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ABSTRACT 

Delivering Object Based Audio-Visual Services 

Hari Kalva 
 

We investigate the different aspects of end-to-end multimedia services: content 

creation, server and service provider, network, and the end-user terminal. In the first 

part of the thesis we present the study of system level issues including standardization 

and interoperability, user interaction, and the design of a distributed video server. In 

the second part of the thesis we investigate the systems in the context of object-based 

multimedia services. We present a design for an object-based audio-visual terminal, 

some of the features of which have been adopted by the MPEG-4 Systems 

specification. We then present the study of the requirements for a file format to 

represent object-based audio-visual content and the design of one such format. The 

design introduces new concepts such as direct streaming that are essential for scalable 

servers. In the final part of the thesis we investigate the delivery of object-based 

multimedia presentations and give optimal algorithms for multiplex-scheduling of 

object-based audio-visual presentations. We show that the audio-visual object 

scheduling problem is NP-complete in the strong sense. The problem of scheduling 

audio-visual objects is similar to the problem of sequencing jobs on a single machine. 

We compare the problems and adapt job-sequencing results to audio-visual object 

scheduling. We give optimal algorithms for scheduling presentations under resource 

constraints. The constraints considered are the bandwidth (network constraints) and 

buffer (terminal constraints). We present algorithms that minimize the resources 

required for scheduling presentations. We investigate the structure of interactive 



 

audio-visual presentations by considering event specifications and event extents. We 

show that the only way to support interactivity is by reserving channel capacity to 

deliver the interactive components of presentations. We also present algorithms for 

computing the minimum auxiliary capacity required to support interactivity in object-

based audio-visual presentations.   
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Chapter 1 
 
 
Introduction 

1.1 Introduction 

Multimedia systems and services are becoming more common with the advances and 

availability of computer and communications technology. The advances in computing 

and communications and the emergence of the Internet have spurred the growth of 

multimedia services into the main stream. Widespread interest in multimedia services 

came about with the success of Moving Pictures Experts Group (MPEG) technologies 

and the realization that digital media delivery allows value-added services along with 

high quality programming over existing cable and telephony infrastructure. This 

interest resulted in significant research on packet video in general and video-on-

demand in particular [32][60][24][31]. The success of multimedia systems and 

services today can be owed to the standardization of the core technologies: MPEG-1, 

MPEG-2, most recently MPEG-4, and to certain extent the Digital Audio Visual 

Council (DAVIC) standards. 

1.1.1 MPEG-1  

The MPEG-1 standards were the first in the series of standards developed by the 

MPEG committee. The MPEG-1 standard was intended for video coding at 1.2 Mbps 

and stereo audio coding at around 250 kbps [5][6], together resulting in bitrates 

compatible with that of a double-speed CD-ROM player. The typical frame size for 

MPEG-1 video is 352x240 at 30 frames per second (fps) non-interlaced. Larger frame 
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sizes of up to 4095x4095 are also allowed resulting in higher bitrate video streams. 

The multiplexing and synchronization of the MPEG-1 audio and video is done as 

specified in the Systems part of the MPEG-1 standard [7]. Since MPEG-1 was 

intended for digital storage media such as CD-ROM, the MPEG-1 Systems was not 

designed to be tolerant to bit errors. Furthermore, to keep the overhead small, the 

MPEG-1 Systems streams contain large variable length packets. To deliver MPEG-1 

streams over the Internet, specialized mapping of MPEG-1 streams on to the payload 

of Real-time Transport Protocol (RTP) packets has been specified [39][66][109]. 

MPEG-1 was optimized for applications at about 1.5 Mbps on a reliable storage 

medium such as CD-ROM and as such not suitable for broadcast quality applications. 

To address the requirements of broadcast television and high quality applications, the 

MPEG committee began its work on MPEG-2 in 1992.  

1.1.2 MPEG-2 

The MPEG-2 standards include significant improvements over MPEG-1. Like its 

predecessor, MPEG-2 standards have several parts, nine in all [63]. The most 

important of these are video, audio, and systems. The significant improvements in 

MPEG-2 video over MPEG-1 video are: support for interlaced and progressive 

coding, 4:2:2 and 4:4:4 chrominance modes, higher frame sizes, scalability, and many 

additional prediction modes [10]. While MPEG-1 is optimized for storage-based 

applications, MPEG-2 is more generic and intended for a variety of applications. The 

MPEG-2 Systems specification now includes program streams, suitable for 

applications over a reliable medium, and transport streams with fixed length packets 

suitable for networked delivery. The part six of the MPEG-2 standard, Digital Storage 
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Media Command and Control (DSMCC), specifies protocols for session management 

and application signaling. Application signaling messages enable VCR-like control of 

MPEG streams as well as features such as file access, application discovery, and 

application download.  

 

Because of its flexibility and support for a wide range of applications, MPEG-2 has 

been highly successful. MPEG-2 has been universally adopted for high-quality audio-

visual applications including digital broadcast TV, DVD, HDTV, and digital cinema.  

1.1.3 MPEG-4 

Traditionally the visual component of multimedia presentations was mainly 

rectangular video, graphics, and text. Advances in image and video encoding and 

representation techniques [8][9][94] have made possible encoding and representation 

of audio-visual scenes with semantically meaningful objects. The traditionally 

rectangular video can now be coded and represented as a collection of arbitrarily 

shaped visual objects. The ability to create object-based scenes and presentations 

creates many possibilities for a new generation of applications and services. The 

MPEG-4 series of standards specify tools for such object-based audio-visual 

presentations [20][106]. While Audio and Video parts of the standard specify new 

and efficient algorithms for encoding media, the Systems part of MPEG-4 makes the 

standard radically different by specifies the tools for object-based representation of 

presentations. The most significant difference in MPEG-4 standards is the scene 

composition at the user terminal. The individual objects that make up a scene are 

transmitted as separate elementary streams and composed upon reception according 
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to the composition information delivered along with the media objects. These new 

representations techniques will need novel ways for delivery, scheduling, and QoS 

management. 

1.1.4 DAVIC 

The Digital Audio Visual Council (DAVIC) was formed in 1994 to standardize 

technology and systems for end-to-end digital delivery services such as video-on-

demand (VoD). Because of the large scope of the standard, DAVIC followed a 

toolbox approach to standardization [48][46][47]. Instead of standardizing a 

monolithic system, in the toolbox approach, the system is envisioned as a collection 

of sub-systems and components. The toolbox approach allows highly customized 

systems built only with a subset of tools in the standard.  This model, in addition to 

allowing scalable systems enables the sub-systems to be used in systems where the 

system itself is not compliant to the standard. Following a one-functionality one-tool 

approach, DAVIC defined subsystems, adopted technology for the subsystems, and 

specified interfaces for the subsystems. The tools specified by DAVIC include all 

components of the end-to-end digital audio-visual systems including physical 

interfaces, access networks, transport protocols, information representation, security, 

and billing. 

1.2 Components of a Multimedia System 

A general multimedia (audio-visual) system can be segmented into four physical 

and/or logical components: the content, including representation and management, 

the server that delivers the content, the network that carries the content, and the user 

terminal that plays the content. In interactive systems, these components 
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communicate and cooperate to playback the content. There are several international 

standards bodies specifying and standardizing the technology for end-to-end 

multimedia services. Figure 1.1 shows the components of an end-to-end multimedia 

system. The components can be physical and/or logical but have well-defined 

interfaces between them. The figure shows three such interfaces, with each of the 

components possibly containing more interfaces. Designing a system as a set of 

subsystems connected at published interfaces is necessary for the development of 

systems with such a broad scope. This also allows multiple vendors and service 

providers to provide components and services.  

1.2.1 Content Creation and Management 

The content creation process is a creative process akin to creating TV programming. 

As the amount of content on a system grows, it becomes difficult to manage the 

content in terms of searching, editing, compiling, and delivering. Content 

representation techniques should take these factors into consideration. With 

broadband access becoming common, service providers will be able to deliver high 

quality audio-visual content to PCs.  The major consideration for content creators is 

Content 
Creation and
Management 

Server and 
Service 
provider 

Access 
Infrastructure 

Content 
Consumer 

Source (Encoder) Channel Sink (Decoder) 

CS SA AC 

Figure 1.1 Components of a Generic Multimedia System 
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the ability to deliver and playback content on multiple platforms (TVs and PCs). 

Content representation techniques should allow delivery of alternative representations 

of content based on terminal resources.  

 

Object-based representation of content allows reuse of objects in creating new 

presentations. As the amount of content grows, the ability to search through the 

objects and locating the right one becomes difficult. The MPEG-4 Systems layer 

includes a meta data stream called object content information (OCI) stream, which 

can be used by content management systems for object location and retrieval. Content 

management should include tools that allow users to search for content based on the 

visual or textual description of objects [34][113]. Based on QuickTime, the MPEG-4 

content interchange format [23] is a flexible format for representing multimedia 

presentations. The MPEG-4 file format maps the MPEG-4 Systems layer to the 

QuickTime architecture creating an efficient format that allows access to MPEG-4 

features.  

 

Creating object-based audio-visual presentations is not as straightforward as creating 

MPEG-2 content for TV broadcasting. The features of object-based presentations 

results in content with complexity that varies with the structure of the presentation. 

The content can be as simple as multiplexed audio and video (e.g., MPEG-2 audio 

and video multiplex) or as complex as a presentation composed of a large number of 

objects of different types with dynamically changing scenes and user interaction. The 

complexity of object-based presentations cannot be characterized just by bitrate. The 
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complexity of a presentation depends on the number of objects in the presentation, the 

type of objects, the dynamics of object addition and deletion, and user interactivity. 

One important consideration during content creation is the suitability of content for 

delivery over networks with different capacities and to terminals with different 

computing, display, and storage resources. During the content creation process, 

authors should specify alternative representations for objects so that the servers can 

deliver appropriate objects based on the feedback from the terminals and the network. 

Determining the alternative representations for presentations dynamically is a 

difficult problem especially when considering both terminal and network resources. 

1.2.2 Server and the Service Provider 

The basic function of the servers is to manage sessions between the server and clients 

and to provide available services. The server is also responsible for publishing the 

content and services available for clients and to provide support for user interaction. 

The main consideration in server design is scalability. Columbia’s VoD testbed [32] 

includes a distributed server that can deliver content to a range of client platforms and 

also scales well. The scalability of a server also depends on the type of content it 

delivers. With object-based services, servers have to manage multiple object delivery 

in a single presentation as opposed to delivering a single MPEG-2 transport stream in 

applications such as video on demand. The complexity of a server increases when 

interactivity is supported, especially for object-based services. When an object is 

added to a presentation as a result of user interaction, the server has to locate the 

object, retrieve it, and then deliver it to the client. The ability of servers to perform 

these functions efficiently depends on the object scheduling techniques and also the 
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underlying content representation format.  For simple cases that do not include 

interactivity, objects can be efficiently delivered using techniques such as direct 

streaming that pre-compute transport layer packet headers [23][21][22]. These 

techniques may not be as useful when objects are added asynchronously as a result of 

user interaction. 

 

Another important design consideration is the server’s ability to support content and 

service discovery. The application server in Columbia’s video-on-demand server is 

designed as a collection of services that users discover as they browse the content and 

services available on the server. With object-based representation, and functionality 

provided by frameworks such as MPEG-4 Systems, the distinction between content 

and applications is blurring. The content can now include instructions on how to 

respond to user interaction. Servers will be able to support different applications just 

by supporting interactive object-based content.  

1.2.3 Access Infrastructure 

 The access network between a server and a client carries the encoded content to the 

end-user. The configuration of the access network depends on the operating 

environment. The configuration of the access network varies with available end-user 

connectivity. Some common access networks include: end-to-end ATM, Internet, 

satellite, cable, DSL, LMDS, and MMDS. The main problem involving access 

networks is resource reservation and renegotiation. In networks such as the Internet 

that do not yet support resource reservations, techniques such as dynamic rate shaping 

can be used to reduce the object bitrate based on the state of the network [71]. Even in 
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networks supporting QoS, techniques such as media filtering can be used in 

negotiating and re-negotiating QoS under resource constraints [27][26]. With object-

based representation of audio-visual content, adapting content to meet network 

constraints can be done more efficiently, for example, by structuring presentations to 

contain objects with priorities proportional to their significance in the presentation.   

 

Delivering object-based services may involve establishing and tearing down 

connections as objects in presentations are added and deleted. MPEG-4 specifies a 

delivery framework called DMIF that allows efficient object communication [4]. The 

DMIF framework also allows development of applications without regard to the 

underlying network. Not all networks are suitable to carry real-time multimedia 

traffic. The properties of data networks and their suitability to carry multimedia 

traffic are summarized in [56][57].  

