a reliable channel. Figure 3.2 shows the parameters for spatial composition of

x

y

 z
z’

Figure 3.2 Composition Parameters

35

objects in a scene. The gray lines are not part of the scene; x and y are horizontal and

vertical displacements from the top left corner. The cube is rotated by an angle of

radians. The relative depth of the ellipse and a cylinder are also shown. The ellipse is

closer to the viewer (z < z’) and hence is displayed on top of the cylinder in the final

rendered scene. Even audio objects may have spatial composition associated with

them. An object can be animated by continuously updating the necessary composition

parameters.

3.3 Terminal and Bitstream Design for Object-Based Audio-Visual
Presentations

An object-based presentation is delivered to a terminal with objects and object

composition packed in a bitstream. The bitstream should be structured to convey the

data and meta data in a way that preserves the semantic separation of objects in the

presentation. The bitstream design presented in this section was originally proposed

for the MPEG-4 System layer [52]. The bitstream is designed on the basis of

separating the object meta-data from the object data and the hierarchical

representation of scenes. Composition is the property of a scene and hence should be

part of the scene description. In addition to the decoding times, composition times are

needed as predictive encoding schemes such as MPEG video have different decoding

and composition/display order. Since objects can enter and leave a scene arbitrarily,

to increase object reuse, especially for static objects such as images, we use a lifetime

time stamp indicating the availability of an object at a terminal. Objects are re-

transmitted only if a presentation needs to reuse the object after the objects’ lifetime.

36

3.3.1 Bitstream Architecture

The structure (syntax and semantics) of the components that make up a bitstream for

object-based audio-visual presentations is described in this section. The bitstream

consists of two types of data packets, object composition packets (OCPs) and object

data packets (ODPs) reflecting the separation of object data and meta-data. The OCPs

carry the data necessary to compose the objects in scenes. These include the spatial

information for object placement as well as control information that is used to add

and remove the objects. Each of these packets has an ID, known as the object ID, that

identifies the object the data belongs to.

3.3.1.1 Encoding Scene Composition

The OCPs contain composition parameters necessary for proper placement and

orientation of an object in a scene. The OCPs also contain a decoding time stamp, a

presentation timestamp, and a timestamp that gives the lifetime of an object at the

terminal. Composition update packets (CUP) are used to update the composition

parameters of objects. Together with object composition, updates can be used to

animate objects or groups of objects in a scene. Compound Composition Packet

(CCP) is a container packet that groups the OCPs. Object grouping is necessary in

order to be able to apply operations to a set of objects with a single command. This

can be used to minimize the amount of composition information sent, as well as to

support hierarchical scene composition based on independent sub-scenes. Each sub-

scene can be represented as a compound object. A CCP can also contain other CCPs.

This structure supports the use of the CCPs to represent presentations hierarchically

with scenes and sub scenes. A CCP contains an object id followed by the lifetime

37

time stamp (LTS), component object count, and composition parameters for the

compound object. The compound object is available at the terminal for the duration

given by the LTS. Figure 3.3 shows the hierarchical representation of scenes using

compound composition packets. The compound object shown in the figure has three

component objects; one simple object (ID = 2) and two compound objects (ID = 3

and 4). Each of these compound objects contains two simple objects as shown in the

Figure 3.3. The object at the top level acts as a grouping node by binding its

component objects together. By changing the composition parameters of the top-level

object, the composition data for the group can be changed. Representing scenes

hierarchically allows efficient navigation and also addressing of scenes and sub-

scenes. The object data itself is carried in object data packets (ODP). The ODPs

include the timestamps necessary for inter-media synchronization.

3.3.2 Audio-visual Terminal Architecture

An audio-visual (AV) terminal is an end user component used to present (display)

audio-visual content. An object-oriented terminal receives information in the form of

individual objects, which are placed together to form a scene according to specified

CCP ID (1)

OBJECT ID

LTS

COUNT

COMPOSITION
PARAMETERS

OCP (2)

CCP (4)

CCP (3)

1

2 3 4

31 32 41 42

Figure 3.3 Hierarchical Representation of Scenes

38

composition information. Objects and composition information are transmitted in

separate logical channels (LC). When object and composition data are multiplexed,

assigning a unique identification number (ID) to the packets creates logical channels

in a single multiplexed stream. Such multiplexing can be used to multiplex objects

with the same QoS requirements. The H.245 specification [112] specifies a

mechanism for the creation and management of such logical channels.

Figure 3.4 shows the architecture of an AV terminal. In the AV terminal architecture

presented, the AV objects and their composition information are transmitted over a

network (or accessed from a local storage device) in separate logical channels. The

dmux reads the multiplexed composition and data packets and de-multiplexes it into

logical channels. The LC 0 always carries composition information, which is passed

on to the System Controller (SC). Composition information consists of object

composition information and composition control information. Similarly, the object

data is encapsulated in object data packets. The AV objects received on other logical

DMUX

SYSTEM
CONTROLLER

CACHE

DECODER 1

COMPOSE

and
DISPLAY

DECODER 2

DECODER n

LC 0

LC 1

LC n

.

External Input (user interaction)

LC - Logical Channel

.

.

Figure 3.4 Architecture of an Audio-Visual Terminal

39

channels are stored in the cache to be acted upon by the decoders. The SC decodes

the composition information to compose the object in the scene.

3.3.2.1 Terminal Operation

An object-based bitstream is accessed either from a network interface or a local

storage device. The bitstream consists of a series of object composition packets and

object data packets multiplexed into logical channels. The DMUX de-multiplexes the

packets and passes the composition information to the controller. The dmux also

places object data in the cache for use by the decoders. The decoders in the terminal

are media specific, i.e., if the object is encoded using MPEG-2, the decoder will be an

MPEG-2 decoder or if an object is compressed using JPEG compression, a JPEG

decoder will be used. When an object data packet arrives at the terminal, the system

controller examines its decoding time stamp and instructs the decoder to decode the

object at the decoding time. The decoded object is copied to the presentation buffers

at presentation time with appropriate position and orientation as indicated by the

composition parameters. An object, if indicated as persistent, remains in the cache

until a time given by its expiration time stamp. If such an object is used at a later time

(before the expiration time), only the corresponding composition data is sent to the

terminal.

3.3.2.2 System Controller

The system controller is the heart of the terminal and controls the decoding and

playback of the objects on the AV terminal. The SC first initializes the dmux to read

form a local storage device or a network port. This is initiated at startup time either

40

from user interaction or by opening a session at default network address. The dmux

reads the input bitstream and feeds the composition data on LC0 to the controller. The

composition data begins with the description of the first scene in the AV presentation.

This scene can be described as a hierarchical collection of objects using compound

composition packets or as a collection of independent object composition packets. A

table that associates the elementary streams with the nodes in the scene description

immediately follows the scene description. The controller maintains the object IDs

(stream IDs) in an object list and also a render list. The render list contains the list of

objects that are to be rendered on the display device. An object that is disabled by

user interaction is removed from the render list. A node delete command that is sent

via a composition control packet causes the deletion of the corresponding object IDs

from the object list. The node hierarchy is also maintained and updated whenever a

composition update is received.

The SC also maintains timing for each AV object to signal the decoders and decoder

buffers of decoding and presentation time. The timing information for the AV objects

is specified in terms of its time-base. The terminal uses the system clock to convert an

object’s time base into system time. The controller gets the timestamps from the data

packets for each object. At the decoding time for an access unit, the data is forwarded

to the appropriate decoder, for example, by signaling the decoder to read data from

the input buffers.

41

The terminal design presented is a simple design that illustrates the concepts for a

generic audio-visual terminal. Since an object-based terminal should support several

media types, it is very likely that such terminals use software decoding for most of the

media types. Terminals for generic object-based audio-visual presentations should be

based on programmable decoders based on FPGAs [36][117][58] to achieve real-time

performance. This gives a terminal the ability to download decoders for media types

discovered in the bitstream. This practice is already seen in software media players

but is yet to be seen in dedicated media devices such as set-top-boxes.

3.4 Supporting User Interaction in Object-Based Presentations

Interactivity in the case of video on demand systems mainly meant supporting VCR

functionality in the system. With object-based video, interactivity is not just stream

control but depends on the application and the media types involved. Object based

representation of audio-visual objects and scenes lends itself to the design of more

sophisticated user interaction with scenes and objects in the scenes. The user

interaction mechanisms developed for video-on-demand are not sufficient to support

interactivity in object-based audio-visual applications as they were primarily designed

to support stream control. In this section we present an architecture to support user

interaction in MPEG-4 Systems1. This architecture, called the CommandDescriptor

architecture, integrates well with the MPEG-4 scene description framework and

supports fully interactive applications.

1 A modified version of the CommandDescriptor framework has since been adopted

by MPEG-4 Systems for supporting server interaction

42

3.4.1 MPEG-4 User Interaction Model

Since the MPEG-4 scene description is based on the VRML specification,

interactivity supported by MPEG-4 Systems (Version 1) was limited by the

capabilities of the VRML event model. VRML’s event model is limited to the scene

and lacks the mechanism to dynamically control the object delivery from servers or

communicate with servers in any way.

As an application’s response to user interaction is application dependent, the

interaction framework should be generic with ability to support a wide range of

applications. Clicking on an object might cause the object to move in one application

and hide the object in another application. The ability to interact with a server is

necessary in many applications. In an object-based system like MPEG-4, interactivity

is more than stream control and is very much application dependent. Since defining

an exhaustive list of user interaction messages and system’s responses is impossible,

a generalized model that supports complete application dependent interactivity is

necessary. We designed and implemented the Command Descriptor framework [74]-

[79] with all the features to support server interaction in MPEG-4 systems.

3.4.2 Command Descriptor Framework

The Command Descriptor framework provides a means to associate commands with

media nodes in a scene graph. When a user interacts with the media nodes, the

associated commands are processed. The actual mode of interaction is specified by

the content creator and may be a mouse click or mouse-over or some other form of

interaction. The command descriptor framework consists of three elements, a

43

CommandDescriptor, a CommandROUTE and a Command. Command descriptor, as

the name implies, describes a user interaction command. Command descriptor are

attached to media nodes via command ROUTEs. When a user interacts with a node,

the associated command descriptors are processed. The processing simply consists of

passing the command back to the server over a user command channel, or it may also

involve modifying the command parameters before sending the command to the

server. More than one command descriptor may be attached to a node and in that case

they are all processed when a user interacts with that node.

Figure 3.5 shows an example with command descriptors attached to the media nodes.

Two nodes may share a command descriptor if the interaction with the two objects

results in identical behavior. Command descriptors are transmitted to the client in a

separate elementary stream called command descriptor stream. The command routes

are similar to the ROUTEs used in the scene description but point to a command

descriptor. The command routes are included in the scene graph description and are

transmitted in the scene description stream. This separation between commands and

command association allows us to modify command syntax without editing a scene

Figure 3.5. Command Descriptors and Command ROUTEs

Node with event out

Media Node
CommandRoute 1

CommandDescriptor

CommandRoute 2

CommandDescriptor

Sensor node

44

graph.

The command descriptors contain a command that determines the interaction

behavior of the associated node. The command descriptors can be updated using

command descriptor updates allowing a node to support different interaction behavior

at different times. The commands can be transmitted to the server using the DAI user

command primitives supported by DMIF.

Even though the command descriptor framework is generic, and supports application

specific user interaction, we need a few standard commands to support consistent

application behavior across applications and servers especially for common

commands such as stream control. We specify a set of common commands, e.g.,

stream control commands [67], and the content creators can specify application

specific behavior. A server should be aware of these application specific commands

in order to process them.

class CommandDescriptor: bit(8) commandDescriptorTag = 0x06 {

 bit(16) CommandDescriptorID;

 bit(16) CommandID;

 // stream count; number of ES_IDs

// associated with this message
 unsigned int (8) count;

 // ES_Id (channel numbers) of the streams

// affected by the command
 unsigned int (16) ES_ID[count];

 // application-defined parameters
 do {

unsigned int (8) paramLength;
char (8) commandParam [paramLength];

 }
 while (paramLength!=0);
}

Figure 3.6. Command Descriptor Syntax

45

Figure 3.6 shows the syntax of a CommandDescriptor. The command descriptor ID

uniquely identifies a command descriptor in a presentation. The command ID

indicates the semantics of the command. This simple structure along with command

routes in the scene description can be used to support complete application specific

interactivity. For example this can be used to support content selection by specifying

the presentation in command parameters and the command ID indicates that the

command is the content selection command. One way to implement this is to create

an initial scene with several images and text that describes a presentation associated

with that image. We then associate a content selection descriptor with each image and

the corresponding text. When a user clicks on an image, the client transmits the

command containing the selected presentation and server starts a new presentation.

Command descriptors can be used to support application specific user interaction

including complex applications such as electronic commerce and on-line shopping.

3.4.2.1 Advantages of the CommandDescriptor framework

Two other alternatives to command descriptors are using URLs in the nodes (MPEG-

4 Systems defines a set of nodes to build scene graphs) to embed commands and

creating a node that contains a command (equivalent of embedding a

CommandDescriptor in a node). In the first case, a command is coded as a URL field

of a node. One advantage of this approach is that it uses the existing node syntax and

update mechanisms. The disadvantage of these two approaches is that it requires a

server to process BIFS in real-time. BIFS has a complex structure and creating BIFS

commands in real-time is more complex when compared with creating

46

CommandDescriptors that are byte oriented and byte aligned. Furthermore, command

descriptors have a very simple structure that is easy to compose and parse.

For MPEG-4 content with server interaction support to run on all servers, the servers

should understand all the commands. It is impossible to create interactive content

with content/application specific interactivity that can be understood by all servers.

The CommandDescriptor framework allows servers to compose the commands (e.g.,

from an equivalent textual description) in a manner understood by them. A

CommandDescriptor provides a well-defined structure for saving data locally in

applications that require data persistence (e.g., cookie management). To save the state

of a scene when a user terminates a session one can implement and save a command

descriptor. URLs and data fields in nodes are not sufficient for efficient

implementation of such functionality. In applications with multi user interaction, it

may be necessary to exchange the state of a scene among the users.

CommandDescriptors are more convenient to exchange data among users. The

number of commands a server composes could be quite high in multi-user

applications and burden of processing bit-oriented node updates is significant when

compared with processing byte-oriented and byte aligned CommandDescriptors.

3.5 Storage Format for Object-Based Audio-Visual Presentations

The ubiquity of the Internet and the continuous increase in the computing power of

the desktop computers together with the availability of relatively inexpensive

multimedia codecs have made multimedia content generation a readily available

functionality in the desktop computers. Creating interactive presentations using

47

object-based presentation techniques requires users to manipulate, compose, edit and

transmit multimedia content over packet networks. It is thus necessary to have a

multimedia file format that allow fast access to data files, locally or remotely stored,

during the process of content creation, composition/manipulation (e.g., file editing

and playback), and streaming over packet network.

In this section we will discuss the requirements for storing object-based audio-visual

presentations. We will then present our work on multimedia file format in the context

of MPEG-4 standardization [23]-[22][53][85]-[76].

3.5.1 Requirements for New Generation Multimedia Formats

The requirements of a file format in terms of access, manipulation, aggregation,

editing and streaming vary depending on the media type. It is thus impossible to

optimize processing of one type of media without penalizing the other. The file

format should not be designed to facilitate a special task (such as, in-place editing,

local or remote playback, or to match a specific media) but rather allow a series of

effective and flexible tools that allow efficient indexing and data access to perform

the aforementioned tasks. In the following sections we will discuss some of the most

stringent requirements imposed on multimedia file formats. Our work on the MPEG-4

file format was carried out jointly with AT&T Labs Research.