1.2.4 Content Consumer 

The content consumer, usually a user terminal with an attached monitor, is the last 

component of the multimedia delivery chain. These end-user devices are connected to 

access networks and may have an upstream connection for server interaction and 

signaling. The digital TV infrastructure uses MPEG-2 transport streams for delivering 

multiplexed audio, video, and images. For digital TV, the terminals would include 

MPEG audio and video decoders to playback the content. With object-based audio-

visual representation, the presentations can contain many different media types and it 

is impractical to have a terminal with hardware decoders for all the possible media 

types. Terminals supporting object-based presentations would have to include 
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software decoders and even programmable processors for efficient decoding. The 

buffer models have to change to accommodate multiple objects in presentations. With 

object-based multimedia content and the support for user interaction, the user 

terminals are becoming more and more complex. Innovative architectures and 

representation techniques are needed to enable sophisticated applications. The design 

and architecture of a terminal for object-based audio-visual presentation is presented 

in [52]. The proposed architecture is a low complexity design and uses a simple 

format to hierarchically represent multimedia presentations. The MPEG-4 standards 

define a set of profiles and levels to allow simpler decoders that handle only a sub-set 

of the media types. 

1.3 Contributions of the Thesis 

The contributions of this thesis are in the area of audio-visual communications and 

fall under two categories: 1) Traditional audio-visual systems and 2) object-based 

audio-visual systems. Traditional here refers to systems using digital audio and video 

(rectangular) as opposed to object-based audio-visual systems. This classification also 

highlights the flexibility, and at the same time the complexity, as a result of the object 

based representation of content. The contributions to the traditional audio-visual 

systems area are the design and architecture of the VoD application server, the 

distributed video pump architecture for traffic localization, and contributions to 

DAVIC standardization and interoperability. Our contributions in object-based audio-

visual services area are: 1) contributions to the MPEG-4 Systems standards in the 

form of terminal and bitstream architecture and server interaction model, 2) 
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scheduling algorithms for object-based presentations, and 3) scheduling algorithms 

for interactive audio-visual presentations. 

1.3.1 Video-On-Demand Systems 

Our contributions to the traditional audio-visual services area are in the design and 

development of Columbia’s VoD testbed. We designed an application server that 

allows users to browse, select, and playback content available on a server. The 

application server is based on DSMCC user-user communications model [13] and 

provides the user interaction support as a set of services. The services are classified 

based on the functionality supported: directory service allows browsing a server 

directory, file service provides access to files on the server, and stream service is for 

controlling media playback. We designed the stream service with an interface to use 

the services of a video-pump. We specified the CORBA (Common Object Request 

Broker Architecture) [2] interface on the video pump to be able to launch the video 

pump service on remote systems, thus making the distributed video-pump possible. 

Our distributed video-pump design is an effective tool for traffic localization on 

networks. By replicating the media streams, the video-pump closest to the client can 

be launched thereby limiting the traffic to that segment of the network. For web-

browser-based clients and clients without CORBA support, we designed the system 

with CORBA services running on the server and with a DSMCC interpreter between 

the client and the server. This allows the same server to be used for a variety of 

clients.  
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The distributed VoD system architecture and design for localization are discussed in 

detail in Chapter 2. 

1.3.2 Object-Based Audio-Visual Services 

The main distinguishing feature of object-based audio-visual services is the ability to 

represent scenes and presentations as a collection of objects composed at the user 

terminal. Composition at the terminal implies ability to access and interact with 

individual objects. These features of object-based presentations blur the distinction 

between applications and content. This paradigm shift in content representation and 

playback enables the next generation of audio-visual applications and services. New 

techniques are necessary to deliver these services. Supporting interactive 

presentations puts additional burden on the system. We investigate object-based 

audio-visual services considering the complexity, flexibility, authoring, and delivery 

issues. We investigate the problem of scheduling object-based presentations under 

network and buffer constraints and present algorithms for multiplex-scheduling 

object-based presentations. 

1.3.2.1 Scheduling Object-based Presentations 

Scheduling is a complex problem and has been studied in different application 

domains including operations management, transportation, flight scheduling, and 

even video scheduling in VoD systems. The nature of object-based content makes it 

difficult to deliver compared to MPEG-2 delivery. The complexity of an MPEG-4 

content is an important factor that influences a server’s performance. In case of 

MPEG-2 content, the average bit-rate and peak bit rate are a good indication of the 
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server resources required to deliver the stream. We show that an MPEG-4 

presentation cannot be characterized by individual or cumulative bit rates of the 

objects alone. For example, an MPEG-4 presentation may consist of a sequence of 

large JPEG images with accompanying audio. Such presentations tend to be very 

bursty over networks. Since objects may span any arbitrary time period during a 

presentation, the bit-rate of MPEG-4 presentations can be highly variable depending 

on the content and structure of the presentations.  

 

Our investigation of the scheduling problem in the context of object-based audio-

visual presentations addresses the folowing issues: 1) is a presentation schedulable 

with given resources, 2) what are the additional resources required to schedule a 

presentation, 3) what is the minimum channel (buffer) capacity required to deliver the 

presentation, 4) does the presentation remain schedulable when an object is added, 

and  5) will dropping an object make the presentation schedulable. We investigate the 

problem and propose a family of algorithms to solve these problems. We formulate 

the object-scheduling problem by considering individual access units (frames) of 

audio-visual objects, with precedence constraints on access units within an object. We 

found similarities with problems in job-shop scheduling. We show that the object-

scheduling problem is NP-complete in strong sense. Even though the problem is NP-

complete, we use efficient heuristics used in job-shop scheduling to find buffer-

optimal schedules. 
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We first introduce the “FullSched” algorithm to determine the schedulability of a 

presentation with given resources. This algorithm can be re-purposed to compute the 

minimum resources required to make the presentation schedulable. We then introduce 

the “GapSched” algorithm that computes schedules incrementally. We prove the 

buffer-optimality of both of these algorithms. The GapSched algorithm is especially 

useful during content creation to quickly determine whether adding an object violates 

any of the resource constraints. We introduce the concept of residual data volume to 

compute a lower bound on the capacity required to deliver the presentation. Starting 

with this lower bound on the channel capacity, we use the MinC algorithm to 

compute the minimum channel capacity required to deliver the presentation. For un-

schedulable presentations, if additional resources cannot be acquired, the only 

alternative is to drop objects or object instances to make the presentation schedulable. 

Because of the object-based representation of the presentations, dropping an object 

may compromise the integrity of the content. Like in the case of MPEG-2, dropping 

frames is still possible for continuous media objects in a presentation. We provide 

guidelines to structure presentations in ways that makes it easier for systems to 

deliver alternative representations to meet resource constraints. Determining the 

alternative representations for presentations is a difficult problem to be considered for 

future extensions. 

1.3.3 Scheduling Interactive Presentations 

The nature of object-based audio-visual systems makes it possible to create 

application with dynamic addition and deletion of objects. This addition and deletion 

of objects is effected when a user interacts with the presentation. We investigate the 
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characteristics of interactive audio-visual presentations and discuss the issues in 

delivering interactive presentations. We present algorithms for adding and releasing 

resources upon object addition and deletion. The interactivity considered here is the 

user interaction that affects the resources consumed by the server and the network. 

We present algorithms to determine the schedulability of interactive presentations and 

the minimum capacity required to deliver an interactive presentation. By computing 

the resources required for the interactive and core components of a presentation 

separately we could determine whether a presentation can be fully supported. This 

allows content creators to design the presentations with relatively independent core 

and interactive components so that the substance of the presentation is not affected 

even without the interactive component. 

 

When user interaction is allowed, the resulting asynchronous events affect object 

delivery and add to the burstiness of the traffic depending on the content. When 

delivering interactive component presentations, there are two options: 1) reserving the 

required capacity at session startup 2) acquiring necessary bandwidth after an event 

happens. The scheduling choice depends on the bandwidth availability, content 

design, and the applications’ tolerance to the events ignored by the server. If 

bandwidth is available on-demand, the most efficient way is to acquire necessary 

bandwidth when an event happens. When bandwidth availability cannot be predicted, 

the best way is to reserve required bandwidth at session startup. Even though the 

reserved capacity is wasted when the anticipated events do not happen, reserving 

resources assures the delivery of the interactive component of the presentation. An 
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acceptable compromise would be to prioritize events and reserve bandwidth for 

higher priority events and request additional bandwidth when a lower priority event 

happens. 

 

We introduce three new concepts: event specification, event window, and event 

extents to describe object-based presentations as a set of events and analyze these 

events to determine the resource requirements for interactive presentations. Resources 

for interactive components can be allocated by resource reservation or by resource 

negotiation after an event happens. If resources have to be acquired for every object 

added as a result of an event, the object addition cannot be guaranteed and depends on 

the probability of acquiring the required resources. We also propose guidelines to 

create interactive presentations for efficient use of network resources. 

 

Our contributions in the area of traditional audio-visual services have also been 

published in [57][56][32][86][80][82][88][87]. The contributions in the area of 

object-based audio-visual services also appear in: [19][23][21][22][52][53][73][74] 

[77][78][79][85][84][75][76][83][81][89]. 
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Chapter 2 
 
 
VoD Testbed: Interaction, Interoperability, and 
Standardization 

2.1 Introduction 

Columbia’s video on demand testbed has served as a platform for research on audio-

visual communications including video servers [105][104], video transmission 

[120][119], Internet video delivery [71], and standardization and interoperability 

[54][87][82]. The heterogeneous nature of the testbed gives an opportunity to work 

with a system consisting of a range of clients, servers, and networks. In this chapter 

we describe our contributions toward the development of Columbia’s VoD testbed. 

The VoD testbed is a client server system with clients and servers connected over a 

heterogeneous network. The testbed has various types of client platforms including 

digital set-top-boxes, PCs/Workstations with hardware and software decoders, and 

mobile computers with wireless connectivity. The network consists of IP and native 

ATM networks. The wireless network runs IP and Ethernet protocols. The server runs 

on an SGI Onyx running a general-purpose operating system (IRIX) and delivers 
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DRS 

Video Server 
(MPEG) 

Clients Networks Servers 

Figure 2.1 Components of the VoD Testbed 
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MPEG-2 video and audio multiplexed into MPEG-2 transport streams. The server 

also includes a dynamic rate-shaping module that scales down the video bitrate in real 

time. This module is used to reduce the video bitrate when delivering to terminals 

with fewer resources such as mobile clients. Figure 2.1 shows the components of the 

VoD testbed in the client, network, and the server domain. The server can deliver 

streams to the clients on one of the networks the client is attached to. The wide area 

connectivity of the testbed was used to study the effects of video delivery over wide 

area networks. 

 

In the rest of this chapter we will discuss our contributions made towards the 

development of Columbia’s VoD testbed. In Section 2.2 we present the system 

operation and discuss the design and imlementation of the application server. In 

Section 2.3 we present the distributed server functionality and user interaction support. 

Finally in Section 2.4 we briefly describe the DAVIC 1.0 efforts in standardizing 

VoD like services and discuss the design considerations for interoperability. 

2.2 System Operation and Application Services 

Figure 2.2 shows the high-level diagram of the VoD system. It is divided into two 

domains, the Level 1 and Level 2 domains. The Level 2 domain contains the client 

Application 
Server 

Video pump 

CORBA 
Interface 

Client 
terminal 

Network 

L1 Gateway 

Server 

Figure 2.2 High-level System Diagram 
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(set-top-box) and the server equipment while the rest falls in the Level 1 domain. The 

Level 1 domain consists of access networks, head-ends, resource managers, and 

network managers. The Level 1 domain provides a set of gateway services to the 

components in the Level 2 domain. This Level 1 gateway functions are bundled into a 

service/system called the Level 1 gateway. The Level 1 gateway can be seen as a 

directory service that allows the clients to discover servers. This view of the VoD 

systems follows from the telephony systems and the earlier work on video dial tone. 

Within a server, there might be one or more services available for clients. The 

functions that enable the service discovery by the end-user are the Level 2 gateway 

functions. In Figure 2.2, Level 2 gateway functionality is part of the application 

server. 

 

The application server provides a set of services to the clients. The services provided 

in Columbia’s testbed are based on DSM-CC user primitives [12]. DSM-CC is a set of 

network and user primitives specified in part 6 of the MPEG-2 standard. The network 

primitives allow session setup and management while the user primitives are used for 

application signaling between a client and a server once a session is established. The 

user primitives are typically carried over a signaling channel. The application server 

supports the core DSM-CC services: service gateway, file service, directory service, 

and stream service. The service gateway is the root service a client first attaches to. 

Once connected to the service gateway, a client can select file service, to upload or 

download files (e.g., HTML or text files) from the server. In our VoD testbed, we 

used the file service to provide news reports in text form to clients. Directory service 
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allows a client to navigate a server and browse through the available content. The 

stream service is central to VoD applications and delivers videos to clients. The 

interfaces to these services are specified in Interface Definition Language (IDL) and 

we used CORBA [2] as a natural choice to implement these interfaces. 

 

The system operation consists of the following steps: 

1. A client first connects to its default Level 1 gateway. The Level 1 gateway is the 

first service clients connect to before session establishment. The Level 1 gateway can 

reside anywhere on the network and provides a list of servers available. Once the 

client selects a server, the L1 gateway establishes the initial session and drops out. 

The client is now connected to the service gateway on the server that provides Level 

2 gateway services. The service gateway authenticates the clients’ access to the 

service and provides a client with the root directory service that contain directory, file, 

or stream services. The services are mapped directly onto a UNIX file system. 

Directory service is a UNIX directory, file service is available for all the files, and 

stream service is available for media streams.  

2. From the root directory, clients can navigate the server using the directory service 

discovering the additional directory, file, and stream services. If a directory is 

selected, the server returns a reference to the directory object. The client can then use 

the Directory::List operation to view the directory contents. When an item 

from the list is selected (using the Open operation), the server returns a reference to 

the selected object. The directory List and Open operations are sufficient to 

navigate the server and discover additional content.  
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3. If a file is selected, the server returns the selected file to the client. The actual file 

transfer can be done either on the signaling channel or for large files, a new data 

connection can be established. In the VoD testbed, the file service was used to 

provide a sample news service. The news headline is mapped to a file name; if the 

client selects the file, the server returns a reference to the file object to the client. The 

client then has the option to either view or save the file. Since the file service is a 

generic file transfer application, this can be used to download new applications from a 

server.  

4. The server identifies the stream service by examining the file extension. Files with 

the extension .inf contain the meta data about the stream service. The meta data 

includes alternative video pumps for the stream and enough information to setup a 

downstream connection and reserve resources for stream delivery. Just like in the 

case of file and directory service, the server returns a reference to the stream object 

when a client selects the stream service. The stream object supports an interface to 

enable VCR-like controls. The process involved in stream delivery is described in the 

next section. 

2.3 Stream Service and the Distributed Video Pump 

Figure 2.3 shows the functional diagram of the VoD system. A session starts when 

the client selects the one of the servers listed by the Level 1 gateway and a bi-

directional channel is established between the service gateway and the client. All the 

clients accessing the same server connect to the same application server and the 

service gateway. When a client chooses the stream service, an MPEG-2 transport 

stream is opened for delivery. The application server does not see the actual media 
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data. The application server has access to the meta-data for the media streams and 

whenever it sees these meta-data files it presents them to the clients as stream objects. 

The meta-data includes bitrate, title, video type, audio type, primary source URL, 

alternate sources, preferred video pump, production credits, and even reviews. A 

client with a reference to the stream object has to invoke the Open and Play 

methods to start stream playback. The stream service implementation has a video 

pump factory that creates video pumps to stream the requested video. The video 

pump itself has an IDL interface and communicates with the stream service using the 

IDL interface implemented using CORBA. When a client chooses to pause a stream, 

it invokes the Pause operation on the stream service that, in turn, passes the message 

along to the pump to pause the stream delivery. The clients do not communicate 

directly with the video pump for stream control except for receiving the streams. All 

stream control messages reach the pump through the stream service. 

The IDL interface supported on the video pump makes the server a distributed VoD 

server. The meta-data on the application server has the address of the video pump. 

Figure 2.3 Stream Service in the VoD System 
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The address is nothing but the IP address or machine name the stream service uses to 

launch the video pump. The video pump factory in the stream service launches a 

video pump for every stream request it receives. A video pump can be launched 

anywhere on the network irrespective of the location of the application server. By 

replicating the content on several locations on the network, network traffic can be 

localized to certain network segments by launching a video pump closest to the client. 

This feature can also be used for load balancing on the machines running the video 

pumps.  

2.3.1 Stream Service for Web Clients 

Since a web browser is the most common application/interface people are accustomed 

to, it is a logical choice for clients running on PCs and workstations. Browser based 

clients are also easy to deploy on a wider scale. Since web browsers typically do not 

support CORBA, we developed a command dispatcher and a DSM-CC interpreter on 

the server side that acts as an intermediary between a Web server (HTTPD) and the 

video server. The DSMCC interpreter can be viewed as a client proxy capable of 

interpreting DSMCC messages and formatting the output with HTML for the Web 

client. Each client request goes through the HTTP server, which launches the 

command dispatcher script to communicate with the DSMCC interpreter. The 

Network 
Browser 

Player 

HTTPD Command 
Dispatcher 

Video Server DSMCC 
Interpreter 

Figure 2.4 Application Signaling in Browser-based Clients 

TCP port IDL Interface 
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DSMCC interpreter processes the message by making the appropriate CORBA calls 

to the application server and passing the results back to the command dispatcher. 

There is a one-to-one mapping between service interfaces and client command codes. 

The commands called by the clients include the port number on which the DSMCC 

interpreter is listening. This browser-based interface is also used with devices that act 

as passive decoders and do not have an easy way of communicating with the server. 

2.4 Standardization and Interoperability 

With interest in video-on-demand services increasing and with several planned VoD 

trials, the companies with vested interests in the success of VoD formed a consortium 

called the Digital Audio Visual Council (DAVIC) in 1994 to develop standards and 

specifications for the systems to provide broadband multimedia services. DAVIC 

defines its purpose as: “to advance the success of emerging digital audio-visual 

applications and services, initially of the broadcast and interactive type, by the timely 

availability of internationally-agreed specifications of open interfaces and protocols 

that maximize interoperability across countries and applications or services”[48]. The 

DAVIC concept of Digital Audio-Visual Applications and Services includes all 

applications and services in which there is a significant digital audio video component. 

DAVIC started out mainly in response to the industry interest in video on-demand in 

the early 90s and apparent lack of standards to ensure interoperability among the 

various systems and implementations. By the time DAVIC published its first 

specification in 1995, video on-demand was no longer seen as the killer application it 

was originally thought. However, the technologies and standards DAVIC was 

developing are the core to support any form of audio-visual services.  
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 Figure 2.5 shows the DAVIC subsystems and the reference points between the 

subsystems. DAVIC specifies everything necessary to support the core audio-visual 

services it defines; left to right, content provider to the content consumer, and top to 

bottom, physical layer of the transport to the application layer. Content providers 

produce content, which is distributed to the consumers by service providers. The 

delivery system supports the delivery of content to service providers and consumers.  

DAVIC specifies and/or develops technologies to build these subsystems and defines 

reference points and interfaces between (and also within) the subsystems. The 

conformance points A1 – A11 are the reference points and any DAVIC compliant 

system should be conformant at these points. 

2.4.1  Information Flows and Reference Points 

The subsystems were specified in an evolutionary manner with each new set of 

DAVIC specifications adding functionality to the previous set. To facilitate this 

evolutionary approach, reference points, interfaces, and information flows were 

Content  
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   Service 
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Figure 2.5 Components of a DAVIC System 
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introduced between the subsystems. The information flow between the subsystems is 

divided into five logical flows based on the nature of the information. Figure 2.5 

shows the information flows and reference points between the subsystems. Only 

reference points A1, A9, A10, and A11 are shown in the figure. There are also 

reference points that are internal to the subsystems. 

 

The S1 information flow corresponds to the principal service information, e.g., an 

MPEG-2 transport stream carrying audio and video. The S2 flow corresponds to the 

application control information, S3 corresponds to session control, S4 to connection 

management, and S5 corresponds to billing and other management functions. The S1 

flow is unidirectional from the service provider to the service consumer (STU) while 

the other information flows are bi-directional. Future versions of the specification are 

expected to include a bi-directional S1 flow supporting applications such as video 

conferencing. The five logical information flows may use a single physical channel or 

more than one physical channel. 

2.4.2 Interoperability 

There are many organizations developing standards for multimedia tools including 

international authorities such as ISO [1] and ITU-T [69]. Multimedia tools refer to 

components of systems required to enable multimedia presentations and services; 

MPEG-2 video, MPEG-1 audio, and ATM are some examples of tools for video, 

audio and networking. Most of the current standards (tools) are developed, for the 

most part, independently by the standards body concerned. It is rather difficult to 

ensure that the tools developed independently can be combined to facilitate a single 
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multimedia presentation. DAVIC plays the role of an integrator by providing 

specifications that bind the various standards enabling multimedia applications and 

services.  

 

A DAVIC tool is a technology that supports a single DAVIC functionality. For 

example, ATM is a tool to transport audio-visual data in the core network. Following 

a one-functionality one-tool policy, DAVIC selects the best technology available to 

support its functionalities. DAVIC also develops tools to support the functionality 

that cannot be achieved by the existing technology. Because of the diverse nature of 

the standards it is dealing with, interoperability of the systems and subsystems was 

taken up as a part of the standardization process.  

 

To achieve its goal of global deployment of DAVIC systems and services, DAVIC 

places special emphasis on interoperability. Since the DAVIC specification is made 

up of a number of independently developed standards, it is important to ensure that 

these standards work when used together in DAVIC components and systems. The 

work related to verifying the specification and its interoperability was undertaken by 

the interoperability sub-group. The charter of the interoperability sub-group was to 

verify that the specification does not have any ‘gaps’ and to provide guidelines for 

conformance testing. Towards this end, DAVIC is promoting a series of public 

interoperability events. We organized the first multi-platform global interoperability 

event at Columbia University in New York in June 1996 [87] [82].  
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Eight organizations from around the world participated in this event, cross-connecting 

their servers and clients on Columbia’s testbed [32]. Even though the 

implementations were not fully DAVIC compliant, the interoperability experiments 

gave valuable feedback to DAVIC to clarify and improve the specification [103]. The 

heterogeneous nature of Columbia's VoD testbed made it an ideal choice for 

conducting multi-platform interoperability tests. Since the testbed uses open standards 

for networks and server interfaces, it was relatively easy for connecting the systems 

from participating organizations. Furthermore, the wide area connectivity of the VoD 

testbed was essential to test the system functionality over wide area networks. The 

detailed results of the interoperability experiments can be found in [82]. The feedback 

from the subsequent interoperability events at the Tokyo Electronics Show [90] and 

Telecom Interactive were also taken into account in improving the specifications. 

2.5 Concluding Remarks 

In this chapter we presented the contributions made toward the development of 

Columbia's VoD testbed. The key contributions made are the design of the 

application server for VoD services, distributed video pump, application signaling, 

adapting the system for browser-based clients, and contributions toward the 

development of DAVIC standards by means of proof of concept implementations and 

interoperability experiments.  

 

Separating the resource-intensive video delivery using a well-defined interface and its 

implementation using CORBA is essential for scalable servers and localizing 

bandwidth-intensive video traffic. With streaming media over the Internet becoming 
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more common, traffic localization together with congestion control mechanisms is 

necessary to prevent congestion collapse in networks. The ability of a system to 

support popular platforms, particularly the Internet, is critical for the large-scale 

deployment of any system. Modular design allowed us to reuse most of the 

components in adapting the system for browser-based clients. The user interaction 

support was limited to VCR-like controls. In Chapter 3 we contrast this against the 

generic user interaction supported in object-based audio-visual systems. 
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Chapter 3 
 
Object-Based Audio-Visual Services 

3.1 Introduction 

Image and video encoding has been totally transformed with the advent of new 

coding and representation techniques [21][8][116]. Over the past several years, image 

and video compression research has explored new methodologies for high 

compression using high-level techniques [21][108]. These techniques depart from 

traditional waveform coding, and attempt to capture more of the high-level structure 

of visual content. This high-level structure has been referred to as objects, and 

includes components of imagery that are directly associated with visual structures of 

semantic significance, both simple and complex (e.g., a ball, a table, a man). This 

next generation of coding techniques has made possible encoding and representation 

of audio-visual scenes with semantically meaningful objects.  This new paradigm of 

object-based representation of audio-visual scenes/presentations will change the way 

audio-visual applications are created.  

 

Like any new technology, object-based representation of audio-visual scenes will 

give rise to many technological challenges while providing feature-rich framework 

for object-based audio-visual presentations. To appreciate the advantages of object-

based systems, we often compare and contrast object-based systems with non-object-

based digital audio-visual systems that are widely used today (e.g., digital TV and 
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HDTV). We refer to such systems as frame-based systems to reflect that fact that a 

user terminal sees the presentation as a sequence of composed and encoded frames.  

 

In this chapter we present some of the issues in the design and deployment of object-

based audio-visual services. First we present an overview of object-based 

presentations and contributions made to the development of the MPEG-4 Systems 

specification. We then present an overview of the MPEG-4 Systems layer to contrast 

our proposals to the adopted solutions.  