3.5.1.1 Granularity of the Data Access

Multimedia file formats should be flexible enough to support easy editing and

playback of multimedia objects and should provide means to perform editing

48

operations such as copy, cut, and paste to aid users in creating new content easily.

Object based presentations usually have separate meta-data and media data. In case of

MPEG-4, the meta-data consists of scene description, object description, and content

description streams. This implies inter-dependencies among the streams. Any changes

to the presentation may result in changes to all the dependent streams. Access to

individual elements of these streams is necessary to perform editing operations. This

implies support for a proper granularity to access the data of a given media stream.

3.5.1.2 Security

Providing security and protecting intellectual property becomes critical in digital

audio-visual systems. Techniques such as digital watermarks exist to ensure

authenticity of individual media streams. Such techniques should be extended to

MPEG-4 files to ensure authenticity of the presentation. Authenticating a presentation

is especially significant in object-based presentation as operations such as

adding/removing/replacing objects may affect the content of a presentation and such

operations can be accomplished relatively easily with object-based presentations.

3.5.1.3 Playback

The heterogeneity of the multimedia presentation environments requires that the file

format offer several ways to access the file data, trading off local terminal resources

such as memory and CPU speed for data access speed as appropriate. With universal

multimedia access seen as the future direction for multimedia, it becomes important

for the next generation of multimedia file formats to enable content re-purposing and

delivery to a range of multimedia devices. Playback needs a data access structure that

49

allows access to the segments of different objects that should be played back at a

given instance in time. Furthermore the playback may need to be selective, i.e.,

playback of only some objects or base layers of scalable objects. It is thus important

that a file format supports mechanisms to access individual objects and parts of

objects as necessary. Playback of multiple views of a presentation should also be

supported.

3.5.1.4 Streaming and Media Transport

Early multimedia file formats were designed and tailored for local access at data rates

attainable by relatively slow machines. Furthermore they were developed in a PC-

centric environment, in contrast to the current trend in distributed networked

computing. In today’s world, multimedia file formats must be designed for efficient

remote random access playback. This capability is often called streaming. While no

universally agreed-upon definition for the term streaming currently exists, it is

generally accepted that the word includes the concept of a remote client rendering

multimedia content as it is being received over the network using only a bounded

delay buffer. Depending on the type of hardware and software used for streaming,

audio-visual presentations can be directly delivered from MPEG-4 files or in case of

optimized servers they have to be converted to a server specific format. A file format

can therefore be not optimized for streaming but for interchange.

A common format that spans capture, authoring and editing, download and streaming,

leads to great flexibility. Material may be reworked after use, or used in multiple

ways, without being copied or re-formatted. A desirable solution is to have a set of

50

tools that can be used to create a file optimized for the needs of the applications while

allowing easy (computationally inexpensive) conversion between different instances

(views) of the file.

3.5.2 IIF – A Format For MPEG-4 Media

The complexity of MPEG-4, owing to the functionality it supports, makes it very

demanding in terms of storage and access of multimedia objects that constitute an

MPEG-4 presentation. MPEG-4 identified the need for a file format that can cater to

the needs of MPEG-4 and possibly the multimedia industry. This resulted in a call for

proposals (CFP) [15]. In this section we describe our proposal for the MPEG-4 file

format.

The Integrated Intermedia Format is a solution that is designed specifically for

MPEG-4 [21][22]. We designed the file format based on segment-based organization

of media data, with each segment containing objects of a single scene. An IIF file

consists of a header (File Configuration Header (FCH) and File Configuration

Extension (FCE)) followed by access tables, and finally one or more segments. Figure

3.7 shows the components of an IIF file in a configuration with access tables in the

front. These tables may also be attached at the end by setting appropriate flags in the

header, typically in case of recording when access tables are not available at the

beginning of a presentation.

51

3.5.2.1 Indexing Tools

Random access to AUs (frames) of an object is supported by means of indexing tools.

Indexing of objects and access units in that object (frames or access units) can be

done globally, with the indexing information located in a contiguous space or in a

distributed fashion, with indexing information distributed over the media data. A

distributed indexing scheme results in lower memory utilization as only a part of the

access tables are loaded at a time. Indexing is supported by means of several object

access tables that vary in complexity and support distributed or global indexing. The

different access tables used in supporting random access are:

Physical Object Table (POT): gives a list of objects present in a file and has pointer to

the segment that contains the first access unit of the object. Requires a SOT for

accessing an access unit.

Extended Physical Object Table (EPOT): indexes all access units of interest and

points to the SOT entry that corresponds to the access unit.

Fat Physical Object Table (FPOT): Expanded version of EPOT. This table indexes

SO

ODT

Segment
Extension

FCH SSC SEG SEGMENT
DATA

SCT SST FCE CDT EOT

POT FPOEPO

Figure 3.7. Components of an IIF File

52

all access units and includes their offsets and sizes. This table is sufficient to achieve

random access.

Segment Object Table (SOT): The media data, organized into segments, has a table

that indexes all the access units in a segment.

Object Descriptor Table (ODT): This table provides direct access to object

descriptors. Object descriptor contains all the essential information for a decoder to

process the object and is the first piece of information conveyed to a client during

session establishment.

Content Descriptor Table (CDT): An object’s Object Content Information (OCI) can

be directly accessed using this table.

These access tables can be used in different combinations depending on application

needs. For example, there might be a need to index one object in an MPEG-4

presentation using FAT while the others are indexed using other tables. This allows

flexibility for content creators in indexing the contents depending on the applications.

A BIFS (scene description) stream is the most critical part of an MPEG-4

presentation and special handling might be necessary to communicate it to the user

terminal. A BIFS stream is identified in an IIF file by assigning a unique two-byte ID

for the BIFS stream (this can also be done by decoding the object descriptors and

examining the stream types). This BIFS ID is part of the file header and allows

identifying and extracting the BIFS data easily.

53

One disadvantage of these indexing schemes is the lack of direct time-based indexing.

For example it is not possible to access an access units n seconds into the presentation

without further processing the bitrate and other parameters of the object. This has

been identified but can be easily overcome by time-wrapping of the access tables; i.e.,

associating segments of index tables with presentation time of access units.

3.5.2.2 Segment Based Organization of Media Data

IIF organizes the media data into segments. Segments usually correspond to a scene

or some other higher-level construct. Access units in a segment are optionally

indexed in a SOT. A segment starts with a unique segment start code that can be used

to uniquely identify the beginning of a segment. The segment header has flags that

determine the type of the contents in a segment. The segment data could be access

units that belong to a single object, multiple objects, object descriptors only, OCI only,

or scene description only. This information is useful to prioritize the processing of

data in a segment, as some data, for example scene description, are more critical to a

presentation than the other.

Another aspect of this segment-based approach is the separation of access tables and

actual media data itself. The media data contained in the segments is pure data and

can be extracted easily for direct playback. This saves de-packetization time that is

necessary if additional information is packed with the access units.

Since all access units are indexed relative to the beginning of a segment, the contents

of a segment can be edited with in a segment with changes made to only a single

54

entry in the access table that points to the segments. Another benefit of this approach

is the ability to allow un-indexed areas in segments that are treated as free space. This

might be a result of editing operation or could also be by design when a content

creator decides to leave some free space in segments for later use.

3.5.2.3 Streaming Support

Video playback on the desktop is becoming more and more common today. New

generation of file formats are being designed with emphasis on the ability to stream

data to desktops. By considering this requirement during the design phase, media can

be stored in a way that facilitates streaming and even make it more efficient.

To stream data, a media streamer needs to have access to data units (access units),

transport properties (bitrate, max unit size, min unit size, etc) of the objects, and then

packetize the access units according to the transport protocol of choice before

delivering it over a network. As the number of streams to be streamed increases, the

computational power required performing these seemingly insignificant tasks

becomes a burden to the streamer reducing it’s capacity. By making the task of access

to data units easy, streaming performance is improved. In IIF, an object’s properties

such as its average bitrate, peak bitrate, start time, end time, and duration are made

available in the stream configuration table (SCT). The overall nature of the MPEG-4

presentation such as average bandwidth, peak bandwidth, and average segment are

indicated in file configuration extension (FCE). Both FCE and SCT are optional as

indicated in the file header.

55

To make it even more efficient, IIF supports direct streaming. Direct streaming as the

name implies is less work for the streamer. The idea here is to pre-compute the

protocol specific packet headers and include them along with the access units. A

streamer would then extract the access units, associated pre-computed packet headers

and conveys it to the network. This reduces the load and increases streamer efficiency.

However, since direct streaming is transport protocol dependent, protocol specific

data should be included for each protocol the streamer supports. In IIF, this data is

placed in a segment in the optional segment extension. Segment extension contains

timestamps and protocol specific information. A drawback in this design is that there

was no support for more than one protocol in the same file.

3.5.2.4 External Links

IIF, as mentioned earlier, was designed specifically for MPEG-4. The External Object

Table is used to indicate the presence of External objects and/or External links in an

MPEG-4 file. External objects refer to AV objects that are referred to in the current

file but are present in a different file, which may be located on the current file system

or a remote (networked) system. This feature is necessary to support features like

local logo or ad insertion in a presentation.

External objects facilitate the use of a set of files to store an MPEG-4 presentation.

An EOT shall be present if multiple files are used to store a single presentation or if

there are any URLs present in the scene description or elementary stream descriptors.

The EOT also lists External links. External links are the URLs used in a presentation

that might be activated as a result of user interaction. These are necessary to ensure

56

that the links are available during a presentation and if they are not, the client can be

warned prior to the beginning of a session. This is a useful check as some missing

links might interrupt the flow of a presentation. It is the responsibility of the server

(or player in case of local playback) to ensure that resources are available to access

External objects and/or External links during a presentation.

The IIF file format presented is an efficient design specifically created for MPEG-4

Systems. The standardized MPEG-4 file format that was finally adopted is based on

QuickTime, one of the competing proposals [41]. The clear separation between media

data and metadata in the QuickTime format was an important reason for the choice as

well as the existing user base. Even though QuickTime is a good design and is well

suited for multimedia presentations, the efforts to customize the QuickTime

architecture to MPEG-4 Systems resulted in significant overhead in the MPEG-4 file

format.

3.6 A Comparison with MPEG-4 Systems

MPEG-4 is specifying tools to encode individual objects, compose presentations with

objects, store these object-based presentations and access these presentations in a

distributed manner over networks [93][106]. The MPEG-4 Systems specification

provides the glue that binds the audio-visual objects in a presentation [8][20]. Some

of the concepts of the object-based bitstream and terminal presented in the previous

section can also be seen in the MPEG-4 Systems layer. The basis for the MPEG-4

Systems architecture is the separation of the media and data streams from the stream

descriptions. The scene description stream, also referred to as BIFS (Binary Format

57

for Scenes), describes a scene in terms of its composition and evolution over time and

includes the scene composition and scene update information. The other data stream

that is part of the MPEG-4 systems is the object description or OD stream, which

describes the properties of data and media streams in a presentation. The description

contains a sequence of object descriptors, which encapsulate the stream properties

such as scalability, QoS required to deliver the stream and the decoders and buffers

required to process the stream. The object descriptor framework is an extensible

framework that allows separation of an object and the object’s properties. This

separation allows for providing different QoS for different streams; for example,

scene description streams which have very low or no loss tolerance and the associated

media streams, which are usually loss tolerant. These individual streams are referred

to as elementary streams at the system level. The separation of media data and meta

data also makes it possible to use different media data (MPEG-1 or H.263 video)

without modifying the scene description.

An elementary stream is composed of a sequence of access units (e.g., frames in an

MPEG-2 video stream) and is carried across the Systems layer as sync-layer (SL)

packetized access units. The sync-layer is configurable and the configuration for a

specific elementary stream is specified in its elementary stream (ES) descriptor. The

ES descriptor for an elementary stream can be found in the object descriptor for that

stream which is carried separately in the OD stream. The sync layer contains the

information necessary for inter-media synchronization. The sync-layer configuration

indicates the mechanism used to synchronize the objects in a presentation by

58

indicating the use of timestamps or implicit media specific timing. Unlike MPEG-2,

MPEG-4 Systems does not specify a single clock for the elementary streams. Each

elementary stream in an MPEG-4 presentation can potentially have a different clock

speed. This puts additional burden on a terminal, as it now has to support recovery of

multiple clocks. In addition to the scene description and object description streams, an

MPEG-4 session can contain Intellectual Property Management and Protection

(IPMP) streams to protect media streams, or Object Content Information (OCI)

streams that describe the contents of the presentation, and a clock reference stream

[20][64][110]. All the data flows between a client and a server are SL-packetized.

The data communicated to the client from a server includes at least one scene

description stream. The scene description stream, as the name indicates, carries the

information that specifies the spatio-temporal composition of objects in a scene. The

MPEG-4 scene description is based on the VRML specification. VRML was intended

for 3D modeling and is a static representation (a new object cannot be dynamically

added to the model). MPEG-4 Systems extended the VRML specification with

additional 2D nodes, a binary representation, dynamic updates to scenes, and new

nodes for server interaction and flex-timing [91]. A scene is represented as a graph

with media objects associated with the leaf nodes. The elementary streams carrying

media data are bound to these leaf nodes by means of BIFS URLs. The URLs can

either point to object descriptors in the object descriptor stream or media data directly

at the specified URL. The intermediate nodes in the scene graph correspond to

functions such as transformations, grouping, sensors, and interpolators.

59

The VRML event model adopted by MPEG-4 systems has a mechanism called

ROUTEs that propagates events in a scene. This event model allows nodes such as

sensors and interpolators to be connected to audio-visual nodes to create effects such

as animation. This mechanism however is limited to a scene; there are no routes from

a server to a client to propagate user events to a server. Our work on server

interaction described in Section 3.4 specifies an architecture to propagate user events

to a server [67][79]. This has been adapted to fit tightly in a scene graph by

encapsulating the server command functionality in a new node called Command

Node [19].

In addition to VRML functionality, MPEG-4 includes features to perform server

interaction, polling terminal capability, binary encoding of scenes, animation, and

dynamic scene updates. MPEG-4 is also specifying a Java interface to access a scene

graph from an applet. These features make possible content with a range of

functionality blurring the line between applications and content.

Figure 3.8 shows the binding of elementary streams in MPEG-4 Systems. The Figure

shows a scene graph with a group node (G), a transform node (T), an image node (I),

an audio node (A), and a video node (V). Elementary streams are shown in the Figure

with a circle enclosing the components of the stream. The scene description forms a

separate elementary stream. The media nodes in a scene description are associated

with a media object by means of object IDs (OD ID). The object descriptors of the

60

objects in the scene are carried in an object descriptor stream. An object descriptor is

associated with one or more elementary streams. The elementary streams are

packetized and carried in separate channels.

Since all the data flows to a client are SL-packetized, the question is how does one

get the sync-layer configuration of these data flows? When an MPEG-4 session is

started, the very first data a terminal receives is the initial object descriptor (IOD).

The IOD contains the elementary stream descriptors for the scene description stream

and possibly an object descriptor stream. The terminal then starts decoding the scene

description stream and the OD stream. As the scene graph is constructed, the objects

referred to in the scene description are retrieved, decoded, composed and displayed.

The IOD itself is not SL packetized and is usually transmitted to a terminal in a

successful response to a session establishment request. The session establishment and

channel establishment is done both in the case of local access and networked access.

To keep the interface to the underlying transport independent of the transport, MPEG-

4 specified a semantic interface to the transport layer called Delivery Multimedia

Integration Framework (DMIF) [12].