3.2 Components of Object-Based Presentations 

3.2.1 The Notion of an Object 

An object-based presentation consists of objects that are composed to create a scene; 

a sequence of scenes forms a presentation. There is no clear-cut definition of what 

constitutes an object. When used in the sense of audio-visual (AV) objects, an object 

can be defined as something that has semantic and structural significance in an AV 

presentation.  An object can thus be broadly defined as a building block of an audio-

visual scene. When composing a scene of a city, buildings can be the objects in the 

scene. In a scene that shows the interior of a building, the furniture and other items in 

the building are the objects. The granularity of objects in a scene depends on the 

application and context. The main advantage of breaking up a scene into objects is the 

coding efficiency gained by applying appropriate compression techniques to different 

objects in a scene. In addition to coding gains, there are several other benefits of 

object-based representation: modularity, reuse of content, ease of manipulation, 

object annotation, as well as the possibility of interaction with the objects in a scene. 
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To appreciate the efficiency of object-based presentations, consider a home shopping 

channel such as the ones currently available on TV. The information on the screen 

consists mostly of text, images of products, audio, and video (mostly quarter-screen 

and sometimes full screen). All this information is encoded using MPEG-2 

video/audio at 30 fps. However, if this content is created using object-based 

technology, all static information such as text and graphics is transmitted only at the 

beginning of a scene and the rest of the transmission consists of only audio, video, 

and text and image updates that take up significantly less bandwidth. In addition to 

this, the ability to interact with individual objects makes applications such as e-

commerce possible. 

 

The key characteristic of the object-based approach to audio-visual presentations is 

the composition of scenes from individual objects at the receiving terminal, rather 

than during content creation in the production studio (e.g., MPEG-2 video). This 

allows prioritizing objects and delivering individual objects with the QoS required for 

that object. Multiplexing tools such as FlexMux [8] allow multiplexing of objects 

with similar QoS requirements in the same FlexMux stream. Furthermore, static 

objects such as a scene background are transmitted only once and result in significant 

Person crossing the road 

Scene 
composition 

Person crossing the road 

Figure 3.1 Example of an object-based scene 
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bandwidth savings. The ability to dynamically add and remove objects from scenes at 

the individual user terminal even in broadcast systems makes a new breed of 

applications and services possible. Frame-based systems do not have this level of 

sophistication and sometimes use makeshift methods such as image mapping to 

simulate simple interactive behavior. This paradigm shift while creating new 

possibilities for applications and services makes content creation and delivery 

complex. The end user terminals that process object-based presentations are now 

more complex but also more powerful. 

 

Figure 3.1 shows a scene with four visual objects, a person, a car, the background, 

and the text. In object-based representation, each of these visual objects are encoded 

separately in a compression scheme that gives best quality for that object. The final 

scene as seen on a user terminal would show a person running across a road and the 

text at the bottom of the scene, just like in a frame-based system. To compose a scene, 

object-based systems must also include the composition data for the objects that a 

terminal uses for spatio-temporal placement of objects in a scene. The scene may also 

have audio objects associated with (or independent of) visual objects. The 

compressed objects are delivered to a terminal along with the composition 

information. Since scenes are composed at the user end of the system, users may be 

given control on which objects are played. If a scene has two audio tracks (in 

different languages) associated with it, users can choose the track they want to hear. 

Whether the system continues to deliver the two audio tracks even though only one 

track is played is system dependent; broadcast systems may deliver all the available 
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tracks while remote interactive systems with upstream channels may deliver objects 

as and when required. Since even text is treated and delivered as a visual object, it 

requires far less bandwidth than transmitting the encoded image of the rendered text. 

However the delivered text object now has to include font information and the user 

terminals have to know how to render fonts. User terminals could be designed to 

download fonts or decoders necessary to render the objects received.  

3.2.2 Scene Composition 

Scene composition can simply be defined as spatio-temporal placement of objects in 

the scene. Spatial composition determines the position of objects in a scene while 

temporal composition determines its position over time. Operations such as object 

animation, addition, and removal can be accomplished by dynamically updating the 

composition parameters of objects in a scene. All the composition data that is 

provided to a terminal can itself be treated as a separate object.  

Since the composition is the most critical part of object-based scenes, the composition 

data stream has very strict timing constraints and is usually not loss tolerant. Any lost 

or even delayed composition information could distort the content of a presentation. 

Treating the composition data as a separate data object allows the system to deliver it 

over a reliable channel. Figure 3.2 shows the parameters for spatial composition of 

x 

y 

 z 
z’ 

Figure 3.2 Composition Parameters 
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objects in a scene. The gray lines are not part of the scene; x and y are horizontal and 

vertical displacements from the top left corner. The cube is rotated by an angle of  

radians. The relative depth of the ellipse and a cylinder are also shown. The ellipse is 

closer to the viewer (z < z’) and hence is displayed on top of the cylinder in the final 

rendered scene. Even audio objects may have spatial composition associated with 

them. An object can be animated by continuously updating the necessary composition 

parameters. 

3.3 Terminal and Bitstream Design for Object-Based Audio-Visual 
Presentations 

An object-based presentation is delivered to a terminal with objects and object 

composition packed in a bitstream. The bitstream should be structured to convey the 

data and meta data in a way that preserves the semantic separation of objects in the 

presentation. The bitstream design presented in this section was originally proposed 

for the MPEG-4 System layer [52]. The bitstream is designed on the basis of 

separating the object meta-data from the object data and the hierarchical 

representation of scenes. Composition is the property of a scene and hence should be 

part of the scene description. In addition to the decoding times, composition times are 

needed as predictive encoding schemes such as MPEG video have different decoding 

and composition/display order. Since objects can enter and leave a scene arbitrarily, 

to increase object reuse, especially for static objects such as images, we use a lifetime 

time stamp indicating the availability of an object at a terminal. Objects are re-

transmitted only if a presentation needs to reuse the object after the objects’ lifetime. 
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3.3.1 Bitstream Architecture 

The structure (syntax and semantics) of the components that make up a bitstream for 

object-based audio-visual presentations is described in this section. The bitstream 

consists of two types of data packets, object composition packets (OCPs) and object 

data packets (ODPs) reflecting the separation of object data and meta-data. The OCPs 

carry the data necessary to compose the objects in scenes. These include the spatial 

information for object placement as well as control information that is used to add 

and remove the objects. Each of these packets has an ID, known as the object ID, that 

identifies the object the data belongs to.  

3.3.1.1 Encoding Scene Composition 

The OCPs contain composition parameters necessary for proper placement and 

orientation of an object in a scene. The OCPs also contain a decoding time stamp, a 

presentation timestamp, and a timestamp that gives the lifetime of an object at the 

terminal. Composition update packets (CUP) are used to update the composition 

parameters of objects. Together with object composition, updates can be used to 

animate objects or groups of objects in a scene. Compound Composition Packet 

(CCP) is a container packet that groups the OCPs. Object grouping is necessary in 

order to be able to apply operations to a set of objects with a single command. This 

can be used to minimize the amount of composition information sent, as well as to 

support hierarchical scene composition based on independent sub-scenes. Each sub-

scene can be represented as a compound object. A CCP can also contain other CCPs. 

This structure supports the use of the CCPs to represent presentations hierarchically 

with scenes and sub scenes. A CCP contains an object id followed by the lifetime 
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time stamp (LTS), component object count, and composition parameters for the 

compound object. The compound object is available at the terminal for the duration 

given by the LTS. Figure 3.3 shows the hierarchical representation of scenes using 

compound composition packets. The compound object shown in the figure has three 

component objects; one simple object (ID = 2) and two compound objects (ID = 3 

and 4). Each of these compound objects contains two simple objects as shown in the 

Figure 3.3. The object at the top level acts as a grouping node by binding its 

component objects together. By changing the composition parameters of the top-level 

object, the composition data for the group can be changed. Representing scenes 

hierarchically allows efficient navigation and also addressing of scenes and sub-

scenes. The object data itself is carried in object data packets (ODP). The ODPs 

include the timestamps necessary for inter-media synchronization. 

3.3.2 Audio-visual Terminal Architecture 

An audio-visual (AV) terminal is an end user component used to present (display) 

audio-visual content. An object-oriented terminal receives information in the form of 

individual objects, which are placed together to form a scene according to specified 
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Figure 3.3 Hierarchical Representation of Scenes 
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composition information. Objects and composition information are transmitted in 

separate logical channels (LC). When object and composition data are multiplexed, 

assigning a unique identification number (ID) to the packets creates logical channels 

in a single multiplexed stream. Such multiplexing can be used to multiplex objects 

with the same QoS requirements. The H.245 specification [112] specifies a 

mechanism for the creation and management of such logical channels. 

 

Figure 3.4 shows the architecture of an AV terminal. In the AV terminal architecture 

presented, the AV objects and their composition information are transmitted over a 

network (or accessed from a local storage device) in separate logical channels. The 

dmux reads the multiplexed composition and data packets and de-multiplexes it into 

logical channels. The LC 0 always carries composition information, which is passed 

on to the System Controller (SC). Composition information consists of object 

composition information and composition control information. Similarly, the object 

data is encapsulated in object data packets. The AV objects received on other logical 
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channels are stored in the cache to be acted upon by the decoders. The SC decodes 

the composition information to compose the object in the scene.  

3.3.2.1 Terminal Operation 

An object-based bitstream is accessed either from a network interface or a local 

storage device. The bitstream consists of a series of object composition packets and 

object data packets multiplexed into logical channels. The DMUX de-multiplexes the 

packets and passes the composition information to the controller. The dmux also 

places object data in the cache for use by the decoders. The decoders in the terminal 

are media specific, i.e., if the object is encoded using MPEG-2, the decoder will be an 

MPEG-2 decoder or if an object is compressed using JPEG compression, a JPEG 

decoder will be used. When an object data packet arrives at the terminal, the system 

controller examines its decoding time stamp and instructs the decoder to decode the 

object at the decoding time. The decoded object is copied to the presentation buffers 

at presentation time with appropriate position and orientation as indicated by the 

composition parameters. An object, if indicated as persistent, remains in the cache 

until a time given by its expiration time stamp. If such an object is used at a later time 

(before the expiration time), only the corresponding composition data is sent to the 

terminal. 

3.3.2.2 System Controller 

The system controller is the heart of the terminal and controls the decoding and 

playback of the objects on the AV terminal. The SC first initializes the dmux to read 

form a local storage device or a network port. This is initiated at startup time either 
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from user interaction or by opening a session at default network address. The dmux 

reads the input bitstream and feeds the composition data on LC0 to the controller. The 

composition data begins with the description of the first scene in the AV presentation. 

This scene can be described as a hierarchical collection of objects using compound 

composition packets or as a collection of independent object composition packets. A 

table that associates the elementary streams with the nodes in the scene description 

immediately follows the scene description. The controller maintains the object IDs 

(stream IDs) in an object list and also a render list. The render list contains the list of 

objects that are to be rendered on the display device. An object that is disabled by 

user interaction is removed from the render list. A node delete command that is sent 

via a composition control packet causes the deletion of the corresponding object IDs 

from the object list. The node hierarchy is also maintained and updated whenever a 

composition update is received.  

 

The SC also maintains timing for each AV object to signal the decoders and decoder 

buffers of decoding and presentation time. The timing information for the AV objects 

is specified in terms of its time-base. The terminal uses the system clock to convert an 

object’s time base into system time. The controller gets the timestamps from the data 

packets for each object. At the decoding time for an access unit, the data is forwarded 

to the appropriate decoder, for example, by signaling the decoder to read data from 

the input buffers.  

 



41 

 

The terminal design presented is a simple design that illustrates the concepts for a 

generic audio-visual terminal. Since an object-based terminal should support several 

media types, it is very likely that such terminals use software decoding for most of the 

media types. Terminals for generic object-based audio-visual presentations should be 

based on programmable decoders based on FPGAs [36][117][58] to achieve real-time 

performance. This gives a terminal the ability to download decoders for media types 

discovered in the bitstream. This practice is already seen in software media players 

but is yet to be seen in dedicated media devices such as set-top-boxes. 

3.4 Supporting User Interaction in Object-Based Presentations 

Interactivity in the case of video on demand systems mainly meant supporting VCR 

functionality in the system. With object-based video, interactivity is not just stream 

control but depends on the application and the media types involved. Object based 

representation of audio-visual objects and scenes lends itself to the design of more 

sophisticated user interaction with scenes and objects in the scenes. The user 

interaction mechanisms developed for video-on-demand are not sufficient to support 

interactivity in object-based audio-visual applications as they were primarily designed 

to support stream control. In this section we present an architecture to support user 

interaction in MPEG-4 Systems1. This architecture, called the CommandDescriptor 

architecture, integrates well with the MPEG-4 scene description framework and 

supports fully interactive applications. 