Figure 3.8 Stream Association in MPEG-4 Systems

G

I T

V A
ODA

ODV

ODI

ESA

ESV

ESI

ESID

ESID

ESID

ODID

ODID

ODID

61

3.7 Delivering Object-Based Presentations

Delivering MPEG-4 presentations differs from traditional video on demand delivery

in the characteristics of the presentations delivered. VoD applications primarily

involve delivering MPEG-2 transport streams. In the case of object-based

presentations such as MPEG-4 presentations, the media data and the media

composition data are transmitted to a client as separate streams, typically with

different QoS requirements, in the same session. Furthermore, as the number of

objects in a presentation can be quite large, the overhead required to manage a session

is large. Interactivity makes this problem more complex as the resources required for

a session will now depend on the user behavior, especially when user interaction with

objects changes the number of objects in the scene either by adding or deleting

objects.

Figure 3.9 shows the components of an MPEG-4 server. An MPEG-4 server typically

consists of an MPEG-4, pump, an object scheduler, and a DMIF instance for media

transport and signaling. The server delivers Sync Layer Packets (SL-Packets) to the

DMIF layer, which multiplexes them in a FlexMux and transmits them to the client.

An MPEG-4 server that is transmitting objects should make sure that access units

arrive at the terminal before their decoding time. The pump retrieves the objects from

Elementary
Streams

Object
Scheduler

MPEG-4
Pump

DMIF

DAI
Network

Figure 3.9 Components of an MPEG-4 Server

62

the disk and delivers them as scheduled by the presentation scheduler. The scheduler

uses the decoding timestamps to schedule the delivery of access units.

The complexity of an MPEG-4 presentation is an important factor that influences a

server’s performance. In case of MPEG-2 content, the average bit-rate and peak bit

rate are a good indication of the server resources required to deliver the stream.

However, an MPEG-4 presentation cannot be characterized by individual or

cumulative bit rates of the objects alone. For example, an MPEG-4 presentation may

consist of a sequence of large JPEG images with accompanying audio. Such

presentations tend to be very bursty over networks. Since objects may span any

arbitrary time period during a presentation, the bit-rate of MPEG-4 presentations can

be highly variable depending on the content of presentations. The structure and nature

of an MPEG-4 presentation determines the complexity of the content. When user

interaction is allowed, the resulting asynchronous events affect object delivery and

add to the burstiness of the traffic on the network and the complexity on the content.

When delivering interactive components of presentations, there are two options: 1)

reserving the required capacity at session startup 2) acquiring necessary bandwidth

after an event happens. The scheduling choice depends on the bandwidth availability,

content design, and the applications’ tolerance to the events ignored by the server. If

bandwidth is available on-demand, the most efficient way is to acquire the necessary

bandwidth when an event happens. When bandwidth availability cannot be predicted,

the best way is to reserve the required bandwidth at session startup. Even though the

63

reserved capacity is wasted when the anticipated events do not happen, reserving

resources assures the delivery of the interactive component of the presentation. An

acceptable compromise would be to prioritize events and reserve the bandwidth for

higher priority events and request additional bandwidth when a lower priority event

happens.

A presentation created without the knowledge of target networks and clients could

create long startup delays and buffer overflows or underflows. This could cause

distortion, gaps in media playback or problems with the synchronization of different

media streams. Unlike MPEG-1 and MPEG-2, MPEG-4 presentations are not

constant bit rate presentations. The bitrate of a presentation may be highly variable

depending on the objects used in the presentation. Presentations may have to be

recreated for different targets or servers have to be intelligent enough to scale a

presentation for different networks/clients. Schedulers should be part of content

creation process to check the suitability of content for target networks and clients.

MPEG-4 has scalable coding tools that allow creation of content that can be adapted

to different network and bandwidth conditions.

3.8 Concluding Remarks

In this chapter we presented an overview of object-based audio-visual services. The

key contributions in this area are the bitstream design, terminal architecture, user

interaction framework, and file format for object-based presentations. The bitstream

is design is based on the premise of separating meta-data from the media data and

hierarchical representation of object-based presentations. The bitstream is also

64

designed to dynamically update the scenes using composition updates, node addition,

and node deletion. The terminal architecture is an illustrative example of a terminal

for audio-visual presentations. It introduces the concept of persistent objects and

reuse of persistent objects from local cache. We proposed the original architecture for

user interaction and file format in MPEG-4 Systems. Even though the final form of

these components in the MPEG-4 standard differ from the proposed versions, the

contributions formed the underlying basis. We then presented an overview of MPEG-

4 Systems layer to highlight the similarities to the bitstream and terminal architecture

presented earlier in the chapter and the contributions made in the development of the

MPEG-4 Systems standard. Finally, we briefly considered delivery of object-based

presentations with respect to content representation and scheduling. In the next two

chapters, we will consider the delivery-related problem of scheduling interactive

object-based audio-visual presentations.

65

Chapter 4

Scheduling Object-based Audio-Visual Presentations

4.1 Introduction

The MPEG-4 Systems specification [20][64] [8][110] defines an architecture and

tools to create audio-visual scenes from individual objects. The scene description and

synchronization tools are at the core of the systems specification. The MPEG-4

architecture allows creation of complex presentations with wide-ranging applications.

As the complexity of the content increases, so does the complexity of the servers and

user-terminals involved. The servers now have to manage multiple streams (objects)

to deliver a single presentation.

The flexibility of MPEG-4 enables complex interactive presentations but makes the

content creation process non-trivial. Unlike MPEG-2, the content creation process

involves much more than multiplexing the media streams. Determining the

schedulability of a presentation is also important during the content creation process

to determine if the presentation being designed can be scheduled for specific channel

rates and client buffer capacity. It may not be possible to schedule a presentation with

a given set of resources. In order to create a schedulable presentation, some

constraints may be relaxed. In the case of scheduling objects, relaxing a constraint

may involve increasing the buffer capacity, increasing the channel capacity, not

scheduling some object instances, or removing some objects from a presentation.

66

The complexity of an MPEG-4 presentation is an important factor that influences a

server’s performance. In case of MPEG-2 content, the average bit-rate and peak bit

rate are a good indication of the server resources required to deliver the stream.

However, an MPEG-4 presentation cannot be characterized by individual or

cumulative bit rates of the objects alone. For example, an MPEG-4 presentation may

consist of a sequence of large JPEG images with accompanying audio. Such

presentations tend to be very bursty over networks. Since objects may span any

arbitrary time period during a presentation, the bit-rate of MPEG-4 presentations can

be highly variable depending on the content of presentations.

When user interaction is allowed, the resulting asynchronous events affect object

delivery and add to the burstiness of the traffic depending on the content. When

delivering interactive components of presentations, there are two options: 1) reserving

the required capacity at session startup, and 2) acquiring necessary bandwidth after an

event happens. The scheduling choice depends on the bandwidth availability, content

design, and the applications’ tolerance to the events ignored by the server. If

bandwidth is available on-demand, the most efficient way is to acquire the necessary

bandwidth when an event happens. When bandwidth availability cannot be predicted,

the best way is to reserve the required bandwidth at session startup. Even though the

reserved capacity is wasted when the anticipated events do not happen, reserving

resources assures the delivery of the interactive component of the presentation. An

acceptable compromise would be to prioritize events and reserve bandwidth for

67

higher priority events and request additional bandwidth when a lower priority event

happens.

In this chapter we discuss the problem of scheduling audio-visual objects and present

algorithms for optimal scheduling of audio-visual objects. We present new algorithms,

based on job sequencing on a single machine proposed by Carlier [29], for scheduling

objects in a presentation. This chapter paper is organized as follows: the general

problem of scheduling audio-visual objects and related earlier work is presented in

Section 4.2. Complexity of object-based audio-visual presentations is discussed in

Section 4.3. The characteristics of startup delay and terminal buffer are discussed in

Section 4.4. In Section 4.5 we present several algorithms to schedule audio-visual

presentations. We conclude the chapter in Section 4.6.

4.2 Scheduling Audio-Visual Objects

Scheduling and multiplexing of audio-visual (AV) objects in a presentation is a

complex problem. Scheduling of audio-visual objects has been the subject of study in

[25][100][111]. In [100] Little and Ghafoor present synchronization of multi-object

presentations using Petri-net models to describe timing relations in multimedia

presentations. They present network-level and application-level synchronization

protocols for multi-object presentations. The problem considered is delivering objects

from multiple sources to a single destination. The problem we are considering is the

network-independent scheduling of interactive audio-visual objects on the server side.

We assume the use of underlying network services for establishing connections for

data transport. We also show that scheduling objects jointly results in bandwidth

68

savings. In the Firefly system [25], the issue addressed was scheduling a set of local

objects to ensure synchronization by adjusting the duration of the media objects

involved. The authors address the synchronization problem by adjusting the play-rate

of objects (speeding up or slowing down playback) but do not consider network

delivery issues. In [111] Song et. al, describe the JINSEL system that uses bandwidth

profiles to reserve bandwidth for media objects on a delivery path. The JINSEL

system computes the bandwidth required on the network segments on the delivery

path using the amount of buffer available on the switch/component. Disk scheduling

for structured presentations was studied in [55].

In the following, the problem is explained in the context of MPEG-4 Systems.

MPEG-4 Systems specifies an architecture to describe scenes and communicate

audio-visual data that corresponds to the objects in a scene [20]. A scene consists of

one or more audio-visual objects with each of these objects associated with an

elementary stream that carries the corresponding data. All the elementary streams are

typically multiplexed in a transport multiplex. A server that is transmitting objects

(elementary streams) should make sure that an access unit (access unit is the smallest

data entity to which timing information can be attributed; e.g., frames in an

elementary stream) arrives at the terminal before its decoding time. The constraints

on the server transmission are the channel capacity and buffer capacity at the

receiving terminal. This problem has similarities with VBR scheduling [104], where

the goal is to maximize the number of streams supported by a server. The difference

is that in VBR scheduling discussed in [104] and references therein, the assumption is

69

that the video data being handled is periodic (e.g., 30 fps). In a general architecture

such as MPEG-4, such assumption is not valid as the data can consist of only still

images and associated audio. Furthermore, the multiple streams in MPEG-4

presentations are synchronized at the same end-user terminal using a single clock or

possibly multiple clocks whereas there are no inter-dependencies when scheduling

multiple VBR video streams. This puts tighter restrictions on the scheduling of an AV

presentation. In such cases the decoding times of individual access units have to be

considered for efficient scheduling. Furthermore, the delay tolerances and relative

priorities of objects in an audio-visual presentation can be used to schedule objects

for delivery. To make a presentation schedulable, objects of lower priority could be

dropped. Even different instances of an object may be assigned different priorities

(e.g, higher priority for I and P frames and a lower priority for B frames in an MPEG

video stream). These characteristics of the audio-visual services can be used to

efficiently schedule a presentation with minimal resource consumption.

4.2.1 System Model and Assumptions

We discuss the scheduling of audio-visual objects in the context of a system

consisting of client (end-user), server, and network components as shown in Figure

4.1.a. Figure 4.1.b shows the server model. The server delivers objects in a

presentation as scheduled by the scheduler. The scheduler uses the decoding

timestamps to schedule the delivery of access units. A decoder is assumed at the far

end that decodes the objects for real-time playback. On the client side, data is

retrieved from the network and provided to the decoders at decoding time of that

access unit. Any data that arrives before its decoding time is buffered at the terminal.

70

The terminal buffer model is not considered to keep the schedule independent of

terminal designs. However we need the minimum buffer size for a class of terminals

to compute object schedules. The data delivered from the server is transported on the

channel established between the client and the server. The following assumptions are

made about the content, decoders, network, and the server.

Content:

• An audio-visual presentation is composed of one or more objects (AV

Objects).

• An access unit (AU) is the smallest piece of data that can be associated with a

decoding time.

• An audio-visual object contains one or more access units.

• Objects and their access units may be assigned relative priorities.

Terminal/Decoders:

• The decoders have given, limited memory for receiving and decoder buffers.

• The object data is removed instantaneously from the buffer at the decoding

time given by the object’s decoding timestamp.

Elementary
Streams

Object
Scheduler

MPEG-4
Pump

DMIF

DAI
Network
Interface

DMIF

DAI
Network

Decoder
Buffers

decoders

Figure 4.1.a. Terminal Model

Figure 4.1.b. Server Model

71

• An object/instance that is received before the decoding time is buffered in the

decoder-input buffers until its decoding time.

• More than one object instance may be present in the decoder-input buffers.

Channel/Network:

• End-to-end delays from the server to the player (including the transmission

delay) are assumed to be constant.

• The capacity required for the signaling channel is assumed to be negligibly

small.

• The transport layer is work conserving, and delivers the packets to the

network instantaneously.

Server:

• Audio-visual objects are available at the server in the form of time-stamped

access units.

• All the access units of an object are delivered in their decoding order.

• A server presents an access unit to the transport layer at the send time

determined by the scheduler.

4.2.2 Notation

The following notation is used in this discussion.

� — set of objects to be scheduled

N — number of objects to be scheduled

ni — number of access units per object (� �i N)

A kj ()— access unit k of object j

72

A A k
j k

j� �
,

() — set of all access units in the presentation

T kj
d () — decoding time of A kj () .

T kj
s () — send time of A kj () .

� � �
j k

j
sT k

,
() — the send-time schedule

C — a transmission channel of capacity C.

s kj () — size in bytes of A kj ()

d kj () — duration (channel occupancy) of access unit k on the wire;

d k C sizeof A kj j() (());� �

Bmax — terminal buffer capacity assuming a single demultiplexing buffer.

B t() — buffer occupancy at time t.

Ts — startup delay.

Ts
max — max startup delay.

T d Ts k
k

k
min () () = 0 0 0� � � — time to transmit AUs of all objects with

DTS/CTS of zero.

4.2.3 Problem Formulation

Given a set of N objects that comprise an audio-visual presentation, with each object

containing ni access units each with a decoding time T kj
d () , of kth access unit of

object j, a transmission channel of capacity C, terminal buffer of size B, allowed

startup delay of Ts
max, and duration (channel occupancy) of each access unit on the

channel, d kj () : is there a schedule � that satisfies the following constraints?

73

T k T k d kj
s

j
d

j() () ()� � (1)

T k T k d kj
s

j
s

j() () ()	
 	1 (2)

if i A j T d T T T di
s

i j
s

i
s

j
s

j� � 	 �
 	{ }, then either or (3)

B t C d k j T k d k t T k tj
j k

j
s

j j
d() * () () () , ()

,

� � 	 �
� (4)

 T Ts s� max (5)

Constraints (1)-(5) represent the conditions for transmission and playback of object

based audio-visual presentations. Constraint (1) enforces the on-time delivery of

access units. Ignoring the constant end-to-end delays, (1) gives the latest time an

access unit can be transmitted. Constraint (2) imposes intra-object synchronization by

enforcing precedence constraints among the access units. Access units are never

transmitted out of order; they are transmitted in their decoding order. Since a single

channel is used for transmission, channel occupancy of any two access units cannot

overlap. Constraint (3) ensures that data is delivered on a single channel between a

server and a client. Equation (4) gives the buffer occupancy at the end-user terminal

at time t. Constraint (5) gives a bound on the startup delay for the given presentation.

If the problem cannot be solved, i.e., a schedule that satisfies the given resource

constraints cannot be found, some of the constraints could be relaxed in order to find

a schedule. The constraints can be relaxed by: reducing the number of objects,

increasing the startup delay, or increasing the channel capacity.

74

EXAMPLE:

Consider the scheduling of a presentation with three objects as shown in Figure 4.2.

Object 1 has five access units, object 2 has three, and object 3 has one access unit.

The AUs are shown with increasing decoding time stamps from left to right. We have

to find a schedule, if one exists, that sequences the AUs starting with the first AU of

one the three objects and satisfying the constraints. Figure 4.2 shows one such

sequence. The general problem of determining the existence of such a sequence is

NP-complete. We prove that in Theorem 1 below.