                                                 

1 A modified version of the CommandDescriptor framework has since been adopted 

by MPEG-4 Systems for supporting server interaction 
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3.4.1 MPEG-4 User Interaction Model 

Since the MPEG-4 scene description is based on the VRML specification, 

interactivity supported by MPEG-4 Systems (Version 1) was limited by the 

capabilities of the VRML event model. VRML’s event model is limited to the scene 

and lacks the mechanism to dynamically control the object delivery from servers or 

communicate with servers in any way.  

 

As an application’s response to user interaction is application dependent, the 

interaction framework should be generic with ability to support a wide range of 

applications. Clicking on an object might cause the object to move in one application 

and hide the object in another application. The ability to interact with a server is 

necessary in many applications. In an object-based system like MPEG-4, interactivity 

is more than stream control and is very much application dependent. Since defining 

an exhaustive list of user interaction messages and system’s responses is impossible, 

a generalized model that supports complete application dependent interactivity is 

necessary. We designed and implemented the Command Descriptor framework [74]-

[79] with all the features to support server interaction in MPEG-4 systems. 

3.4.2 Command Descriptor Framework 

The Command Descriptor framework provides a means to associate commands with 

media nodes in a scene graph. When a user interacts with the media nodes, the 

associated commands are processed. The actual mode of interaction is specified by 

the content creator and may be a mouse click or mouse-over or some other form of 

interaction. The command descriptor framework consists of three elements, a 
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CommandDescriptor, a CommandROUTE and a Command. Command descriptor, as 

the name implies, describes a user interaction command. Command descriptor are 

attached to media nodes via command ROUTEs. When a user interacts with a node, 

the associated command descriptors are processed. The processing simply consists of 

passing the command back to the server over a user command channel, or it may also 

involve modifying the command parameters before sending the command to the 

server. More than one command descriptor may be attached to a node and in that case 

they are all processed when a user interacts with that node. 

 

Figure 3.5 shows an example with command descriptors attached to the media nodes. 

Two nodes may share a command descriptor if the interaction with the two objects 

results in identical behavior. Command descriptors are transmitted to the client in a 

separate elementary stream called command descriptor stream. The command routes 

are similar to the ROUTEs used in the scene description but point to a command 

descriptor. The command routes are included in the scene graph description and are 

transmitted in the scene description stream. This separation between commands and 

command association allows us to modify command syntax without editing a scene 

Figure 3.5. Command Descriptors and Command ROUTEs 
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graph.  

 

The command descriptors contain a command that determines the interaction 

behavior of the associated node. The command descriptors can be updated using 

command descriptor updates allowing a node to support different interaction behavior 

at different times. The commands can be transmitted to the server using the DAI user 

command primitives supported by DMIF.  

 

Even though the command descriptor framework is generic, and supports application 

specific user interaction, we need a few standard commands to support consistent 

application behavior across applications and servers especially for common 

commands such as stream control. We specify a set of common commands, e.g., 

stream control commands [67], and the content creators can specify application 

specific behavior. A server should be aware of these application specific commands 

in order to process them.  

class CommandDescriptor: bit(8) commandDescriptorTag = 0x06 { 
  
 bit(16) CommandDescriptorID; 
 
 bit(16) CommandID; 
 
 // stream count; number of ES_IDs  

// associated with this message 
 unsigned int (8) count; 
 
 // ES_Id (channel numbers) of the streams  

// affected by the command 
 unsigned int (16) ES_ID[count]; 
 
 // application-defined parameters 
 do { 

unsigned int (8) paramLength; 
char (8) commandParam [paramLength]; 

 } 
 while (paramLength!=0); 
} 

Figure 3.6. Command Descriptor Syntax 
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Figure 3.6 shows the syntax of a CommandDescriptor. The command descriptor ID 

uniquely identifies a command descriptor in a presentation. The command ID 

indicates the semantics of the command. This simple structure along with command 

routes in the scene description can be used to support complete application specific 

interactivity. For example this can be used to support content selection by specifying 

the presentation in command parameters and the command ID indicates that the 

command is the content selection command. One way to implement this is to create 

an initial scene with several images and text that describes a presentation associated 

with that image. We then associate a content selection descriptor with each image and 

the corresponding text. When a user clicks on an image, the client transmits the 

command containing the selected presentation and server starts a new presentation. 

Command descriptors can be used to support application specific user interaction 

including complex applications such as electronic commerce and on-line shopping. 

3.4.2.1 Advantages of the CommandDescriptor framework 

Two other alternatives to command descriptors are using URLs in the nodes (MPEG-

4 Systems defines a set of nodes to build scene graphs) to embed commands and 

creating a node that contains a command (equivalent of embedding a 

CommandDescriptor in a node). In the first case, a command is coded as a URL field 

of a node. One advantage of this approach is that it uses the existing node syntax and 

update mechanisms. The disadvantage of these two approaches is that it requires a 

server to process BIFS in real-time. BIFS has a complex structure and creating BIFS 

commands in real-time is more complex when compared with creating 
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CommandDescriptors that are byte oriented and byte aligned. Furthermore, command 

descriptors have a very simple structure that is easy to compose and parse. 

 

For MPEG-4 content with server interaction support to run on all servers, the servers 

should understand all the commands. It is impossible to create interactive content 

with content/application specific interactivity that can be understood by all servers. 

The CommandDescriptor framework allows servers to compose the commands (e.g., 

from an equivalent textual description) in a manner understood by them. A 

CommandDescriptor provides a well-defined structure for saving data locally in 

applications that require data persistence (e.g., cookie management). To save the state 

of a scene when a user terminates a session one can implement and save a command 

descriptor. URLs and data fields in nodes are not sufficient for efficient 

implementation of such functionality. In applications with multi user interaction, it 

may be necessary to exchange the state of a scene among the users. 

CommandDescriptors are more convenient to exchange data among users.  The 

number of commands a server composes could be quite high in multi-user 

applications and burden of processing bit-oriented node updates is significant when 

compared with processing byte-oriented and byte aligned CommandDescriptors. 

3.5 Storage Format for Object-Based Audio-Visual Presentations 

The ubiquity of the Internet and the continuous increase in the computing power of 

the desktop computers together with the availability of relatively inexpensive 

multimedia codecs have made multimedia content generation a readily available 

functionality in the desktop computers. Creating interactive presentations using 
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object-based presentation techniques requires users to manipulate, compose, edit and 

transmit multimedia content over packet networks. It is thus necessary to have a 

multimedia file format that allow fast access to data files, locally or remotely stored, 

during the process of content creation, composition/manipulation (e.g., file editing 

and playback), and streaming over packet network. 

 

In this section we will discuss the requirements for storing object-based audio-visual 

presentations. We will then present our work on multimedia file format in the context 

of MPEG-4 standardization [23]-[22][53][85]-[76]. 

3.5.1  Requirements for New Generation Multimedia Formats 

The requirements of a file format in terms of access, manipulation, aggregation, 

editing and streaming vary depending on the media type. It is thus impossible to 

optimize processing of one type of media without penalizing the other. The file 

format should not be designed to facilitate a special task (such as, in-place editing, 

local or remote playback, or to match a specific media) but rather allow a series of 

effective and flexible tools that allow efficient indexing and data access to perform 

the aforementioned tasks. In the following sections we will discuss some of the most 

stringent requirements imposed on multimedia file formats. Our work on the MPEG-4 

file format was carried out jointly with AT&T Labs Research.  

3.5.1.1 Granularity of the Data Access 

Multimedia file formats should be flexible enough to support easy editing and 

playback of multimedia objects and should provide means to perform editing 
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operations such as copy, cut, and paste to aid users in creating new content easily. 

Object based presentations usually have separate meta-data and media data. In case of 

MPEG-4, the meta-data consists of scene description, object description, and content 

description streams. This implies inter-dependencies among the streams. Any changes 

to the presentation may result in changes to all the dependent streams. Access to 

individual elements of these streams is necessary to perform editing operations. This 

implies support for a proper granularity to access the data of a given media stream. 

3.5.1.2 Security 

Providing security and protecting intellectual property becomes critical in digital 

audio-visual systems. Techniques such as digital watermarks exist to ensure 

authenticity of individual media streams. Such techniques should be extended to 

MPEG-4 files to ensure authenticity of the presentation. Authenticating a presentation 

is especially significant in object-based presentation as operations such as 

adding/removing/replacing objects may affect the content of a presentation and such 

operations can be accomplished relatively easily with object-based presentations.  

3.5.1.3 Playback 

The heterogeneity of the multimedia presentation environments requires that the file 

format offer several ways to access the file data, trading off local terminal resources 

such as memory and CPU speed for data access speed as appropriate. With universal 

multimedia access seen as the future direction for multimedia, it becomes important 

for the next generation of multimedia file formats to enable content re-purposing and 

delivery to a range of multimedia devices. Playback needs a data access structure that 
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allows access to the segments of different objects that should be played back at a 

given instance in time. Furthermore the playback may need to be selective, i.e., 

playback of only some objects or base layers of scalable objects. It is thus important 

that a file format supports mechanisms to access individual objects and parts of 

objects as necessary. Playback of multiple views of a presentation should also be 

supported. 

3.5.1.4 Streaming and Media Transport 

Early multimedia file formats were designed and tailored for local access at data rates 

attainable by relatively slow machines. Furthermore they were developed in a PC-

centric environment, in contrast to the current trend in distributed networked 

computing.  In today’s world, multimedia file formats must be designed for efficient 

remote random access playback. This capability is often called streaming. While no 

universally agreed-upon definition for the term streaming currently exists, it is 

generally accepted that the word includes the concept of a remote client rendering 

multimedia content as it is being received over the network using only a bounded 

delay buffer.  Depending on the type of hardware and software used for streaming, 

audio-visual presentations can be directly delivered from MPEG-4 files or in case of 

optimized servers they have to be converted to a server specific format. A file format 

can therefore be not optimized for streaming but for interchange.  

 

A common format that spans capture, authoring and editing, download and streaming, 

leads to great flexibility. Material may be reworked after use, or used in multiple 

ways, without being copied or re-formatted. A desirable solution is to have a set of 
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tools that can be used to create a file optimized for the needs of the applications while 

allowing easy (computationally inexpensive) conversion between different instances 

(views) of the file. 

3.5.2 IIF – A Format For MPEG-4 Media 

The complexity of MPEG-4, owing to the functionality it supports, makes it very 

demanding in terms of storage and access of multimedia objects that constitute an 

MPEG-4 presentation. MPEG-4 identified the need for a file format that can cater to 

the needs of MPEG-4 and possibly the multimedia industry. This resulted in a call for 

proposals (CFP) [15]. In this section we describe our proposal for the MPEG-4 file 

format. 

 

The Integrated Intermedia Format is a solution that is designed specifically for 

MPEG-4 [21][22]. We designed the file format based on segment-based organization 

of media data, with each segment containing objects of a single scene. An IIF file 

consists of a header (File Configuration Header (FCH) and File Configuration 

Extension (FCE)) followed by access tables, and finally one or more segments. Figure 

3.7 shows the components of an IIF file in a configuration with access tables in the 

front. These tables may also be attached at the end by setting appropriate flags in the 

header, typically in case of recording when access tables are not available at the 

beginning of a presentation. 
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3.5.2.1 Indexing Tools 

Random access to AUs (frames) of an object is supported by means of indexing tools. 

Indexing of objects and access units in that object  (frames or access units) can be 

done globally, with the indexing information located in a contiguous space or in a 

distributed fashion, with indexing information distributed over the media data. A 

distributed indexing scheme results in lower memory utilization as only a part of the 

access tables are loaded at a time. Indexing is supported by means of several object 

access tables that vary in complexity and support distributed or global indexing. The 

different access tables used in supporting random access are: 

Physical Object Table (POT): gives a list of objects present in a file and has pointer to 

the segment that contains the first access unit of the object. Requires a SOT for 

accessing an access unit. 

Extended Physical Object Table (EPOT): indexes all access units of interest and 

points to the SOT entry that corresponds to the access unit. 

Fat Physical Object Table (FPOT): Expanded version of EPOT. This table indexes 

SO

ODT 

Segment 
Extension 

FCH SSC SEG SEGMENT 
DATA 

SCT SST FCE CDT EOT 

POT FPOEPO

Figure 3.7. Components of an IIF File 
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all access units and includes their offsets and sizes. This table is sufficient to achieve 

random access. 

Segment Object Table (SOT): The media data, organized into segments, has a table 

that indexes all the access units in a segment.  