Scheduling is a complex problem and has been widely studied [30][37][42][107].

Many of the scheduling problems are NP-complete and a number of approximation

algorithms are developed trading off optimality for tractability [61][116]. The

scheduling problem closest to the audio-visual object scheduling is job shop

scheduling on a single machine. There has been earlier work on scheduling on single

machines. Complexity of machine scheduling problems is studied in [98]. Carlier

proved the NP-hardness of one-machine sequencing problem in [29] and some

approximation algorithms are discussed in [61]. Another problem with similarities to

audio-visual scheduling is job scheduling with temporal distant constraints. NP-

Figure 4.2. Sequencing of access units in a 3-object Presentation

75

completeness results and polynomial time algorithms for a restricted instance of the

problem are given in [72]. In spite of the similarities to the current problem, the

approximation results for single machine scheduling problems cannot be applied to

audio-visual object scheduling because of an entirely different problem domain and

additional constraints on AV-object scheduling. Approximation algorithms are based

on heuristics and domain knowledge is essential to develop good designs. Even

though the results of single-machine scheduling are not directly applicable to audio-

visual presentations, some of the results can be used in scheduling individual objects

on a channel. The results of single machine scheduling problem as formulated by

Lawler in [95][96] may be used to determine the schedulablity of individual objects.

4.2.4 Complexity of audio-visual object scheduling

Theorem 1: Scheduling of access units in Audio-Visual presentations (SAV)

is ������Complete in the strong sense.

Proof: We prove this by transforming the problem of SEQUENCING WITHIN

INTERVALS (SWI), proven to be �����Complete in the strong sense [107].

We restate SWI below.

INSTANCE: A finite set T of tasks and, for each t T� , an integer release time

r t() ,
 0 a deadline d t Z() ,� + and a length l t Z() .� +

QUESTION: Does there exist a feasible schedule for T, i.e., a function

� :T Z� + , such that, for each t T t r t t l t d t�
 	 �, () (), () () (),� � and if

t T t then’ { },� � , either t l t t or t t l t� � � �() () () () () ()’ ’ ’	 �
 	

The basic units of the SWI problem are the tasks t T� . The local replacement

for each t T� is a single access unit A kj () with r A k T kj j
s(()) ()
 � 1 ,

76

d t T kj
d() ()� l t d kj() ()� . We disregard the buffer and startup delay

constraints. It is easy to see that this instance can be created from SWI in

polynomial time. Since SWI can be transformed to SAV, SAV is at least as hard

as SWI.

Since SAV is �������Complete in the strong sense, it cannot be solved by a pseudo-

polynomial time algorithm. We present several polynomial-time algorithms based on

heuristics and constraint relaxation and evaluate their performance with respect to

speed and efficiency.

4.3 Characterizing Object-Based Audio-Visual Presentations

The complexity of an MPEG-4 presentation is an important factor that influences

terminal design (in terms of support for content playback), the channel capacity

required and also a server’s performance. In case of MPEG-2 content, the average bit-

rate and peak bit rate are good indicators of the resources required to process the

stream. However, an MPEG-4 presentation cannot be characterized by individual or

cumulative bit rates of the objects alone. For example, an MPEG-4 presentation may

consist of a sequence of large JPEG images with accompanying audio. Such

presentations tend to be very bursty over networks. Since objects may span any

arbitrary time period during a presentation, the bit-rate of MPEG-4 presentations can

be highly variable depending on the content of presentations. Furthermore, the result

of combining CBR streams on a single channel is shown to be VBR [59] and object

schedules generated based on CBR reservations [111] may not work.

77

The complexity of an MPEG-4 presentation mainly depends on the number and type

of objects involved, object playout, and interactivity (local and remote). Complexity

of a presentation may be functionally expressed as:

C f N OT i P I I i Np i l r� � �(, (), ,), 1

C p N

OT i

Pi
Il Ir

 is the complexity of the presentation, is the number of objects in the presentation

 is the object type

 is the object playout time (the length of time an object is present in a presentation)

 and are possible local and remote events respectively.

()

C OT i P f I g I i Np
i

N

i l r� 	 	 � �
=

� () * () (
1

1)

The above formula can be used to estimate the complexity of object-based

presentations.

On the server side, while the size of an object may indicate the complexity, on the

player side, a number representative of the resources needed to decode an object is

needed. This differentiation gives rise to different notion of content complexity at the

server end and player end of a system. Duration of an object in a presentation is

representative of the playout complexity. OT(i)*P(i) is a linear relationship indicating

that an object that is played for a longer duration needs more resources and hence is

more complex. When user interaction is allowed, the resulting asynchronous events

consume more resources, may affect object scheduling, and also the required network

and server resources. While local interaction with a presentation only affects a player,

the user interaction resulting in a server interaction affects both the client and a server.

The function g()
 gives the complexity as a result of server interaction and the

78

function f ()
 gives the complexity as a result of local interaction. This may be a

negative value if it results in reduced complexity; e.g., when an object is removed

from a presentation.

4.4 Startup Delay and Terminal Buffer

An MPEG-4 terminal has a finite buffer to store the received data until they are

decoded. The amount of buffer capacity required depends on the type and number of

elementary streams being buffered. Since there are usually no limits on the number of

objects in audio-visual presentations, it is not practical to have sufficient buffer for all

presentations. A terminal should be designed to support a class of presentations. The

amount of buffer available also determines the upper bound on the startup delay for a

session. The higher the startup delay, the higher the buffer capacity required (with

channel capacity remaining the same). When scheduling presentations, a scheduler

should assume the minimum allowable buffer for terminals in order to support all

terminal types. Even though the knowledge of the buffer occupancy at a terminal may

help improve the schedule, it makes the schedule dependent on the buffer model used

by the terminals. Since the buffer model and management in a terminal depends on

terminal design, we designed the scheduler to be buffer model independent.

Startup delay can be defined as the time a user has to wait from the time a request is

made until the time the presentation starts. A startup delay of Ts is not equal to

buffering Ts seconds of the presentation. The amount of startup delay varies from

presentation to presentation and even for the same presentation, it may vary with

varying resources (e.g, bandwidth and buffer). Startup delay can be viewed as

79

preloading the beginning of a presentation so that the presentation is played back

continuously once the playback starts. The amount of startup delay required for the

smooth playback of a presentation depends on the channel capacity. For any channel,

the minimum startup delay is the time needed to transmit (buffer) access units that are

presented at time 0 (AUs with timestamp 0).

Consider a presentation composed of several images displayed on the first screen,

followed by an audio track. The images to be displayed on the first screen should

reach the terminal before the presentation starts, resulting in a startup delay. If the

channel bandwidth reserved for the presentation is allocated based on the low bitrate

audio stream that follows the images, the startup delay will be higher. On the other

hand, if the higher bandwidth is reserved to minimize the startup delay, the capacity

may be wasted during the remainder of the presentation when low bitrate audio is

delivered. The tradeoff depends on resource availability and startup-delay tolerance

of the application.

Given a startup delay, Ts, the buffer required is equal to the size of the objects that can

be loaded (transmitted to the client) in time Ts. The minimum buffer required for this

delay is Ts * C. The minimum startup delay for any presentation is equal to the time

required to transmit (load) the objects/ instances to be displayed at time 0. We refer to

this time as Ts
0 . Ts

0 is the optimal startup delay for startup delay-optimal schedules and

is the lower bound on startup delay for bandwidth-optimal schedules.

80

4.4.1 Residual Data Volume

We introduce the notion of data volume to quickly compute the minimum startup

delays needed for a presentation and determine the non-schedulability. Data volume

(Vd) is the amount of data (in bits) transferred during a session. The amount of data

that can be carried by a channel during a session is the data pipe volume

(C Dp p= *). The amount of data volume exceeding the data pipe volume is the

residual data volume (V Vres d p= �). A positive Vres gives the lower bound on the

amount of data to be loaded during startup and hence determines the lower bound on

the startup delay for a presentation. A negative value of Vres indicates unused channel

capacity during the session. We prove the lower bound on channel capacity required

in Theorem 2 below.

Theorem 2: For a presentation of duration Dp, the lower bound on channel

capacity required for a startup delay-optimal schedule is:

C C where C
V

D
d

p

 min min = , and the bound is tight.

Proof:

s k

D T n T n

d
j k

j

p
j

j
d

j
j

j
d

j

�

� �

�
,

()

max{ ()} min{ ()}

For a presentation of length Dp, the data pipe volume at the given pipe capacity

is

C Dp p� *

Assuming that the buffers are filled up at a rate C, the startup delay due to Vres

is

T V V Cs
res

d p� �() /

To minimize the startup delay,

 T V V C V Vs
res

d p p d� � � � �() / 0

81

Since C Dp p� * , substituting p we get the lower bound on the channel

capacity

C
V

D
d

p
min �

From constraint (1)

T T d T T s Cj
s

j
d

j j
s

j
d

j() () () () () () /1 1 1 1 1 1� � � � �

From constraint (2)

T T s Cj
s

j
s

j() () () /1 0 0
 	

Assuming that the presentation starts at time 0

T T s Cj
s

j
s

j() , () () /0 0 1 0� �

From constraints (1) and (2),

T T s C T s C s C

T T s C T T s C

T s C s C s C

j
s

j
s

j j
s

j j

j
s

j
d

j j
d

j
s

j

j
d

j j j

() () () / () () / () /

() () () / () () () /

() () / () / () /

2 1 1 2 0 1

2 2 2 2 2 2

2 0 1 2

 	 �
 	

� � �
 	

�
 	 	

Similarly,

T n s C s C s n Cj
d

j j j j j() () / () / ... () /
 	 	 	 0 1

Since the AUs are transmitted on a single channel,

D T n s C s C s n C

D
C

s k

D
C

C D

C C

p j
d

j j j j j

p j
j k

p p

�
 	 	 	

�

�

�

�

max{ ()} () / () / ... () /

()

* *

,

min

min

j

0 1

1

1

We can show that the bound is tight by considering the example as shown in the

Figure 4.3.

A (1) A (1) A1(2)

10 8 4 0

Figure 4.3. Example to prove the tightness of the bound

82

Object 1 has 2 AUs and object 2 has 1 AU. The decoding times and sizes of

AUs in bytes are:

T T T s s sd d d
1 1 2 1 1 21 4 2 10 1 8 1 10 2 5 1 10() , () , () , () , () , ()� � � � � � .

With these values the send times and channel capacity are:

T T Ts s s
1 1 21 0 2 8 1 4() , () , ()� � � , and

C C bytes� �min . / sec2 5 .

The actual channel capacity required to minimize startup delay may be higher

depending on the timing constraints of access units. Note that irrespective of the

channel capacity, the minimum startup delay remains non-zero and is equal to Ts
0 .

Thus for any given presentation with resource constraints:

the minimum startup delay is, T T Ts s
res

s
min max{ , }� 0

the minimum buffer capacity required is, B T Csmin
min *�

the presentation is schedulable only if the available buffer is at least equal

toBmin .

4.5 Scheduling Algorithms

In this section we describe a family of scheduling algorithms for AV object

scheduling. Given an AV presentation, the scheduling algorithms compute a delivery

schedule according to the selected criteria. We assume that the terminal buffer is

fixed and compute startup delay-optimal or bandwidth-minimizing schedules. The

algorithms can also be re-purposed to compute the minimum terminal buffer required

for a given channel capacity. Figure 4.4 shows the flowchart for selecting an

appropriate scheduling algorithm. The choice of the algorithm depends on the

applications, resource availability, and constraints.

83

4.5.1 Algorithm FullSched

This algorithm is based on the last-to-first idea mentioned in [96] for scheduling jobs

on a single machine. The main principle behind this algorithm is scheduling an AU

with latest deadline first and scheduling it as close to the deadline as possible. The

algorithm computes the schedule starting with an AU with the latest decoding time in

the presentation. This algorithm computes the schedule, the required startup delay,

and any channel idle times. The channel idle times computed are used in the gap-

scheduling algorithm described in Section 4.5.2.

Presentation Resources

Is this
Schedulable?

Find
schedule

YES NO

Acquire
resources?

YES NO

Relax
Constraints?

NO

No schedule

END

YES

Use priorities.
Drop AUs

Find the best
schedule

Acquire
bandwidth?

YES

Find the bandwidth
optimal schedule

END

NO

Find delay
optimal schedule

Figure 4.4. Determining the Schedulability of a Presentation

84

Let S be the set of current AUs to be scheduled. Initialize S to contain the last AU of

each of the objects to be scheduled. Let xj be the index of the next AU of object j to

be scheduled.

x n j Nj j� � �, 1

Initialize S A x j Nj j� � �{ ()}, 1

S j() is the AU of object j to be scheduled next.

S contains at most one AU for every object j.

G is the set of channel idle times. Idle time is given by a tuple <t, d>, i.e, the channel

is idle for duration d starting at time t. Initialize G � { }�

Set current time i � �

Sort AU of objects in the decreasing order of their decoding times.

BEGIN

 while ()S � � {

 i = min{i, max{T kj
d () }}, T k A k Sj

d
j() ()� �

 T xj
s

j()= i - d xj j() ; //send time for A xj j()

 // Update i

 i -= d xj j() ;

 xj--;

 // Update S by removing S j()from S

 S S j� � ();

 // add A xj j()to S

 if(x j � 0)

 S AU j x j	 � (,)

 if i T kj
d(max{ ()})� , T k A k Sj

d
j() ()� �

 // there is a gap on the channel

 G T k i T kj
d

j
d 	 � �({max{ ()}, {max{ ()})

85

 }

 if Tfirst
s � 0

 then T Ts first
s�

 T k T j kj
d

s() , , 	 � �

 END

The process begins with S initialized with the last AU of each of the objects in the

presentation and G initially empty. In each of the iterations, the AU with the latest

decoding time is scheduled as close to the decoding time as possible. Ties are broken

arbitrarily. Once the AU of an object is scheduled, the next AU of that object is added

to S as long as there are AUs to be scheduled. The current time is given by i. A value

of i greater than the largest decoding time of AUs in S (max{ ()}T kj
d) indicates idle

time on the channel (gaps or slots). The channel is idle because nothing can be

scheduled between max{ ()}T kj
d and i. This is illustrated in the example below.

EXAMPLE: Consider two objects O1 with two AUs and object O2 with one AU with

duration on channel, d, and decoding time stamp, T given as a set of tuples <d,T>. O1

={<7,7>, <10, 21>} and O2 = {<5, 6>}. After A1 2() is scheduled, at time T s
1 2() = 11,

nothing can be scheduled between T d
1 1() = 7 and current time i=11 resulting in a gap

d1(1)=7 d1(2)=10 d2(1)=5

 T d
1 2 21() �

0

gap

 T d
2 1 6() �

 T d
1 1 7() �

Figure 4.5. Applying FullSched to a two-object Presentation

 T s
1 2 11() � T d

1 1 0() � T d
2 1 5() � �

86

on the channel. A negative value of the send time indicates that the AU has to be

transmitted before the presentation starts giving rise to a startup delay.

When S becomes empty, i.e., all AUs are scheduled, a negative value of i indicates

the required startup delay for the presentation and G gives the set of gaps on the

channel. Since the decoding times, T kj () , are all non-negative, once i becomes

negative, there are no gaps on the channel indicating that the AUs are tightly packed.