Object Descriptor Table (ODT): This table provides direct access to object 

descriptors. Object descriptor contains all the essential information for a decoder to 

process the object and is the first piece of information conveyed to a client during 

session establishment. 

Content Descriptor Table (CDT): An object’s Object Content Information (OCI) can 

be directly accessed using this table. 

 

These access tables can be used in different combinations depending on application 

needs. For example, there might be a need to index one object in an MPEG-4 

presentation using FAT while the others are indexed using other tables. This allows 

flexibility for content creators in indexing the contents depending on the applications.  

 

A BIFS (scene description) stream is the most critical part of an MPEG-4 

presentation and special handling might be necessary to communicate it to the user 

terminal. A BIFS stream is identified in an IIF file by assigning a unique two-byte ID 

for the BIFS stream (this can also be done by decoding the object descriptors and 

examining the stream types). This BIFS ID is part of the file header and allows 

identifying and extracting the BIFS data easily. 
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One disadvantage of these indexing schemes is the lack of direct time-based indexing. 

For example it is not possible to access an access units n seconds into the presentation 

without further processing the bitrate and other parameters of the object. This has 

been identified but can be easily overcome by time-wrapping of the access tables; i.e., 

associating segments of index tables with presentation time of access units. 

3.5.2.2 Segment Based Organization of Media Data 

IIF organizes the media data into segments. Segments usually correspond to a scene 

or some other higher-level construct. Access units in a segment are optionally 

indexed in a SOT. A segment starts with a unique segment start code that can be used 

to uniquely identify the beginning of a segment. The segment header has flags that 

determine the type of the contents in a segment. The segment data could be access 

units that belong to a single object, multiple objects, object descriptors only, OCI only, 

or scene description only. This information is useful to prioritize the processing of 

data in a segment, as some data, for example scene description, are more critical to a 

presentation than the other. 

 

Another aspect of this segment-based approach is the separation of access tables and 

actual media data itself. The media data contained in the segments is pure data and 

can be extracted easily for direct playback. This saves de-packetization time that is 

necessary if additional information is packed with the access units. 

 

Since all access units are indexed relative to the beginning of a segment, the contents 

of a segment can be edited with in a segment with changes made to only a single 
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entry in the access table that points to the segments. Another benefit of this approach 

is the ability to allow un-indexed areas in segments that are treated as free space. This 

might be a result of editing operation or could also be by design when a content 

creator decides to leave some free space in segments for later use.               

3.5.2.3 Streaming Support 

Video playback on the desktop is becoming more and more common today. New 

generation of file formats are being designed with emphasis on the ability to stream 

data to desktops. By considering this requirement during the design phase, media can 

be stored in a way that facilitates streaming and even make it more efficient.  

 

To stream data, a media streamer needs to have access to data units (access units), 

transport properties (bitrate, max unit size, min unit size, etc) of the objects, and then 

packetize the access units according to the transport protocol of choice before 

delivering it over a network. As the number of streams to be streamed increases, the 

computational power required performing these seemingly insignificant tasks 

becomes a burden to the streamer reducing it’s capacity. By making the task of access 

to data units easy, streaming performance is improved. In IIF, an object’s properties 

such as its average bitrate, peak bitrate, start time, end time, and duration are made 

available in the stream configuration table (SCT). The overall nature of the MPEG-4 

presentation such as average bandwidth, peak bandwidth, and average segment are 

indicated in file configuration extension (FCE). Both FCE and SCT are optional as 

indicated in the file header. 
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To make it even more efficient, IIF supports direct streaming. Direct streaming as the 

name implies is less work for the streamer. The idea here is to pre-compute the 

protocol specific packet headers and include them along with the access units. A 

streamer would then extract the access units, associated pre-computed packet headers 

and conveys it to the network. This reduces the load and increases streamer efficiency. 

However, since direct streaming is transport protocol dependent, protocol specific 

data should be included for each protocol the streamer supports. In IIF, this data is 

placed in a segment in the optional segment extension. Segment extension contains 

timestamps and protocol specific information. A drawback in this design is that there 

was no support for more than one protocol in the same file. 

3.5.2.4 External Links 

IIF, as mentioned earlier, was designed specifically for MPEG-4. The External Object 

Table is used to indicate the presence of External objects and/or External links in an 

MPEG-4 file. External objects refer to AV objects that are referred to in the current 

file but are present in a different file, which may be located on the current file system 

or a remote (networked) system. This feature is necessary to support features like 

local logo or ad insertion in a presentation.  

 

External objects facilitate the use of a set of files to store an MPEG-4 presentation. 

An EOT shall be present if multiple files are used to store a single presentation or if 

there are any URLs present in the scene description or elementary stream descriptors. 

The EOT also lists External links. External links are the URLs used in a presentation 

that might be activated as a result of user interaction. These are necessary to ensure 
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that the links are available during a presentation and if they are not, the client can be 

warned prior to the beginning of a session. This is a useful check as some missing 

links might interrupt the flow of a presentation. It is the responsibility of the server 

(or player in case of local playback) to ensure that resources are available to access 

External objects and/or External links during a presentation. 

 

The IIF file format presented is an efficient design specifically created for MPEG-4 

Systems. The standardized MPEG-4 file format that was finally adopted is based on 

QuickTime, one of the competing proposals [41]. The clear separation between media 

data and metadata in the QuickTime format was an important reason for the choice as 

well as the existing user base. Even though QuickTime is a good design and is well 

suited for multimedia presentations, the efforts to customize the QuickTime 

architecture to MPEG-4 Systems resulted in significant overhead in the MPEG-4 file 

format. 

3.6 A Comparison with MPEG-4 Systems 

MPEG-4 is specifying tools to encode individual objects, compose presentations with 

objects, store these object-based presentations and access these presentations in a 

distributed manner over networks [93][106]. The MPEG-4 Systems specification 

provides the glue that binds the audio-visual objects in a presentation [8][20]. Some 

of the concepts of the object-based bitstream and terminal presented in the previous 

section can also be seen in the MPEG-4 Systems layer. The basis for the MPEG-4 

Systems architecture is the separation of the media and data streams from the stream 

descriptions. The scene description stream, also referred to as BIFS (Binary Format 
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for Scenes), describes a scene in terms of its composition and evolution over time and 

includes the scene composition and scene update information. The other data stream 

that is part of the MPEG-4 systems is the object description or OD stream, which 

describes the properties of data and media streams in a presentation. The description 

contains a sequence of object descriptors, which encapsulate the stream properties 

such as scalability, QoS required to deliver the stream and the decoders and buffers 

required to process the stream. The object descriptor framework is an extensible 

framework that allows separation of an object and the object’s properties. This 

separation allows for providing different QoS for different streams; for example, 

scene description streams which have very low or no loss tolerance and the associated 

media streams, which are usually loss tolerant. These individual streams are referred 

to as elementary streams at the system level. The separation of media data and meta 

data also makes it possible to use different media data (MPEG-1 or H.263 video) 

without modifying the scene description. 

 

An elementary stream is composed of a sequence of access units (e.g., frames in an 

MPEG-2 video stream) and is carried across the Systems layer as sync-layer (SL) 

packetized access units. The sync-layer is configurable and the configuration for a 

specific elementary stream is specified in its elementary stream (ES) descriptor. The 

ES descriptor for an elementary stream can be found in the object descriptor for that 

stream which is carried separately in the OD stream. The sync layer contains the 

information necessary for inter-media synchronization. The sync-layer configuration 

indicates the mechanism used to synchronize the objects in a presentation by 
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indicating the use of timestamps or implicit media specific timing. Unlike MPEG-2, 

MPEG-4 Systems does not specify a single clock for the elementary streams. Each 

elementary stream in an MPEG-4 presentation can potentially have a different clock 

speed. This puts additional burden on a terminal, as it now has to support recovery of 

multiple clocks. In addition to the scene description and object description streams, an 

MPEG-4 session can contain Intellectual Property Management and Protection 

(IPMP) streams to protect media streams, or Object Content Information (OCI) 

streams that describe the contents of the presentation, and a clock reference stream 

[20][64][110]. All the data flows between a client and a server are SL-packetized.  

 

The data communicated to the client from a server includes at least one scene 

description stream. The scene description stream, as the name indicates, carries the 

information that specifies the spatio-temporal composition of objects in a scene. The 

MPEG-4 scene description is based on the VRML specification. VRML was intended 

for 3D modeling and is a static representation (a new object cannot be dynamically 

added to the model). MPEG-4 Systems extended the VRML specification with 

additional 2D nodes, a binary representation, dynamic updates to scenes, and new 

nodes for server interaction and flex-timing [91]. A scene is represented as a graph 

with media objects associated with the leaf nodes. The elementary streams carrying 

media data are bound to these leaf nodes by means of BIFS URLs. The URLs can 

either point to object descriptors in the object descriptor stream or media data directly 

at the specified URL. The intermediate nodes in the scene graph correspond to 

functions such as transformations, grouping, sensors, and interpolators.  
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The VRML event model adopted by MPEG-4 systems has a mechanism called 

ROUTEs that propagates events in a scene. This event model allows nodes such as 

sensors and interpolators to be connected to audio-visual nodes to create effects such 

as animation. This mechanism however is limited to a scene; there are no routes from 

a server to a client to propagate user events to a server. Our work on server 

interaction described in Section 3.4 specifies an architecture to propagate user events 

to a server [67][79]. This has been adapted to fit tightly in a scene graph by 

encapsulating the server command functionality in a new node called Command 

Node [19].  

 

In addition to VRML functionality, MPEG-4 includes features to perform server 

interaction, polling terminal capability, binary encoding of scenes, animation, and 

dynamic scene updates. MPEG-4 is also specifying a Java interface to access a scene 

graph from an applet. These features make possible content with a range of 

functionality blurring the line between applications and content. 

 

Figure 3.8 shows the binding of elementary streams in MPEG-4 Systems. The Figure 

shows a scene graph with a group node (G), a transform node (T), an image node (I), 

an audio node (A), and a video node (V). Elementary streams are shown in the Figure 

with a circle enclosing the components of the stream. The scene description forms a 

separate elementary stream. The media nodes in a scene description are associated 

with a media object by means of object IDs (OD ID). The object descriptors of the 
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objects in the scene are carried in an object descriptor stream. An object descriptor is 

associated with one or more elementary streams. The elementary streams are 

packetized and carried in separate channels. 

 

Since all the data flows to a client are SL-packetized, the question is how does one 

get the sync-layer configuration of these data flows? When an MPEG-4 session is 

started, the very first data a terminal receives is the initial object descriptor (IOD). 

The IOD contains the elementary stream descriptors for the scene description stream 

and possibly an object descriptor stream. The terminal then starts decoding the scene 

description stream and the OD stream. As the scene graph is constructed, the objects 

referred to in the scene description are retrieved, decoded, composed and displayed. 

The IOD itself is not SL packetized and is usually transmitted to a terminal in a 

successful response to a session establishment request. The session establishment and 

channel establishment is done both in the case of local access and networked access. 

To keep the interface to the underlying transport independent of the transport, MPEG-

4 specified a semantic interface to the transport layer called Delivery Multimedia 

Integration Framework (DMIF) [12].  

Figure 3.8 Stream Association in MPEG-4 Systems 
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3.7 Delivering Object-Based Presentations 

Delivering MPEG-4 presentations differs from traditional video on demand delivery 

in the characteristics of the presentations delivered. VoD applications primarily 

involve delivering MPEG-2 transport streams. In the case of object-based 

presentations such as MPEG-4 presentations, the media data and the media 

composition data are transmitted to a client as separate streams, typically with 

different QoS requirements, in the same session. Furthermore, as the number of 

objects in a presentation can be quite large, the overhead required to manage a session 

is large. Interactivity makes this problem more complex as the resources required for 

a session will now depend on the user behavior, especially when user interaction with 

objects changes the number of objects in the scene either by adding or deleting 

objects.  

 

Figure 3.9 shows the components of an MPEG-4 server. An MPEG-4 server typically 

consists of an MPEG-4, pump, an object scheduler, and a DMIF instance for media 

transport and signaling. The server delivers Sync Layer Packets (SL-Packets) to the 

DMIF layer, which multiplexes them in a FlexMux and transmits them to the client. 

An MPEG-4 server that is transmitting objects should make sure that access units 

arrive at the terminal before their decoding time. The pump retrieves the objects from 
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Figure 3.9 Components of an MPEG-4 Server 
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the disk and delivers them as scheduled by the presentation scheduler. The scheduler 

uses the decoding timestamps to schedule the delivery of access units. 

 

The complexity of an MPEG-4 presentation is an important factor that influences a 

server’s performance. In case of MPEG-2 content, the average bit-rate and peak bit 

rate are a good indication of the server resources required to deliver the stream. 