A gap is not an indication of the sub-optimality of the schedule. However, it may

indicate the sub-optimality of the bandwidth-optimized schedule; i.e, it may be

possible to schedule the presentation at a lower bandwidth. When N=1, this algorithm

can be used to determine the schedulability of individual objects and determine the

un-schedulability of a presentation. This is especially useful during the content

creation process where objects are added to create presentations. When an object is

added during an editing operation, it is faster to determine the un-schedulability of a

presentation by computing the independent schedules of objects and adding the

startup delays of the independent schedules. However, a full schedule should still be

computed after the editing operations to determine the schedulability of the

presentation under given resource constraints. This algorithm is not efficient in

computing the schedulability during the content creation process, as the full schedule

needs to be re-computed every time an object is added. We next present a gap-

scheduling algorithm that computes incremental schedules to determine the

schedulability of a presentation and is well suited for the content creation process. We

87

also prove that FullSched and gap-scheduling algorithm compute startup delay

optimal schedules.

Theorem 3: Algorithm FullSched produces a startup delay-optimal

schedule.

Proof: The algorithm selects an AU with the latest decoding time and schedules

it as close to the deadline as possible. i.e., the algorithm schedules the AUs in

non-increasing order of their decoding times. On a conceptual timeline, with

time increasing from left to right, we are stacking the AUs as much to the right

as possible. Gaps occur only when there is nothing to be scheduled in that gap.

Any (or part of) AUs that appear to the left of the origin (time = 0) give the

startup delay. Since the algorithm always moves the AUs to the right whenever

possible, the startup delay is minimized. A smaller startup delay is not possible

because, it would mean moving the AUs to the right implying that there is a

usable gap on the channel. This cannot be the case because the algorithm

would have scheduled an AU in that gap!

4.5.2 The GapSched Algorithm

The gap-scheduling (GapSched) algorithm schedules AUs in the available gaps on a

channel. It starts with available gaps on a channel and tries to fit an access unit or a

partial AU using the SplitAndSchedule procedure. The initial set of gaps may

be obtained by using FullSched to schedule a single object. The algorithm looks for

the first available gap starting at a time less than the decoding time of the AU to be

scheduled. Since G is already sorted in the decreasing order of gap-times, the look up

can be done very efficiently. If the gap duration is not long enough to fit an AU, the

AU is split, with one part scheduled in the current gap and the other added to S to be

88

scheduled next. The AUs in the presentation are iteratively scheduled until S becomes

empty.

S contains all the AU of the object j

S A k k n j Nj j� � � �{ ()}, , { } 1

Sort AUs in S in the decreasing order of their decoding times

G � �set of available slots { }� .

G(l), is the l th tuple in G with start time G(l).t and duration G(l).d.

k n j�

BEGIN

 while ()S � � {

 find a slot l, G(l), such that T k G l tj
d () � ().

 if G l d d kj((). ())
 {

 T k G l t d kj
s

j() (). ()� � //send time for A kj ()

 k--;

 // update the gap

 if G l d d kj((). ())� � 0

 G l d G l d d kj (). (). ()� �

 else

 G G l � � { ()};

 // remove AU from the set

 S A kj� � ();

 }

 else{

 PROCEDURE SplitAndSchedule (A kj () ,G(l));

 }

 }

END

89

Split the AU into two parts, one part that is scheduled in G(l) and the other that is

placed back in S.

PROCEDURE SplitAndSchedule (A kj () ,G(l)){

Create a sub - AU of length containing the last bytes of the AU

G l d G l d C

t k G l t

d k d k G l d

G G l

j

j j

(). (). *

() (). ;

() () (). ;

{ ()};

’ �

� �
� �

}

4.5.3 The IncSched Algorithm

The incremental scheduling (IncSched) algorithm computes the schedule for a

presentation by considering one object at a time. This is a typical content creation

scenario where objects are composed to create a presentation. Instead of re-computing

the full schedule with FullSched algorithm each time an object is added, this

algorithm computes the schedules incrementally by scheduling the AU in the

available gaps. Note that not all the gaps are schedulable. A gap is un-schedulable if

there are no AUs with decoding times greater than the gap time. An un-schedulable

gap indicates unused bandwidth, which is either due to the structure of the

presentation or due to a sub-optimal schedule. The IncSched algorithm uses

FullSched and GapSched algorithms to schedule a presentation. This algorithm

appears to be more efficient than FullSched as it schedules parts of AUs and fills all

the gaps. However, this is only as efficient as FullSched as far as startup delay is

concerned. Splitting the AUs in order to pack the gaps is not going to decrease the

startup delay, as the available channel capacity is the same. The startup delay, like in

other cases, is given by the send-time of the first AU transmitted.

90

OBJ is the set of objects in the presentation.

BEGIN

Apply FullSched and compute schedule for object 1.

//LRG is a sufficiently large number to accommodate startup delay.

 G LRG i LRG 	 � � � � �{ , }

 for j OBJ� � { }1 , apply gap scheduling GS to j.

 for j OBJ� , find t first , the send time of the first AU to be transmitted

(smallest t kj ())

 if Tfirst
s � 0

 then T Ts first
s�

 T k T j kj
d

s() , , 	 � �

END

Theorem 4: The IncSched algorithm is startup delay-optimal.

Proof: The first object is scheduled using FullSched producing a startup delay-

optimal schedule for that object. GapSched, when applied iteratively to the

remaining objects, packs the AUs tightly; i.e., an access unit is scheduled if the

gap time is less than the decoding time for that AU. The resulting startup delay

is optimal because the algorithm would reduce the startup delay by moving the

AU to the right on the timeline if any schedulable gap is available.

91

EXAMPLE: Consider two objects O1 with two AUs and object O2 with one AU with

duration on channel, d, and decoding time stamp, T given as a set of tuples <d,T>. O1

={<7,7>, <10, 21>} and O2 = {<5, 6>}. The top part of the Figure 4.6 shows the

schedule computed using FullSched and the bottom half shows the schedule

computed with IS, with object 2 scheduled first using FullSched. The figure also

shows un-schedulable gaps in both the schedules.d

There may be cases where splitting the AUs is necessary, for example, the underlying

transport layer may not be able to handle large AUs. This result shows that AUs can

be split while maintaining the optimality of the schedule. Although the IncSched

algorithm produces an optimal schedule and is useful in determining the

schedulability of a presentation in applications such as content creation, the schedule

generated by FullSched may be more efficient when the overhead due to splitting and

packetizing is significant.

d1(1)=7 d1(2)=10 d2(1)=5

0

Split A1 (1)

d1(2)=10 d2(1)=5

0

Startup delay = 5 Un-usable gaps

Figure 4.6. Schedules Computed Using FullSched and IncSched

 T d
1 2 21() � T d

1 1 7() �

 T d
2 1 6() �

92

4.5.4 Algorithm MinC

In scheduling audio-visual objects, we have so far answered two questions: 1) is the

given presentation schedulable under the given resource constraints and 2) what is the

minimum startup delay required for this presentation. If the answer to question 1 is

negative (or if bandwidth consumption needs to be minimized), the question we need

to address is: what are the minimum amounts of resources required to schedule the

presentation. Since we cannot make assumptions about decoder buffers in order to

keep the schedules player-independent, the only resource that can be acquired is the

bandwidth (C). We next present the MinC algorithm that computes the minimum

bandwidth required (CBR) to schedule a presentation.

This algorithm is based on the premise that there is a gap on the channel only when

everything else after the gap-time has been scheduled. Otherwise an un-scheduled

AU would have taken up the gap. The presentation is not schedulable because there is

not enough channel capacity until the first gap time, Tg (smallest gap time). Consider

the case in Figure 4.7. Tg is the first gap-time, Ts
max, is the maximum allowable startup

delay with the current channel capacity, and Ts is the current start-up dealy. The

channel capacity should be increased to accommodate Ts -Ts
max in the duration Tg -

Ts
max. The new value of C then is C T T T T T T Cg s s s g snew � 	 	 � 	(() ()) / () *max . The

 Ts max 0 Ts

Scheduled AUs

 Tg Tlast

Figure 4.7. First gap-time and startup delay of a presentation

93

algorithm also outputs the bandwidth profile (BP) for the presentation in the form of

3-tuples <capacity, start, end>. Note that the increased channel capacity is not going

to affect the schedule from Tg to Tlast. A finer bandwidth profile can be obtained by

initializing C with Cmin and increasing C by a small value in each iteration.

BEGIN

 G Gc � = gap count, number of gaps on the channel.

 BP � { }�

 Tlast is the decoding time of the first AU scheduled (= duration of the

presentation)

 C = Cmin, computed using the results of theorem 2.

SCHEDULE: compute schedule using FullSched

If schedulable goto END

if (Gc == 0)

 Tg = Tlast

else {

 Tg-old = Tg

 Find the smallest gap time, Tg

 BP += {<C, Tg, Tg-old >}

}

C T T T T T T Cg s s s g s � 	 	 � 	(() ()) / () *max

goto: SCHEDULE

END

The channel capacity output by the algorithm is in the form of a set of 3-tuples

forming a bandwidth profile. The minimum CBR channel required is given by the

maximum value of C in the bandwidth profile. This profile may also be used to

reserve session bandwidth efficiently. Since the schedule is computed from last to

first (right-to-left on the timeline), the bandwidth profile will always be a step

94

function with possible steps (decreasing) from left to right. Figure 8 shows some

sample profiles. This algorithm does not give the best profile to reserve variable

session bandwidth since the algorithm does not reduce the bandwidth when it is

unused. Consider the example shown in the Figure 4.8. At Tg, a capacity increase is

necessary. Suppose the increase in C at Tg is sufficient to schedule the presentation. It

is possible that the presentation from 0 to Tb could have been scheduled with a much

smaller capacity.

4.5.5 Algorithm BestSched

When a presentation cannot be scheduled with the given resources, and additional

resources cannot be acquired, the only way to schedule the presentation is to drop

some access units. AUs cannot be dropped arbitrarily as they have different effects on

the presentation. Content creators should assign priorities to objects and possibly AUs

of objects to help a scheduler in determining the AUs to be dropped. The following

algorithm schedules a presentation by dropping lower priority objects.

BEGIN

SCHEDULE: Compute schedule using FullSched.

 if (B <= Ts * C) {

 Remove A kj ()of lower priority objects such that,

 R A k d k T C Bj j s� �
 ��{ ()} () * C *

0 Tlast Tg Tb

Figure 4.8. Typical shapes of bandwidth usage generated by MinC

95

 A R � � { }

 goto: SCHEDULE

 }

END

4.6 Discussion and Results

Determining the schedulability of a presentation is of O(n) complexity, where n is the

number of AUs in the presentation. Both FullSched and GapSched fall under this

category. These algorithms are used to determine the schedulability, compute an

optimal startup delay for the given channel capacity, and for computing incremental

schedules. The MinC algorithm, used to compute the minimum channel capacity

required to schedule the presentation, calls FullSched iteratively with channel

capacity incremented in each iteration. The number of iterations depends on the

structure of the presentation and the initial value of C. The complexity of this

algorithm is O(Kn) = O(n), where K is a constant determined by the structure of the

presentation and the initial channel capacity. The proposed algorithms are fast enough

to determine the schedulability of the presentations in real-time.

I1

I2

I3

I4

S1

O1

I5

I6

I7

I8

I9
I10

I11

I12

0
10 15 16 122

Time in seconds

Figure 4.9. Structure of the presentation in the example

80

96

The structure of the presentation has significant impact on the performance of MinC

algorithm. To aid the discussion, we consider a relatively complex MPEG-4

presentation with structural overview as shown in Figure 4.9. The properties of the

objects in the presentation are tabulated in Table 4.1.

Table 4.1: Properties of objects in the example

Object

FileName (ID)

Size (KB) Start
Time

AU
Count

Scene.od (O1) 0.5 0 1

Scene.bif (S1) 1 (1025 Bytes) 0 4

Main1.jpg (I1) 25 0 1

Main2.jpg (I2) 22 0 1

Main3.jpg (I3) 19 0 1

Main4.jpg (I4) 20 0 1

main_ui.jpg (I5) 39 10 1

Advent_logo.jpg (I6) 7 10 1

CU_logo.jpg (I7) 9 10 1

Lm_logo.jpg (I8) 6 10 1

Xbind_logo.jpg (I9) 8 10 1

geo_pict.jpg (I10) 23 15 11

dance_pict.jpg (I11) 29 15 1

next_page.jpg (I12) 51 16 1

clip01.h263 (V1) 552 16 974

clip01.g723 (A1) 64 16 3233

In the following discussion we refer to objects by the codes shown in the first column

of the table. The presentation is made up of 16 objects including scene description,

object description, images, audio, and video. The presentation is composed of three

scenes. Before the scenes are loaded, the scene description and object description

97

streams are received and decoded by the terminal. The first scene consists of four

jpeg images (I1 - I4) animated to give a breakout effect. The scene is encoded to

animate the images for 10 seconds and then load the second scene. The second scene

consists of a background image (I5), four logos with animation effects (I6 - I9), and

two images (I10 and I11) with descriptive text of the following audio-visual scene.

The last scene consists of a background image, an audio stream, and a video stream.

The temporal layout of the presentation is shown in Figure 4.9. The times indicated

are the decoding times of the first AUs of the objects starting at that time. Thus the

first four images (I1-I4), the scene description (S1) and the object descriptor stream

(O1) should reach the decoder before anything is displayed on the screen. This

amounts to the minimum startup delay for the presentation. The objects I5 - I9 should

reach the decoder by the time t = 10, I10 and I11 by 15, and the first AU of V1 and

A1, and the object I12 should reach the terminal by the time t = 16. The video ends at

t = 80 while the audio stream continues until the end of the presentation. The total

length of the presentation is 122 seconds. This temporal ordering of objects in the

presentation results in higher data rates toward the beginning of the presentation

(object data to be delivered in the first 16 seconds: 261 KB ~= 130 Kbps).

4.7 Startup Delay and Capacity Computation

Figure 4.10 shows the plot of the minimum channel capacity required for a given

startup delay. This is a scenario with variable buffer at the terminal. We assume a

work-conserving transport layer that delivers the objects at the minimum required

capacity. The amount of buffer available at the terminal should be at least sufficient

to store the data during the startup. For a startup delay of Ts , if Cmin is the min

98

Figure 4.10. Computing min capacity using MinC

capacity required, then the buffer at the terminal B T Csmin min� � . This curve is useful

to determine the amount of buffer (delay) required based on the available network

capacity, especially with terminals such as PCs with sufficient memory. As

mentioned earlier in the discussion of the MinC algorithm, the MinC algorithm also

computes the bandwidth profile for presentations. Figure 4.11 shows the bandwidth

profile computed for a startup delay of 5 seconds. The minimum capacity in the

profile is 59 Kbps even for the segment (80 - 120 secs) that only has low bit rate

audio (6 Kbps). This is because MinC starts with an initial value of C computed using

the residual data volume as described in Section 4.4. This starting point is acceptable

for computing a CBR channel required; for a profile to be used in reserving variable

network resources, a lower initial value of C should be selected. The final bandwidth

jump in the profile gives the minimum channel capacity required for the given delay

or buffer.

Channel capacity for given startup delay

50

250

450

650

850

1050

1250

50
0

10
00

15
00

20
00

25
00

30
00

40
00

60
00

70
00

80
00

10
00

0

12
00

0

18
00

0

25
00

0

30
00

0

Startup delay (msec)

C
ha

nn
el

 C
ap

ac
it

y
(K

bp
s)

99

Figure 4.11. Computing the bandwidth profile using MinC

Bandwidth profile given startup delay (5000 ms)

135

79 75

59
50

70

90

110

130

150

16000 79162 80086 122656

Time (msec)

C
h
an

n
el

 C
ap

ac
it

y
 (
K

b
p
s)

4.8 Buffer and Capacity Computation

The available buffer at the terminal determines the amount of startup delay a terminal

can support. The available channel capacity imposes a lower limit on the buffer

required. Lower channel capacity implies higher startup delays and hence larger

required buffer. Figure 4.13 gives the required buffer at various channel capacities.

This can be directly converted to the startup delay at that capacity. Computing the

capacity for a given buffer is bit more computationally intensive. Unlike the previous

case where we assumed enough capacity to support the required startup delay, the

buffer capacity is fixed in this case. This typically the scenario when using dedicated

devices such as set-top-boxed with fixed receiving buffers. Since the buffer is fixed,

the supported startup delay decreases as channel capacity increases. For MinC

algorithm to complete, the reduction in startup delay due to increased channel

capacity should be greater than the reduction in startup delay supported by the buffer.

100

Figure 4.12. Minimum required buffer

Figure 4.13. Min Capacity for a given buffer

Min buffer for given channel capacity

75

150

225

300

375

450

525

600

28 33 40 45 50 56 64 128

Channel Capacity (Kbps)

M
in

 B
uf

fe
r

(K
B

yt
es

)

Min capacity for given buffer

50

60

70

80

90

100

90 100 130 150 200

Min Buffer (KBytes)

C
ha

nn
el

 C
ap

ac
it

y
(K

bp
s)

Figure 4.14 shows a case with terminal buffer � Bmin . For the given presentation,

B KBmin � 85 , the size of objects to be decoded at time 0. As discussed in Section 4.4,

for a presentation to be schedulable, the available buffer should be greater than Bmin ,

the lower bound on the required buffer capacity for the presentation. Since the

terminal buffer is less than the required buffer, at any given capacity C, the supported

startup delay
B

C

B

C
term � min , the required startup-delay. The presentation is hence un-

schedulable with terminal buffer capacity of 84 KB. This is depicted in Figure 4.14,

101

Figure 4.14. Partial profile for low terminal buffer

which shows the presentation is un-schedulable even at 3323 Kbps. The plot shows

that no matter how much the channel capacity is increased, the presentation cannot be

scheduled because of limited terminal buffer. To avoid infinite loops in MinC, the

scheduler should first examine the available and required buffer capacities.

Bandwidth profile given buffer capacity (84K < Bmin)

3323

79 75 5950

550

1050

1550

2050

2550

3050

3550

16000 79162 80086 122656

Time (msec)

C
h
an

n
el

 C
ap

ac
it

y
 (
K

b
p
s)

4.9 Conclusion

We presented the problem of scheduling audio-visual objects under resource

constraints. The problem is ��-complete in the strong sense. We explored

similarities with the problem of sequencing jobs on a single machine and used the

idea of last-to-first scheduling to develop heuristic algorithms to determine

schedulability and compute startup delay-optimal schedules. We introduced the

notion of residual data volume to compute lower bounds on buffer, channel capacity

and startup delay. Determining the schedulability of presentations online is important

for applications like content creation where an additional object may make the

presentation un-schedulable. We presented an algorithm that computes incremental

schedules and produces a startup delay optimal schedule. Starting with a lower bound

102

on the channel capacity for scheduling a presentation, the MinC algorithms minimizes

the CBR channel capacity required to schedule the presentation. The proposed

algorithms are of low complexity and can be implemented efficiently.

103

Chapter 5

Scheduling Interactive AV Presentations

5.1 Introduction

Interactivity in the context of audio-visual presentations suggests the features

enabling the users to interact with the presentation. In the case of object-based

presentations, this includes user interaction with individual objects and interaction

among the objects themselves. Interaction with the objects in a presentation results in

events that may alter the presentation or may just process some information without

affecting the objects in the presentation. These events can be synchronous, happening

at a predetermined time or asynchronous, happening anytime, usually within a time

window during a presentation. Synchronous events can be classified into two types:

certain events, happening at a predetermined time, and user events, happening at a

predetermined time but only if the user interacts with an object (e.g., user interaction

changing the ending of a movie). Asynchronous events, as the name indicates, happen

when a user interacts with the objects and hence timing of such events is not known

until the event happens. Of significance to the delivery-scheduling problem are the

events that alter the presentation by adding and removing objects.

AV Object
SERVER

User
Terminal

User interaction messages

AV Objects

Session with reserved resources

Figure 5.1. Message Exchange in User Interaction

104

Figure 5.1 shows the exchange of messages in interactive audio-visual presentations.

If an event results in the addition of objects to a presentation, new resources will be

required in order to schedule the altered presentation. A new schedule is needed only

when the objects are added to a presentation. When objects are removed from a

presentation, it does not affect the rest of the schedule, however rescheduling may

save some network resources.

When a user is presented with a choice to interact with the presentation, the number

of objects delivered changes only when the user chooses to interact with the

presentation; i.e., for every possible user event, there are two possible schedules.

With each event resulting in an altered schedule, the possible number of schedules

grows exponentially with the number of events (2n). A brute-force way of

determining the schedulability by computing the feasibility of each of these schedules

becomes impractical as the number of events grows. Figure 5.2 shows the exponential

growth in the number of possible schedules due to user events. Consider the case

depicted in Figure 5.3. When an event e1 happens, the objects are scheduled

according to the schedule S12 and scheduled according to the schedule S11 if the event

does not happen. It is easy to see that the options increase exponentially with the

number of events (2n, where n is the number of events). To determine the

schedulability of interactive presentations, we have to examine if the presentation is

schedulable under all the possible combination of events. The events have to be

analyzed with respect to the resources required to support the events and the

resources available when the events happen. To make the problem of determining the

105

schedulability of interactive presentations tractable, a presentation can be viewed as

consisting of a core and an interactive component. The core component of the

presentation contains objects that are delivered synchronously while the interactive

component contains objects that may be added/removed upon user interaction. To

determine the schedulability of a presentation, we can compute the schedulability of

the core presentation and the interactive components of the presentation separately.

Typically events happen within specific time windows during a presentation. These

event windows are designed by a content creator during the content creation process.

Figure 5.3 shows the event window, the start time TS, and the end time TE, for an

event that adds an object of duration D. Since the event that adds objects to a

presentation can happen anytime from TS to TE, the object playout could start as early

as TS and last as long as TE + D. The time interval [TS, TE +D] is referred to as the

event extent. The resources required to satisfy an event should be reserved at least

until the end of the event window and can be released at the end of the event window

if the event doesn’t happen. For overlapping extents, it is not possible to compute the

S11

S0

S12

Si2 Si1 Si3 Si2
i

Sk2 Sk1 Sk3 Sk2
k

S22 S21 S23 S24

e

e

e

e

events

Figure 5.2. Possible Schedules as a Result of User Events

106

schedules of the objects together without knowing when the events are going to

happen. If there are two or more possible events overlapping in time, the resources

required to complete the events should be computed separately. Since non-

overlapping events could use the same channel bandwidth, all the events should be

considered when computing the amount of capacity required for the interactive

component. Furthermore, if the required capacity is computed using MinC algorithm,

the capacity cannot be reserved according to the resulting bandwidth profile since

there is no way of determining when the event happens. The channel capacity

required to complete an event is the CBR channel required for the objects involved. A

combined object schedule for the objects added because of interaction should be

computed only for those objects that are added as a result of the same event. Even

though reserving resources that may not be used seems unreasonable, there is no other

way to guarantee proper response to events in interactive presentations. The

algorithms presented in the next section minimize the auxiliary capacity required to

support interactive presentations.

5.2 Event Specification

We specify an event as a 4-tuple < , , >T T D OS E, � . TS and TE are the beginning

and end of the time window during which the event may happen, D is the duration of

Object with playout duration D

Event Window

TS TE

Figure 5.3. Event Window and Event Extent

Event Extent

TE
 *

107

the object added (0 if removed), and O is the object list with + indicating addition and

- indicating removal of the object. With this notation, we can represent interactive

audio-visual presentations as two sets of such 4-tuples, one with certain events

corresponding to the objects in the core presentation (with TS = TE) and the other is

the interactive component of the presentation, corresponding to the objects that are

added or removed as a result of user interaction. An interactive presentation is

schedulable only if the core and the interactive components are schedulable. We can

determine the schedulability of the core and the interactive components of a

presentation separately using the algorithms presented in Chapter 4. We also need

algorithms that consider the event overlap and compute the minimum capacity

required to support the interactive component.

To support user interaction that involves adding objects to a presentation, it would be

necessary to reserve some channel capacity to support anticipated user interaction.

The issue here is to determine the minimum channel capacity required to support user

events. It is necessary to compute the capacity required to complete each event

separately for cases where only some of the events are supported because of resource

constraints.

5.3 The MinC-I Algorithm

The algorithm MinC-I computes the minimum capacity necessary for the interactive

component of a presentation. The algorithm first computes the minimum capacity

required for each of the events separately using the MinC algorithm. In the next step,

the algorithm finds non-overlapping time segments and the capacity required for each

108

of the segments. The event extents are linearized into a sequence of start-times and

end-times of segments in a non-decreasing order. The set I contains 3-tuples, each

formed with a start-time or an end-time, a boolean value indicating if the time is an

end-time, and the channel capacity required for the event the 3-tuple belongs to. The

elements of I are now 3-tuples <T, B, C>, where T is the start time or end time, the

boolean B is true if the time is an end time of a an event, and C is the capacity

required for that event. SEG is a set of 3-tuples, each 3-tuple representing a time

segment with start-time, end-time and channel capacity for that segment. < TS, TE, C>.

In each iteration, the next non-overlapping segment and the channel capacity required

are computed. Since the segments are non-overlapping, the largest capacity segment

gives the maximum capacity required to support the interactive presentation. The

operation of the algorithm is illustrated in the example following the algorithm.

S is the set of 4-tuples representing the interactive component of a presentation

resulting in object additions

S i() is the ith 4-tuple of the set.

BEGIN

 // find the min C required for each event

 while()S � � {

 MinC (())S i ;

 S S i � � () ;

 i++;

 }

109

 //for every non-overlapping segments on the channel

//find SEG(i).<st, et, C>

N I

C

C

prev

�
�
�

;

;

;max

0

0

 for (; ;)i i N i� � 	 	0 {

if i

SEG i et I i t

SEG i st I i t

if I i t

C I i C

SEG i C C

else

SEG i C C I i C

C SEG i C

if C SEG i C

C SEG i C

prev

prev

prev

prev

(){

(){

;

;

{

;

;

()

;
max

max

�

� �

	

�
�
�

0

1 (-). = (). ;

(). = (). ;

().e

 ().

 (). =

 (). = ().

().

().

 ().

}

END

EXAMPLE: The example shows 5 event extents (start-time until the latest possible end

time). The capacity required for each of the events is C ii , 1 5� � . The start-time and

end-time of the events are st et ii i, , 1 5� � .

I st F C st F C et T C et T C st F C

st F C et T C et T C st F C et T C

� � � � � � � � � � �
� � � � � � � � �

{ , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , }
1 1 2 2 1 1 2 2 3 3

4 4 4 4 3 3 5 5 5 5 <

110

The table shows the segments and the channel capacity for each segment. Note that

the algorithm outputs spurious segments of zero length, segments with same start-

time and end-time (marked with an * in the table). Such segments are discarded.

Table 5.1: Example of the MinC-I Algorithm

SEG(i) ST ET C

1 st1 st2 C1

2 st2 et1 C1 +C2

3 et1 et2 *C2

4 et2 st3 0

5 st3 st4 *C3

6 st4 et4 C3 +C4

7 et4 et3 C3

8 et3 st5 *0

9 st51 et5 C5

5.4 Dynamic Scheduling and Resource Re-negotiation

When objects are added to or removed from a presentation, the channel capacity

needed for the presentation changes. For additions, additional capacity should be

acquired and for deletions channel capacity can be released. Additional channel

capacity may not be available when an object is added to a presentation. In order to

guarantee the support for interactive presentations, additional channel capacity

required for added objects should be reserved at the beginning of the presentation.

However, for objects that are deleted form a presentation, excess capacity can be

1

2

3

4 5

Figure 5.4. Interactive components of a
presentation showing the event extents and

event numbers

111

released upon user interaction. The capacity to be released depends on the structure of

the objects in the presentation and the structure of the presentation itself.

Theorem 5: C C j Nj
j

� � �� 1 , i.e., the capacity required to schedule a

set of objects together is at most equal to the sum of the capacities required to

schedule the objects individually.

Proof: Consider the worst case, C C j
j

� � , this is apparently true since C can

be split into N separate channels to schedule the presentation. When the objects

are scheduled together any gaps on the channel when an object is scheduled

individually may be used for scheduling other objects thus reducing the

capacity required when scheduling the objects together. This result is useful in

releasing resources when objects are removed upon user interaction.

This result cannot be used to release resources in generic object-based presentations.

Specifically, this result is useful only when the objects involved are periodic audio-

visual objects (such as audio and video). Consider the case depicted in Figure 5.5.

Suppose that the structure of object 1 is such that, it does not have any access units to

be scheduled during the period when object 2 and object 3 overlap. During that period,

only objects 2 and 3 occupy the channel. The resulting presentation has a structure

that results in a channel capacity roughly equal to the capacity required to deliver 2

Obj 2
Obj 3

Obj 1

t

Figure 5.5. Overlapping events

112

objects. Further suppose that user interaction results in the removal of object 2 at time

t. Upon such a user event, the capacity cannot be reduced by an amount

corresponding to object 2 as it will render the remaining presentation un-schedulable.

When objects are removed from a presentation, the channel capacity cannot always

be reduced by releasing resources. The way resources are consumed is completely

dependent on the structure of the objects and time-relationships among objects.

Theorem 5 can be applied to reduce the reserved channel capacity only when the

objects involved are continuous and periodic media streams. A server’s response to

user interaction, in terms of renegotiating the channel capacity, thus becomes content

dependent.

For continuous media objects that are removed as a result of user interaction, the

unused channel capacity can be released. The send-time of the remaining AUs should

be updated to reflect the new reduced channel capacity. Algorithm AdjustSchedule,

given below, re-computes the send time to reflect the changes.

5.5 Algorithm AdjustSchedule

Object k is removed from the presentation because of user interaction.

C = current channel capacity

Ck = channel capacity required to schedule object k.

C C Ck
’ � � = reduced channel capacity

n is the total number of AUs (from all objects) in the presentation. The AU are

indexed in the increasing order of their send times.

113

m is the index of the first AU to be scheduled after removing object k.

BEGIN

 T T S Cn
s

n
d

n� � / ’

while n m

if T AU k

T T S C T S C

else

remove the AU from the schedule

n

n
s

n
s

n
d

n n
d

n

(){

(,){

max{ / , } / ;’ ’

�

�

� 	 �

-

- - -

--

 (

 } {

 ;

 }

 ;

1

1 1 1

END

Starting with the last AU to be scheduled, the algorithm adjusts the send time of the

AUs. Since the AUs are already scheduled in the order of their decoding times, we

traverse the schedule from the last to the current AU. If the AU belongs to the deleted

object, it is removed from the schedule.

5.6 Content Creation

Creating object-based audio-visual presentations is not as straightforward as creating

MPEG-2 content for TV broadcasting. The features of object-based presentations

allow the creation of content that varies in complexity. The content can be as simple

as multiplexed audio and video (e.g., MPEG-2 audio and video multiplex) or as

complex as a presentation composed of a large number of objects of different types

with dynamically changing scenes and user interaction. The complexity of object-

based presentations cannot be characterized by a single bitrate. The complexity of a

114

presentation depends on the number of objects in the presentation, the type of objects,

and dynamic object addition and deletion due to user interactivity.