However, an MPEG-4 presentation cannot be characterized by individual or 

cumulative bit rates of the objects alone. For example, an MPEG-4 presentation may 

consist of a sequence of large JPEG images with accompanying audio. Such 

presentations tend to be very bursty over networks. Since objects may span any 

arbitrary time period during a presentation, the bit-rate of MPEG-4 presentations can 

be highly variable depending on the content of presentations. The structure and nature 

of an MPEG-4 presentation determines the complexity of the content. When user 

interaction is allowed, the resulting asynchronous events affect object delivery and 

add to the burstiness of the traffic on the network and the complexity on the content.  

 

When delivering interactive components of presentations, there are two options: 1) 

reserving the required capacity at session startup 2) acquiring necessary bandwidth 

after an event happens. The scheduling choice depends on the bandwidth availability, 

content design, and the applications’ tolerance to the events ignored by the server. If 

bandwidth is available on-demand, the most efficient way is to acquire the necessary 

bandwidth when an event happens. When bandwidth availability cannot be predicted, 

the best way is to reserve the required bandwidth at session startup. Even though the 
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reserved capacity is wasted when the anticipated events do not happen, reserving 

resources assures the delivery of the interactive component of the presentation. An 

acceptable compromise would be to prioritize events and reserve the bandwidth for 

higher priority events and request additional bandwidth when a lower priority event 

happens. 

 

A presentation created without the knowledge of target networks and clients could 

create long startup delays and buffer overflows or underflows. This could cause 

distortion, gaps in media playback or problems with the synchronization of different 

media streams. Unlike MPEG-1 and MPEG-2, MPEG-4 presentations are not 

constant bit rate presentations. The bitrate of a presentation may be highly variable 

depending on the objects used in the presentation. Presentations may have to be 

recreated for different targets or servers have to be intelligent enough to scale a 

presentation for different networks/clients. Schedulers should be part of content 

creation process to check the suitability of content for target networks and clients. 

MPEG-4 has scalable coding tools that allow creation of content that can be adapted 

to different network and bandwidth conditions.  

3.8 Concluding Remarks 

In this chapter we presented an overview of object-based audio-visual services. The 

key contributions in this area are the bitstream design, terminal architecture, user 

interaction framework, and file format for object-based presentations. The bitstream 

is design is based on the premise of separating meta-data from the media data and 

hierarchical representation of object-based presentations. The bitstream is also 
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designed to dynamically update the scenes using composition updates, node addition, 

and node deletion. The terminal architecture is an illustrative example of a terminal 

for audio-visual presentations.  It introduces the concept of persistent objects and 

reuse of persistent objects from local cache. We proposed the original architecture for 

user interaction and file format in MPEG-4 Systems. Even though the final form of 

these components in the MPEG-4 standard differ from the proposed versions, the 

contributions formed the underlying basis. We then presented an overview of MPEG-

4 Systems layer to highlight the similarities to the bitstream and terminal architecture 

presented earlier in the chapter and the contributions made in the development of the 

MPEG-4 Systems standard. Finally, we briefly considered delivery of object-based 

presentations with respect to content representation and scheduling. In the next two 

chapters, we will consider the delivery-related problem of scheduling interactive 

object-based audio-visual presentations.  
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Chapter 4 
 
 
Scheduling Object-based Audio-Visual Presentations 

4.1 Introduction 

The MPEG-4 Systems specification [20][64] [8][110] defines an architecture and 

tools to create audio-visual scenes from individual objects. The scene description and 

synchronization tools are at the core of the systems specification. The MPEG-4 

architecture allows creation of complex presentations with wide-ranging applications. 

As the complexity of the content increases, so does the complexity of the servers and 

user-terminals involved. The servers now have to manage multiple streams (objects) 

to deliver a single presentation. 

 

The flexibility of MPEG-4 enables complex interactive presentations but makes the 

content creation process non-trivial. Unlike MPEG-2, the content creation process 

involves much more than multiplexing the media streams. Determining the 

schedulability of a presentation is also important during the content creation process 

to determine if the presentation being designed can be scheduled for specific channel 

rates and client buffer capacity. It may not be possible to schedule a presentation with 

a given set of resources. In order to create a schedulable presentation, some 

constraints may be relaxed. In the case of scheduling objects, relaxing a constraint 

may involve increasing the buffer capacity, increasing the channel capacity, not 

scheduling some object instances, or removing some objects from a presentation. 
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The complexity of an MPEG-4 presentation is an important factor that influences a 

server’s performance. In case of MPEG-2 content, the average bit-rate and peak bit 

rate are a good indication of the server resources required to deliver the stream. 

However, an MPEG-4 presentation cannot be characterized by individual or 

cumulative bit rates of the objects alone. For example, an MPEG-4 presentation may 

consist of a sequence of large JPEG images with accompanying audio. Such 

presentations tend to be very bursty over networks. Since objects may span any 

arbitrary time period during a presentation, the bit-rate of MPEG-4 presentations can 

be highly variable depending on the content of presentations.  

 

When user interaction is allowed, the resulting asynchronous events affect object 

delivery and add to the burstiness of the traffic depending on the content. When 

delivering interactive components of presentations, there are two options: 1) reserving 

the required capacity at session startup, and 2) acquiring necessary bandwidth after an 

event happens. The scheduling choice depends on the bandwidth availability, content 

design, and the applications’ tolerance to the events ignored by the server. If 

bandwidth is available on-demand, the most efficient way is to acquire the necessary 

bandwidth when an event happens. When bandwidth availability cannot be predicted, 

the best way is to reserve the required bandwidth at session startup. Even though the 

reserved capacity is wasted when the anticipated events do not happen, reserving 

resources assures the delivery of the interactive component of the presentation. An 

acceptable compromise would be to prioritize events and reserve bandwidth for 



67 

 

higher priority events and request additional bandwidth when a lower priority event 

happens. 

 

In this chapter we discuss the problem of scheduling audio-visual objects and present 

algorithms for optimal scheduling of audio-visual objects. We present new algorithms, 

based on job sequencing on a single machine proposed by Carlier [29], for scheduling 

objects in a presentation. This chapter paper is organized as follows: the general 

problem of scheduling audio-visual objects and related earlier work is presented in 

Section 4.2. Complexity of object-based audio-visual presentations is discussed in 

Section 4.3. The characteristics of startup delay and terminal buffer are discussed in 

Section 4.4. In Section 4.5 we present several algorithms to schedule audio-visual 

presentations. We conclude the chapter in Section 4.6. 

4.2 Scheduling Audio-Visual Objects  

Scheduling and multiplexing of audio-visual (AV) objects in a presentation is a 

complex problem. Scheduling of audio-visual objects has been the subject of study in 

[25][100][111].  In [100] Little and Ghafoor present synchronization of multi-object 

presentations using Petri-net models to describe timing relations in multimedia 

presentations. They present network-level and application-level synchronization 

protocols for multi-object presentations. The problem considered is delivering objects 

from multiple sources to a single destination. The problem we are considering is the 

network-independent scheduling of interactive audio-visual objects on the server side. 

We assume the use of underlying network services for establishing connections for 

data transport. We also show that scheduling objects jointly results in bandwidth 
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savings. In the Firefly system [25], the issue addressed was scheduling a set of local 

objects to ensure synchronization by adjusting the duration of the media objects 

involved. The authors address the synchronization problem by adjusting the play-rate 

of objects (speeding up or slowing down playback) but do not consider network 

delivery issues. In [111] Song et. al, describe the JINSEL system that uses bandwidth 

profiles to reserve bandwidth for media objects on a delivery path. The JINSEL 

system computes the bandwidth required on the network segments on the delivery 

path using the amount of buffer available on the switch/component.  Disk scheduling 

for structured presentations was studied in [55]. 

  

In the following, the problem is explained in the context of MPEG-4 Systems. 

MPEG-4 Systems specifies an architecture to describe scenes and communicate 

audio-visual data that corresponds to the objects in a scene [20]. A scene consists of 

one or more audio-visual objects with each of these objects associated with an 

elementary stream that carries the corresponding data. All the elementary streams are 

typically multiplexed in a transport multiplex. A server that is transmitting objects 

(elementary streams) should make sure that an access unit (access unit is the smallest 

data entity to which timing information can be attributed; e.g., frames in an 

elementary stream) arrives at the terminal before its decoding time. The constraints 

on the server transmission are the channel capacity and buffer capacity at the 

receiving terminal. This problem has similarities with VBR scheduling [104], where 

the goal is to maximize the number of streams supported by a server. The difference 

is that in VBR scheduling discussed in [104] and references therein, the assumption is 
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that the video data being handled is periodic (e.g., 30 fps). In a general architecture 

such as MPEG-4, such assumption is not valid as the data can consist of only still 

images and associated audio. Furthermore, the multiple streams in MPEG-4 

presentations are synchronized at the same end-user terminal using a single clock or 

possibly multiple clocks whereas there are no inter-dependencies when scheduling 

multiple VBR video streams. This puts tighter restrictions on the scheduling of an AV 

presentation. In such cases the decoding times of individual access units have to be 

considered for efficient scheduling. Furthermore, the delay tolerances and relative 

priorities of objects in an audio-visual presentation can be used to schedule objects 

for delivery. To make a presentation schedulable, objects of lower priority could be 

dropped. Even different instances of an object may be assigned different priorities 

(e.g, higher priority for I and P frames and a lower priority for B frames in an MPEG 

video stream). These characteristics of the audio-visual services can be used to 

efficiently schedule a presentation with minimal resource consumption. 

4.2.1 System Model and Assumptions 

We discuss the scheduling of audio-visual objects in the context of a system 

consisting of client (end-user), server, and network components as shown in Figure 

4.1.a. Figure 4.1.b shows the server model. The server delivers objects in a 

presentation as scheduled by the scheduler. The scheduler uses the decoding 

timestamps to schedule the delivery of access units. A decoder is assumed at the far 

end that decodes the objects for real-time playback. On the client side, data is 

retrieved from the network and provided to the decoders at decoding time of that 

access unit. Any data that arrives before its decoding time is buffered at the terminal. 
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The terminal buffer model is not considered to keep the schedule independent of 

terminal designs. However we need the minimum buffer size for a class of terminals 

to compute object schedules. The data delivered from the server is transported on the 

channel established between the client and the server. The following assumptions are 

made about the content, decoders, network, and the server. 

Content: 

• An audio-visual presentation is composed of one or more objects (AV 

Objects). 

• An access unit (AU) is the smallest piece of data that can be associated with a 

decoding time. 

• An audio-visual object contains one or more access units. 

• Objects and their access units may be assigned relative priorities. 

  

Terminal/Decoders: 

• The decoders have given, limited memory for receiving and decoder buffers. 

• The object data is removed instantaneously from the buffer at the decoding 

time given by the object’s decoding timestamp.  

Elementary 
Streams 

Object 
Scheduler 

MPEG-4 
Pump 

DMIF 

DAI 
Network 
Interface 

DMIF 

DAI 
Network 

Decoder 
Buffers 

decoders 

Figure 4.1.a. Terminal Model 

Figure 4.1.b. Server Model 
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• An object/instance that is received before the decoding time is buffered in the 

decoder-input buffers until its decoding time. 

• More than one object instance may be present in the decoder-input buffers.  

Channel/Network: 

• End-to-end delays from the server to the player (including the transmission 

delay) are assumed to be constant. 

• The capacity required for the signaling channel is assumed to be negligibly 

small. 

• The transport layer is work conserving, and delivers the packets to the 

network instantaneously. 

Server: 

• Audio-visual objects are available at the server in the form of time-stamped 

access units. 

• All the access units of an object are delivered in their decoding order. 

• A server presents an access unit to the transport layer at the send time 

determined by the scheduler. 

4.2.2 Notation 

The following notation is used in this discussion. 

� — set of objects to be scheduled 

N  — number of objects to be scheduled 

ni — number of access units per object ( � �i N ) 

A kj ( )— access unit k of object j 
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A A k
j k

j� �
,

( )  — set of all access units in the presentation 

T kj
d ( )  — decoding time of A kj ( ) . 

T kj
s ( ) — send time of A kj ( ) . 

� � �
j k

j
sT k

,
( )  — the send-time schedule 

C — a transmission channel of capacity C. 

s kj ( )    — size in bytes of A kj ( )  

d kj ( )  — duration (channel occupancy) of access unit k on the wire; 

d k C sizeof A kj j( ) ( ( ));� �  

Bmax   — terminal buffer capacity assuming a single demultiplexing buffer. 

B t( )  —  buffer occupancy at time t. 

Ts  — startup delay. 

Ts
max — max startup delay. 

T d Ts k
k

k
min ( ) ( )  =         0 0 0� � �  — time to transmit AUs of all objects with 

DTS/CTS of zero. 