One important consideration during content creation is the suitability of content for

delivery over networks with different capacities and to terminals with different

resources. During the content creation process, authors should specify alternative

representations for objects so that the servers can deliver appropriate objects based on

feedback from the terminals and the network. Determining the alternative

representations for presentations dynamically is a difficult problem especially when

considering both terminal and network resources. Content creators need the feedback

from the scheduler during authoring in order to specify alternative representations for

objects and/or their composition in order to make the presentation schedulable under

different resource constraints. An un-schedulable presentation can be made

schedulable by removing/replacing certain objects or by decreasing an object’s size

(e.g., by decreasing the resolution) or by changing the object playout, i.e., the times

when an object enters and leaves a scene. Assigning priorities to objects and access

units for servers to drop certain objects and/or access units to deliver the presentation

under resource constraints. The content creator is in the best position to assign

priorities so that the integrity of the presentation does not suffer when objects are

dropped.

When creating interactive presentations, the core and interactive components should

be created as independent components with interactive component only enhancing the

115

core component. This separable design of interactive presentations does not force

users to interact with the presentation. Furthermore, when interactive component

cannot be delivered because of low network or terminal resources, the presentation

will still be meaningful to the user.

5.7 Conclusion

We presented the problem of scheduling interactive audio-visual presentations under

resource constraints and discussed the issues in delivering such presentations. User

interaction may result in asynchronous or synchronous events. The events that affect

the delivery are those events that add or delete objects in a scene. While adding

requires more resources, both network and server resources, deleting objects reduces

resource consumption. Since it may not be possible to acquire resources during a

session, resources must be reserved during session setup to support user interaction

that results in object addition. We introduced a notation to represent interactive

presentations in terms of its core and interactive components. This allows us to

determine the schedulability of core and interactive components separately. For the

interactive component, we compute the resources required to complete each event. In

the face of resource scarcity, only the most important events or the events that can be

supported with the available auxiliary capacity can be supported. We presented

algorithms to compute the additional capacity required for interactive events that

result in object addition and to compute the amount of resources that can be released

when objects are deleted.

116

Chapter 6

Conclusions and Future Work

We presented our work in the area of audio-visual communications. Our contributions

follow the natural evolution of audio-visual services from delivering digital audio-

visual content to delivering object-based audio-visual services. Our initial

contributions in this area are toward the development of Columbia’s VoD testbed. The

key contributions made are the design of the application server for VoD services,

distributed video pump, application signaling, adapting the system for browser-based

clients, and contributions toward the development of DAVIC standards by means of

proof of concept implementations and interoperability experiments.

We designed the application server by separating the resource intensive audio-visual

content delivery from data and service delivery using. These well-defined interfaces

and their implementation using CORBA is essential for localizing bandwidth

intensive video traffic to network segments. With streaming media over the Internet

becoming more common, traffic localization together with congestion control

mechanisms is necessary to prevent congestion collapse in networks. We designed the

server interfaces to support different client platforms with the same server. We

showed that implementation and experimentation is essential to standardizing systems

with a very broad scope such as DAVIC.

117

The natural extension of our work in audio-visual services is object-based audio-

visual services that allow a finer grain of control on the delivery and presentation of

audio-visual content. We contributed to the development of MPEG-4 Systems which

specifies tools for representing object-based audio-visual presentations. Our

contributions to the development of the MPEG-4 Systems standard are in the areas of

bitstream design, terminal architecture, user interaction framework, and file format.

We designed the bitstream architecture based on the premise of separating meta-data

from the media data and hierarchical representation of object-based presentations.

The bitstream is also designed to dynamically update the scenes using composition

updates, node addition, and node deletion. We proposed the original architecture for

user interaction and file format in MPEG-4 Systems. Even though the final form of

these components in the MPEG-4 standard differ from the proposed versions, the

contributions formed the underlying basis and helped in the final definition of the

MPEG-4 Systems specification.

We continued our work on object-based audio-visual services by considering the

implications of object-based representation on scheduling and delivery over networks.

The structure and nature of an MPEG-4 presentation determines the complexity of the

content both for delivery and presentation. We presented the problem of scheduling

audio-visual objects under resource constraints. We showed that the problem is NP-

complete in the strong sense. We explored similarities with the problem of

sequencing jobs on a single machine and used the idea of last-to-first scheduling to

develop heuristic algorithms to determine schedulability and compute startup delay-

118

optimal schedules. We introduced the notion of residual data volume to compute

lower bounds on buffer, channel capacity and startup delay. Determining the

schedulability of presentations online is important for applications like content

creation where an additional object may make the presentation un-schedulable. We

presented an algorithm that computes incremental schedules and produces a startup

delay optimal schedule. Starting with a lower bound on the channel capacity for

scheduling a presentation, the MinC algorithm minimizes the CBR channel capacity

required to schedule the presentation. The proposed algorithms are of low complexity

and can be implemented efficiently.

We also discussed the issues in delivering interactive audio-visual presentations. User

interaction may result in asynchronous or synchronous events. The events that affect

the delivery are those events that add or delete objects in a scene. While adding

requires more resources (both network and server), deleting objects reduces resource

consumption. Since it may not be possible to acquire resources during a session,

resources must be reserved during session setup to support user interaction that results

in object addition. We introduced a notation to represent interactive presentations in

terms of their core and interactive components. This allows us to determine the

schedulability of core and interactive components separately. For the interactive

component, we compute the resources required to complete each event. In the face of

resource scarcity, only the most important events or the events that can be supported

with the available auxiliary capacity can be supported. We presented algorithms to

compute the additional capacity required for interactive events that result in object

119

addition and to compute the amount of resources that can be released when objects

are deleted.

The natural extension of this work is delivering object-based presentations to

terminals with varying resources (computational and bandwidth resources). The

MPEG-4 Systems framework has a simple way for a presentation to query terminal

resources. The problem of determining an alternative representation for object-based

presentations is very complex. The alternative representations depend on the type of

the content, type (encoding) of the objects in the content, and the resource availability

at the terminal. The difficult part is finding a representation that does not compromise

the integrity of the content. Content creators can provide general guidelines on

scaling the content and prioritizing the objects in the content. Such guidelines would

be helpful but cannot be exhaustive and cannot cover all the terminal and resource

constraint scenarios. Determining alternative representations dynamically based on

resource availability is a difficult problem but it also has valuable applications.

As object-based content moves to resource constrained specialized devices such as

set-top-boxes and hand-held/mobile devices, resource management on the terminal

becomes critical. The resource management policies would depend on the type and

structure of the content and the device playing back the content. Functionality

provided by the frameworks such as MPEG-J, the Java extensions to MPEG-4

Systems, are required for resource management. With these features, the content

120

delivered to a terminal would now include a Java applet programmed to manage

resources during content playback.

121

References

[1] www.iso.ch, International Organization for Standardization.

[2] OMG – Object Management Group, “Common Object Request Broker: Architecture
and Specification,” CORBA Revision 2.0 (July 1995) (OMG CORBA 2.0)

[3] ISO/IEC/SC29/WG11, “Call for Proposals for the MPEG-4 Intermedia Format,”
N1919, International Organization for Standardization, October 1997.

[4] ISO/IEC/SC29/WG11, “Delivery Multimedia Integration Framework, DMIF (ISO/IEC
14496-6),” International Organization for Standardization, April 1999.

[5] ISO/IEC/SC29/WG11, “Generic Coding of Moving Pictures and Associated Audio
(MPEG-1 Video) ISO/IEC 11172-2,” International Organization for Standardization,
November 1991.

[6] ISO/IEC/SC29/WG11, “Generic Coding of Moving Pictures and Associated Audio
(MPEG-1 Audio) ISO/IEC 11172-3,” International Organization for Standardization,
November 1991.

[7] ISO/IEC/SC29/WG11, “Generic Coding of Moving Pictures and Associated Audio
(MPEG-1 Systems) ISO/IEC 11172-1,” International Organization for Standardization,
November 1991.

[8] ISO/IEC/SC29/WG11, “Generic Coding of Moving Pictures and Associated Audio
(MPEG-4 Systems) - ISO/IEC 14386-1,” International Organization for
Standardization, April 1999.

[9] ISO/IEC/SC29/WG11, “Generic Coding of Moving Pictures and Associated Audio
(MPEG-4 Video) - ISO/IEC 14386-2,” International Organization for Standardization,
April 1999.

[10] ISO/IEC/SC29/WG11, “Generic Coding of Moving Pictures and Associated Audio
(MPEG-2 Video) ISO/IEC 13818-2,” International Organization for Standardization,
November 1994.

[11] ISO/IEC/SC29/WG11, “Generic Coding of Moving Pictures and Associated Audio
(MPEG-2 Audio) ISO/IEC 13818-3,” International Organization for Standardization,
November 1994.

[12] ISO/IEC/SC29/WG11, “Generic Coding of Moving Pictures and Associated Audio
(MPEG-2 Systems) ISO/IEC 13818-1,” International Organization for Standardization,
November 1994.

[13] ISO/IEC/SC29/WG11, “Generic Coding of Moving Pictures and Associated Audio
(DSM-CC)- ISO/IEC 13818-6,” International Organization for Standardization, 1996.

[14] ITU-T, “ITU Recommendation M.3010: Principles for a Telecommunications
Management Network”.

122

[15] ISO/IEC/SC29/WG11, “Requirements for the MPEG-4 Intermedia Format,” N1886,
International Organization for Standardization, October, 1997.

[16] ISO/IEC/SC29/WG11, “Text of ISO/IEC 13818-1/PDAM7,” MPEG document N2664,
March 1999.

[17] ISO/IEC/SC29/WG11, “Verification Model, MPEG-4 Version 2,”
ISO/IEC/SC29/WG11 MPEG98/N2224, International Organization for
Standardization, March 1998.

[18] ISO/IEC/SC29/WG11, “Working Draft, MPEG-4 Version 2,” ISO/IEC/SC29/WG11
MPEG98/N2211, International Organization for Standardization, March 1998.

[19] A. Akhtar, H. Kalva, and A. Eleftheriadis, “Implementation of CommandDescriptor
and CommandDescriptorNode”, Contribution ISO-IEC JTC1/SC29/WG11
MGE99/4431, March 1999, Seoul, Korea (47th MPEG meeting).

[20] O. Avaro, A. Eleftheriadis, C. Herpel, G. Rajan, and L. Ward, “MPEG-4 Systems:
Overview”, Signal Processing: Image Communication, Special Issue on MPEG-4,
1999 (to appear).

[21] A. Basso et. al., “MPEG-4 Integrated Intermedia Format (IIF): Basic Specification,”
ISO/IEC/SC29/WG11 MPEG98/M2978, International Organization for
Standardization, February 1998.

[22] A. Basso et. al., “MPEG-4 Integrated Intermedia Format (IIF): Extension
Specification,” ISO/IEC/SC29/WG11 MPEG98/M2979, International Organization for
Standardization, February 1998.

[23] A. Basso, H. Kalva, A. Puri, A. Eleftheriadis, and R. L. Schmidt, “The MPEG-4 File
Format: An Advanced Multifunctional Standard for New Generation Multimedia
Content”, IEEE Trans. on Circuits and Systems for Video Technology, 1999 (to
appear).

[24] C. Blank, “The FSN challenge: Large-scale interactive television,” IEEE Computer,
Vol. 28, No. 5, May 1995, pp. 9-12.

[25] M. C. Buchanan and P. T. Zellweger, “Scheduling Multimedia Documents Using
Temporal Constraints,” NOSDAV 92, pp. 223-235.

[26] A.T. Campbell and G. Coulson, “A QOS Adaptive Multimedia Transport System:
Design, Implementation and Experiences”, Distributed Systems Engineering Journal,
Special Issue on Quality of Service, Vol. 4, pg. 48-58, April 1997.

[27] A.T. Campbell, G. Coulson, and D. Hutchison, “Transporting QoS Adaptive Flows”,
ACM/Springer Verlag Multimedia Systems Journal , Special Issue on QoS
Architecture, Vol. 6 No. 3, pg. 167-178, May 1998.

[28] J. Carey, “Interactive Television Trails and Marketplace Experiences,” Multimedia
Tools and Applications, Special Issue On Video-on-Demand, Trials, and
Interoperability, Vol. 5, No. 2, Sept. 1997, pp. 207-216.

123

[29] J. Carlier, “The One Machine Sequencing Problem,” European Journal of Operational
Research, No. 11, 1982, pp. 42-47.

[30] T.L. Casvant and J.G. Kuhl, “A Taxonomy of Scheduling in General Purpose
Distributed Computing Systems,” IEEE Transactions on Software Engineering, Vol.
14, No. 2, Feb 1988, pp. 141-154.

[31] Y.-H. Chang et. al., “An open systems approach to video on demand,” IEEE
Communications Magazine, Vol 32, No. 5, May 1994, pp. 68-80.

[32] S.-F. Chang, A. Eleftheriadis, D. Anastassiou, S. Jacobs, H. Kalva, and J. Zamora,
“Columbia's VoD and Multimedia Research Testbed with Heterogeneous Network
Support”, Journal on Multimedia Tools and Applications, Special Issue on Video on
Demand, Kluwer Academic Publishers, Vol. 5, Nr. 2, September 1997, pp. 171-184.

[33] S.-F. Chang, A. Eleftheriadis, and D. Anastassiou, “Development of Columbia's Video
on Demand Testbed”, Signal Processing: Image Communication, Special Issue on
Video on Demand and Interactive Television, Vol. 8, Nr. 3, April 1996, pp. 191-207.

[34] S.-F. Chang, Q. Huang, T. Huang, A. Puri, and B. Shahraray, “Multimedia Search and
retrieval,” in Advances in Multimedia: Systems, Standards, and Networks, A. Puri and
T. Chen (eds.). New York: Marcel Dekker, in press, 1999.

[35] P. Chou et. al., “The MPEG-4 Intermedia Format (MIF) as an Extension of ASF,”
ISO/IEC/SC29/WG11 MPEG98/M2969, International Organization for
Standardization, February 1998.

[36] H.A. Chow, H. Alnuweiri “An FPGA-based transformable coprocessor for MPEG
video processing,” SPIE-Int. Soc. Opt. Eng. Proceedings of SPIE - the International
Society for Optical Engineering, vol.2914, 1996, pp.308-20. USA.

[37] P. Chretienne, E.G. Coffman Jr., J.K. Lenstra, and Z. Liu, editors, “Scheduling Theory
and its Applications,” John Wiley & Sons, 1995.

[38] R. Civanlar, A. Basso, and C. Herpel, “RTP Payload Format for MPEG-4 Streams,”
draft-ietf-avt-rtp-mpeg4-01.txt, Internet Draft, IETF, February 1999.

[39] M. Civanlar, G. Cash, and B. Haskell, “RTP Payload Format for Bundled MPEG,”
RFC 2343, The IETF, May 1998.

[40] Apple Computer , “Bento Specification,” Bento Specification Revision 1.0d5, July 15,
1993.

[41] Apple Computer Corp, “Quicktime Specification,” May 1996.

[42] R.W. Conway, W.L. Maxwell, and L.W. Miller, “Theory of Scheduling,” Addison-
Wesley Publishing Company, 1967.

[43] Microsoft Corporation, “ASF Specification,” February 1998.

[44] D. Crocker, “To be on the Internet,” RFC 1775, IETF, March 1995.

124

[45] XDMIF demo software, http://www.xbind.com.

[46] The Digital Audio-Visual Council (DAVIC), “DAVIC 1.2 Specifications,” DAVIC 1.2
specification, Geneva, Switzerland, December 1996.

[47] The Digital Audio-Visual Council (DAVIC), “DAVIC 1.3 Specifications,” DAVIC 1.3
specification, Geneva, Switzerland, December 1997.

[48] The Digital Audio-Visual Council (DAVIC), “Part 1 – Description of davic
Functionalities,” DAVIC 1.0 specification, Geneva, Switzerland, 1995.

[49] The Digital Audio-Visual Council (DAVIC), “Part 9 – Information Representation,”
DAVIC 1.0 specification, Geneva, Switzerland, January 1996.

[50] The Digital Audio-Visual Council (DAVIC), “Part 9 – Information Representation,”
DAVIC 1.1 specification, Geneva, Switzerland, November 1996.

[51] The Digital Audio-Visual Council (DAVIC), “Part 3 – Service Provider System
Architecture and Interfaces,” DAVIC 1.1 specification, Geneva, Switzerland,
November 1996.

[52] A. Eleftheriadis and H. Kalva, “A Proposed Architecture for an Object-Based Audio-
Visual Bitstream and Terminal”, Contribution ISO-IEC JTC1/SC29/WG11
MPEG97/1619, February 1997, Seville, Spain (38th MPEG meeting).

[53] A. Eleftheriadis, H. Kalva, A. Puri, and R. Schmidt, “Stored File Format for MPEG-4
(Rev. 2.0)”, Contribution ISO-IEC JTC1/SC29/WG11 MPEG97/2536, July 1997,
Stockholm, Sweden (40th MPEG meeting).

[54] A. Eleftheriadis, “Architecting Video-on-Demand Systems: DAVIC 1.0 and Beyond,”
Proceedings, International Symposium on Multimedia Communications and Video
Coding, Brooklyn, New York, October 1995.

[55] M.L. Escobar-Molano, “Management of Resources to Support Coordinated Display of
Structured Presentations,” Ph.D. Dissertation, Graduate School, University of Southern
California, 1996.

[56] B. Furht and H. Kalva, “Multimedia Networks,” Multimedia Systems and Techniques,
B. Furht, Ed., Kluwer Academic Publishers, 1996.

[57] B. Furht and H. Kalva, “Network Architectures for Interactive Television,” Third orsa
(now informs) Telecommunications Conference, Boca Raton, Florida, 20-22 March
1995.

[58] J. Greenbaum, and M. Baxter, “Increased FPGA capacity enables scalable, flexible
CCMs: an example from image processing,” Proceedings of the 5th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines, 1997, pp.211-17.

[59] L. Grossglauser and S. Keshav, “On CBR Service,” Proceedings of the INFOCOM,
March 1996.

125

[60] H.M. Vin and P.V. Rangan, “Designing a multi-user HDTV Storage Server,” IEEE
Journal on Selected Areas in Communications, Vol. 11, No. 1, 1993.

[61] L.A. Hall, “Approximation Algorithms for Scheduling,” Approximation algorithms for
NP-hard problems,” D. S. Hochbaum edts., PWS Pub. Co., c1997, pp. 1-45.

[62] G.G. Hartwick, “From Interactive Television to Internet Applications,” Multimedia
Tools and Applications, Special Issue On Video-on-Demand, Trials, and
Interoperability, Vol. 5, No. 2, Sept. 1997, pp. 217-222.

[63] B. Haskell, A. Puri, and A. Netravali, “Digital Video: An Introduction to MPEG-2,”
Chapman and Hall, 1997.

[64] C. Herpel and A. Eleftheriadis, “MPEG-4 Systems: Elementary Stream Management”,
Signal Processing: Image Communication, Special Issue on MPEG-4, 1999 (to
appear).

[65] P. Hoddie et. al., “Quicktime File Format as the Basis for MPEG-4 Intermedia
Format,” ISO/IEC/SC29/WG11 MPEG98/M2980, International Organization for
Standardization, February 1998.

[66] D. Hoffman et. al., “RTP Payload Format for MPEG1/MPEG2 Video,” RFC 2050,
Networks Working Group, The IETF, 1998.

[67] J.-F. Huard and A. A. Lazar, “A Programmable Transport Architecture with QOS
Guarantees,” IEEE Communications Magazine, Vol. 36, No. 10, October 1998, pp. 54-
62.

[68] J.-F. Huard, A. A. Lazar, K.-S. Lim and G. S. Tselikis, “Realizing the MPEG-4
Multimedia Delivery Framework,” IEEE Networks, Vol 12, No 6, 1998, pp 35-45.

[69] www.itu.int, International Telecommunications Union.

[70] S. Jacobs and A. Eleftheriadis, “Streaming Video using TCP Flow Control and
Dynamic Rate Shaping”, Journal of Visual Communication and Image Representation,
Special Issue on Image Technology for Word-Wide-Web Applications, Vol. 9, No. 3,
September 1998, pp. 211-222

[71] S. Jacobs and A. Eleftheriadis, “Streaming Video using TCP Flow Control and
Dynamic Rate Shaping”, Journal of Visual Communication and Image Representation,
Special Issue on Image Technology for Word-Wide-Web Applications, Vol. 9, No. 3,
September 1998, pp. 211-222.

[72] C.-C.Han, K.-J.Lin, J.W.-S. Liu, “Scheduling Jobs with Temporal Distance
Constraints,” SIAM Journal on Computing, Vol. 24, N0. 5, October 1995, pp. 1104-
1121.

[73] H. Kalva and A. Eleftheriadis, “Delivering MPEG-4 Content”, Packet Video 99, New
York, NY, April 26-27 1999.

126

[74] H. Kalva and A. Eleftheriadis, “MPEG-4 Interaction Model and Required Normative
Support”, Contribution ISO-IEC JTC1/SC29/WG11 MPEG97/2888, October 1997,
Fribourg, Switzerland (41st MPEG meeting).

[75] H. Kalva and A. Eleftheriadis, “Requirements for MPEG-4 File Format”, Contribution
ISO-IEC JTC1/SC29/WG11 MPEG97/2886, October 1997, Fribourg, Switzerland
(41st MPEG meeting).

[76] H. Kalva and A. Eleftheriadis, “Software Implementation of the MPEG-4 Intermedia
Format Proposal from Columbia University and AT&T Research,” Contribution ISO-
IEC JTC1/SC29/WG11 MPEG98/3190, February 1998, San Jose, CA (42nd MPEG
meeting).

[77] H. Kalva and A. Eleftheriadis, “Syntax and Semantics of Control Messages for User
Interaction”, Contribution ISO-IEC JTC1/SC29/WG11 MPEG98/3189, February 1998,
San Jose, CA (42nd MPEG meeting).

[78] H. Kalva and A. Eleftheriadis, “Use of CommandDescriptors and CommandROUTES
to Support User Interaction “, Contribution ISO-IEC JTC1/SC29/WG11
MPEG98/M3506, March 1998, Tokyo, Japan (43rd MPEG meeting).

[79] H. Kalva and A. Eleftheriadis, “Using Command Descriptors”, Contribution ISO-IEC
JTC1/SC29/WG11 MPEG98/4269, December 1998, Rome, Italy (46th MPEG
meeting).

[80] H. Kalva and B. Furht, “Techniques for Improving the Capacity of Video-on-Demand
Systems,” Proceedings of the 29th Hawaii International Conference on System
Sciences (HICSS-29), Vol 2, Jan 3-6 1996.

[81] H. Kalva, et. al., “Implementing Multiplexing, Streaming and Server Interaction for
MPEG-4,” IEEE Trans. on Circuits and Systems for Video Technology, Special Issue
on Object Based Video and Description, Vol. 9, No. 8, Dec 1999, pp. 1299-1312.

[82] H. Kalva, S.-F. Chang, and A. Eleftheriadis, “DAVIC and Interoperability
Experiments”, Journal on Multimedia Tools and Applications, Special Issue on Video
on Demand, Kluwer Academic Publishers, Vol. 5, Nr. 2, September 1997, pp. 119-
132.

[83] H. Kalva, L-T. Cheok, A. Eleftheriadis, “MPEG-4 Systems and Applications,”
Demonstration, ACM Multimedia '99, Orlando, FL.

[84] H. Kalva, A. Eleftheriadis, A. Basso, R. Schmidt, and A. Puri, “File Format for
MPEG-4 (Rev. 3.0)”, Contribution ISO-IEC JTC1/SC29/WG11 MPEG97/2873,
October 1997, Fribourg, Switzerland (41st MPEG meeting).

[85] H. Kalva, A. Eleftheriadis, A. Puri, and R. Schmidt, “Stored File Format for MPEG-4”,
Contribution ISO-IEC JTC1/SC29/WG11 MPEG97/2062, April 1997, Bristol, UK
(39th MPEG meeting).

127

[86] H. Kalva, A. Eleftheriadis, and S.-F. Chang, “Columbia's Video on Demand Testbed”,
Proceedings, International Conference on Communications, Montreal, Canada, June
1997 (invited presentation).

[87] H. Kalva, “DAVIC New York Interoperability Experiments: Report and Results,”
DAVIC Contribution No. DAVIC/TC/SYS/96/09/008, Geneva, Switzerland, 1996.

[88] H. Kalva, H. Okuda, A. Eleftheriadis, and S.-F. Chang, “DAVIC Standard for
Multimedia Applications,” Handbook of Multimedia Computing, B. Furht, Ed., CRC
Press, 1998.

[89] H. Kalva, J. Zamora, and A. Eleftheriadis, “Delivering Object-based Audio-Visual
Services,” International Conference on Consumer Electronics, Los Angeles, CA, June
22-24 1999 (invited presentation).

[90] H. Kasahara, “Report of the DAVIC Interoperability Event in Tokyo Electronics Show
’96,” DAVIC Document, DAVIC/358, Hong Kong, December 1996.

[91] M. Kim, P. Westerink, and W. Belknap, “MPEG-4 Advanced Synchronization Model
(FlexTime Model),” Contribution ISO-IEC JTC1/SC29/WG11 MPEG99/5307,
December 1999, (50th MPEG meeting).

[92] L. Kleinrock and A. Nilsson, “On Optimal Scheduling Algorithms for Time-Shared
Systems,” Journal of the ACM, Vol. 28, No. 3, July 1981, pp. 477-486.

[93] R. Koenen, “MPEG-4: Multimedia for our time,” IEEE Spectrum, Vol. 36, No. 2, pp.
26-33, February 1999.

[94] M. Kunt, A. Ikonomopoulos, M. Kocher, “Second-generation image coding
techniques,” IEEE Proceedings, Vol. 73, No. 4, pp. 549–574, April 1985.

[95] E.L. Lawler, “A Functional Equation and its Application to Resource Allocation and
Sequencing Problems,” Management Science, Vol. 16, No. 1, September 1969, pp. 77-
84.

[96] E.L. Lawler, “Optimal Sequencing of a Single Machine Subject to Precedence
Constraints,” Management Science, Vol. 19, No. 5, January 1973, pp. 544-546.

[97] A. Lazar, “Programming Telecommunication Networks,” IEEE Network, pp. 8-18,
September 1997.

[98] J.K. Lenstra, A.H.G.R. Kan, and P. Brucker, “Complexity of Machine Scheduling
Problems,” Annals of Discrete Mathematics 1, 1977, pp. 343-362.

[99] Z. Lifshitz, “APIs for System Software Implementation,” Contribution no. ISO/IEC
JTC1/SC29 MPEG97/M3111.

[100] T.D.C. Little and A. Ghafoor, “Multimedia Synchronization Protocols for Broadband
Integrated Services,” IEEE Journal on Selected Areas in Communications, Vol 9, No.
9, Dec 1991, pp. 1368-1382.

128

[101] T.D.C. Little and A. Ghafoor, “Synchronization and Storage Models for Multimedia
Objects,” IEEE Journal on Selected Areas in Communications, Vol 8, No. 3, Dec
1990, pp. 413-427.

[102] M. Milenkovic, “Delivering Interactive Services to Home Using Digital Video
Broadcasting Infrastructure,” IEEE Multimedia v 5 n 4 Oct-Dec 1998, p 34-43.

[103] H. Okuda, M. Morinaga, H. Kasahara, and K. Shimamura, “An Interoperability
Testbed and Test Results for DAVIC 1.0 specification”, Journal on Multimedia Tools
and Applications, Special Issue on Video on Demand, Kluwer Academic Publishers,
Vol. 5, Nr. 2, September 1997, pp. 147-160.

[104] S. Paek and S.F. Chang, “Video Server Retrieval Scheduling and Resource
Reservation for Variable bit Rate Scalable Video,” To be published in IEEE
Transactions on Circuits and Systems for Video Technology.

[105] S. Paek, P. Bocheck, S-F. Chang, “Scalable MPEG2 Video Servers With
Heterogeneous QoS on Parallel Disk Arrays,” 5th IEEE Workshop on Network and
Operating System Support for Digital Audio & Video. New Hampshire, April 1995.

[106] A. Puri and A. Eleftheriadis, “MPEG-4: A Multimedia Coding Standard Supporting
Mobile Applications” ACM Mobile Networks and Applications Journal, Special Issue
on Mobile Multimedia Communications, Vol. 3, No. 1, June 1998, pp. 5-32 (invited
paper).

[107] M. R. Garey and D. S. Johnson, “Computers and intractability: a guide to the theory of
NP-completeness,” W. H. Freeman, San Francisco, 1979.

[108] N. S. Jayant, “Signal compression: Technology targets and research directions,” IEEE
Journal on Selected Areas in Communications, Special issue on speech and image
coding, June 1992.

[109] H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson, “RTP: A Transport Protocol
for Real-Time Applications, “ Internet Engineering Task Force, Jul. 1999.

[110] J. Signes, Y. Fisher, and A. Eleftheriadis, "BIFS Technical Description", Multimedia
Systems, Standard, Networks, A. Puri and T. Chen, Editors, Marcel Dekker, 1999 (to
appear).

[111] J. Song, A. Dan, and D. Sitaram, “Efficient Retrieval of Composite Multimedia
Objects in JINSIL Distributed System,” ACM SIGMETRICS, June 1997.

[112] ITU-T Study Group 16, “Recommendation H.245: Control protocol for Multimedia
Communication,” ITU, 1997.

[113] H. Sundaram, S.F. Chang “Efficient Video Sequence Retrieval in Large Repositories,”
Proc. SPIE Storage and Retrieval for Image and Video Databases VII, San Jose CA,
Jan 23-29 1999.

[114] L. Torres, M. Kunt, eds., “Video Coding : The Second Generation Approach,” Kluwer
Academic Publishers, 1996.

129

[115] D. Trietsch, “Scheduling Flights at Hub Airports,” Transportation Research, Vol 27,
No. 2, 1993, pp 133-150.

[116] J.D. Ullman, “NP-Complete Scheduling Problems,” Journal of Computer and System
Sciences, No. 10, 1975, pp. 384-393. O. Avaro, P. Chou, A. Eleftheriadis, C. Herpel,
and C. Reader, “The MPEG-4 System and Description Languages: A Way Ahead in
Audio Visual Information Representation”, Signal Processing: Image Communication,
Special Issue on MPEG-4, Vol. 9, No. 4, May 1997, pp. 385-431.

[117] K. Y. Yu, J-H. Lee, and J-H. Park, “Design of audio processing unit for multipoint
video conferencing system,” Proceedings of the ICT '98. International Conference on
Telecommunications. vol.1, 1998, pp.241-5.

[118] J. Zamora, “Cell Delay Variation Performance of CBR and VBR MPEG-2 Sources in
an ATM Multiplexer,” in Proceedings VIII European Signal Processing Conference,
Trieste, Italy, September 10-13, 1996.

[119] J. Zamora, S. Jacobs, A. Eleftheriadis, S.-F. Chang, and D. Anastassiou, “A Practical
Methodology for Guaranteeing QoS for Video on Demand”, IEEE Trans. on Circuits
and Systems for Video Technology, 1999 (to appear).

[120] J. Zamora, “Video-on-Demand Systems and Broadband Networks: Quality of Service
Issues ,” PhD thesis, Columbia University, New York, NY, 1998.