4.2.3 Problem Formulation 

Given a set of N objects that comprise an audio-visual presentation, with each object 

containing ni access units each with a decoding time T kj
d ( ) , of kth access unit of 

object j, a transmission channel of capacity C, terminal buffer of size B, allowed 

startup delay of Ts
max, and duration (channel occupancy) of each access unit on the 

channel, d kj ( ) : is there a schedule �  that satisfies the following constraints?  
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T k T k d kj
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d

j( ) ( ) ( )� �               (1) 
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 	1       (2) 

if i A j T d T T T di
s

i j
s

i
s

j
s

j� � 	 � 
 	{ }, then either or     (3) 

B t C d k j T k d k t T k tj
j k

j
s

j j
d( ) * ( ) ( ) ( ) , ( )

,

� � 	 � 
�  (4) 

 T Ts s� max        (5) 

 

Constraints (1)-(5) represent the conditions for transmission and playback of object 

based audio-visual presentations. Constraint (1) enforces the on-time delivery of 

access units. Ignoring the constant end-to-end delays, (1) gives the latest time an 

access unit can be transmitted. Constraint (2) imposes intra-object synchronization by 

enforcing precedence constraints among the access units. Access units are never 

transmitted out of order; they are transmitted in their decoding order. Since a single 

channel is used for transmission, channel occupancy of any two access units cannot 

overlap. Constraint (3) ensures that data is delivered on a single channel between a 

server and a client. Equation (4) gives the buffer occupancy at the end-user terminal 

at time t. Constraint (5) gives a bound on the startup delay for the given presentation. 

If the problem cannot be solved, i.e., a schedule that satisfies the given resource 

constraints cannot be found, some of the constraints could be relaxed in order to find 

a schedule. The constraints can be relaxed by: reducing the number of objects, 

increasing the startup delay, or increasing the channel capacity. 
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EXAMPLE:  

Consider the scheduling of a presentation with three objects as shown in Figure 4.2. 

Object 1 has five access units, object 2 has three, and object 3 has one access unit. 

The AUs are shown with increasing decoding time stamps from left to right. We have 

to find a schedule, if one exists, that sequences the AUs starting with the first AU of 

one the three objects and satisfying the constraints. Figure 4.2 shows one such 

sequence. The general problem of determining the existence of such a sequence is 

NP-complete. We prove that in Theorem 1 below. 

 

Scheduling is a complex problem and has been widely studied [30][37][42][107]. 

Many of the scheduling problems are NP-complete and a number of approximation 

algorithms are developed trading off optimality for tractability [61][116]. The 

scheduling problem closest to the audio-visual object scheduling is job shop 

scheduling on a single machine. There has been earlier work on scheduling on single 

machines. Complexity of machine scheduling problems is studied in [98]. Carlier 

proved the NP-hardness of one-machine sequencing problem in [29] and some 

approximation algorithms are discussed in [61]. Another problem with similarities to 

audio-visual scheduling is job scheduling with temporal distant constraints. NP-

Figure 4.2. Sequencing of access units in a 3-object Presentation 
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completeness results and polynomial time algorithms for a restricted instance of the 

problem are given in [72]. In spite of the similarities to the current problem, the 

approximation results for single machine scheduling problems cannot be applied to 

audio-visual object scheduling because of an entirely different problem domain and 

additional constraints on AV-object scheduling. Approximation algorithms are based 

on heuristics and domain knowledge is essential to develop good designs. Even 

though the results of single-machine scheduling are not directly applicable to audio-

visual presentations, some of the results can be used in scheduling individual objects 

on a channel. The results of single machine scheduling problem as formulated by 

Lawler in [95][96] may be used to determine the schedulablity of individual objects.  

4.2.4 Complexity of audio-visual object scheduling 

Theorem 1:  Scheduling of access units in Audio-Visual presentations (SAV) 

is ������Complete in the strong sense. 

 

Proof: We prove this by transforming the problem of SEQUENCING WITHIN 

INTERVALS (SWI), proven to be �����Complete in the strong sense [107]. 

 

We restate SWI below. 

INSTANCE: A finite set T  of tasks and, for each t T� , an integer release time 

r t( ) ,
 0  a deadline d t Z( ) ,� +  and a length l t Z( ) .� +  

QUESTION: Does there exist a feasible schedule for T, i.e., a function 

� :T Z� + , such that, for each t T t r t t l t d t� 
 	 �, ( ) ( ), ( ) ( ) ( ),� �  and if 

t T t then’ { },� � , either t l t t or t t l t� � � �( ) ( ) ( ) ( ) ( ) ( )’ ’ ’	 � 
 	  

 

The basic units of the SWI problem are the tasks t T� . The local replacement 

for each t T�  is a single access unit A kj ( )  with r A k T kj j
s( ( )) ( )
 � 1 , 
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d t T kj
d( ) ( )�  l t d kj( ) ( )� . We disregard the buffer and startup delay 

constraints. It is easy to see that this instance can be created from SWI in 

polynomial time. Since SWI can be transformed to SAV, SAV is at least as hard 

as SWI. 

 

Since SAV is �������Complete in the strong sense, it cannot be solved by a pseudo-

polynomial time algorithm. We present several polynomial-time algorithms based on 

heuristics and constraint relaxation and evaluate their performance with respect to 

speed and efficiency. 

4.3 Characterizing Object-Based Audio-Visual Presentations 

The complexity of an MPEG-4 presentation is an important factor that influences 

terminal design (in terms of support for content playback), the channel capacity 

required and also a server’s performance. In case of MPEG-2 content, the average bit-

rate and peak bit rate are good indicators of the resources required to process the 

stream. However, an MPEG-4 presentation cannot be characterized by individual or 

cumulative bit rates of the objects alone. For example, an MPEG-4 presentation may 

consist of a sequence of large JPEG images with accompanying audio. Such 

presentations tend to be very bursty over networks. Since objects may span any 

arbitrary time period during a presentation, the bit-rate of MPEG-4 presentations can 

be highly variable depending on the content of presentations. Furthermore, the result 

of combining CBR streams on a single channel is shown to be VBR [59] and object 

schedules generated based on CBR reservations [111] may not work.  

 



77 

 

The complexity of an MPEG-4 presentation mainly depends on the number and type 

of objects involved, object playout, and interactivity (local and remote). Complexity 

of a presentation may be functionally expressed as: 

 

C f N OT i P I I i Np i l r� � �( , ( ), , ),                  1  

C p N

OT i

Pi
Il Ir

 is the complexity of the presentation,   is the number of objects in the presentation

 is the object type

 is the object playout time (the length of time an object is present in a presentation)

 and  are possible local and remote events respectively.

( )

C OT i P f I g I i Np
i

N

i l r� 	 	 � �
=

� ( ) * ( ) (
1

1)                  

The above formula can be used to estimate the complexity of object-based 

presentations.  

 

On the server side, while the size of an object may indicate the complexity, on the 

player side, a number representative of the resources needed to decode an object is 

needed. This differentiation gives rise to different notion of content complexity at the 

server end and player end of a system. Duration of an object in a presentation is 

representative of the playout complexity. OT(i)*P(i) is a linear relationship indicating 

that an object that is played for a longer duration needs more resources and hence is 

more complex. When user interaction is allowed, the resulting asynchronous events 

consume more resources, may affect object scheduling, and also the required network 

and server resources. While local interaction with a presentation only affects a player, 

the user interaction resulting in a server interaction affects both the client and a server. 

The function g( )
  gives the complexity as a result of server interaction and the 
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function f ( )
  gives the complexity as a result of local interaction. This may be a 

negative value if it results in reduced complexity; e.g., when an object is removed 

from a presentation.  

4.4 Startup Delay and Terminal Buffer 

An MPEG-4 terminal has a finite buffer to store the received data until they are 

decoded.   The amount of buffer capacity required depends on the type and number of 

elementary streams being buffered. Since there are usually no limits on the number of 

objects in audio-visual presentations, it is not practical to have sufficient buffer for all 

presentations. A terminal should be designed to support a class of presentations. The 

amount of buffer available also determines the upper bound on the startup delay for a 

session. The higher the startup delay, the higher the buffer capacity required (with 

channel capacity remaining the same). When scheduling presentations, a scheduler 

should assume the minimum allowable buffer for terminals in order to support all 

terminal types. Even though the knowledge of the buffer occupancy at a terminal may 

help improve the schedule, it makes the schedule dependent on the buffer model used 

by the terminals. Since the buffer model and management in a terminal depends on 

terminal design, we designed the scheduler to be buffer model independent. 

 

Startup delay can be defined as the time a user has to wait from the time a request is 

made until the time the presentation starts. A startup delay of Ts is not equal to 

buffering Ts seconds of the presentation. The amount of startup delay varies from 

presentation to presentation and even for the same presentation, it may vary with 

varying resources (e.g, bandwidth and buffer). Startup delay can be viewed as 
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preloading the beginning of a presentation so that the presentation is played back 

continuously once the playback starts. The amount of startup delay required for the 

smooth playback of a presentation depends on the channel capacity. For any channel, 

the minimum startup delay is the time needed to transmit (buffer) access units that are 

presented at time 0 (AUs with timestamp 0). 

 

Consider a presentation composed of several images displayed on the first screen, 

followed by an audio track. The images to be displayed on the first screen should 

reach the terminal before the presentation starts, resulting in a startup delay. If the 

channel bandwidth reserved for the presentation is allocated based on the low bitrate 

audio stream that follows the images, the startup delay will be higher. On the other 

hand, if the higher bandwidth is reserved to minimize the startup delay, the capacity 

may be wasted during the remainder of the presentation when low bitrate audio is 

delivered. The tradeoff depends on resource availability and startup-delay tolerance 

of the application. 

 

Given a startup delay, Ts, the buffer required is equal to the size of the objects that can 

be loaded (transmitted to the client) in time Ts. The minimum buffer required for this 

delay is Ts * C. The minimum startup delay for any presentation is equal to the time 

required to transmit (load) the objects/ instances to be displayed at time 0. We refer to 

this time as Ts
0 . Ts

0 is the optimal startup delay for startup delay-optimal schedules and 

is the lower bound on startup delay for bandwidth-optimal schedules. 
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4.4.1 Residual Data Volume 

We introduce the notion of data volume to quickly compute the minimum startup 

delays needed for a presentation and determine the non-schedulability. Data volume 

(Vd) is the amount of data (in bits) transferred during a session. The amount of data 

that can be carried by a channel during a session is the data pipe volume 

( C Dp p= * ). The amount of data volume exceeding the data pipe volume is the 

residual data volume ( V Vres d p= � ). A positive Vres gives the lower bound on the 

amount of data to be loaded during startup and hence determines the lower bound on 

the startup delay for a presentation. A negative value of Vres indicates unused channel 

capacity during the session. We prove the lower bound on channel capacity required 

in Theorem 2 below. 

Theorem 2: For a presentation of duration Dp, the lower bound on channel 

capacity required for a startup delay-optimal schedule is:  

C C where C
V

D
d

p


 min min = , and the bound is tight. 

Proof: 

s k

D T n T n

d
j k

j
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j
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j

�
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�
,

( )

max{ ( )} min{ ( )}
 

For a presentation of length Dp, the data pipe volume at the given pipe capacity 

is 

C Dp p� *  

Assuming that the buffers are filled up at a rate C, the startup delay due to Vres 

is 

T V V Cs
res

d p� �( ) /  

To minimize the startup delay, 

 T V V C V Vs
res

d p p d� � � � �( ) / 0  
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Since C Dp p� * , substituting p we get the lower bound on the channel 

capacity 

C
V

D
d

p
min �  

From constraint (1)    

T T d T T s Cj
s
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d

j j
s

j
d
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We can show that the bound is tight by considering the example as shown in the 

Figure 4.3. 

A (1)  A (1) A1(2) 

10 8 4 0 

Figure 4.3. Example to prove the tightness of the bound 
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Object 1 has 2 AUs and object 2 has 1 AU. The decoding times and sizes of 

AUs in bytes are: 

T T T s s sd d d
1 1 2 1 1 21 4 2 10 1 8 1 10 2 5 1 10( ) , ( ) , ( ) , ( ) , ( ) , ( )� � � � � �     .  

With these values the send times and channel capacity are:  

T T Ts s s
1 1 21 0 2 8 1 4( ) , ( ) , ( )� � � ,  and  

C C bytes� �min . / sec2 5 . 

 

The actual channel capacity required to minimize startup delay may be higher 

depending on the timing constraints of access units. Note that irrespective of the 

channel capacity, the minimum startup delay remains non-zero and is equal to Ts
0 . 

Thus for any given presentation with resource constraints: 

the minimum startup delay is, T T Ts s
res

s
min max{ , }� 0  

the minimum buffer capacity required is, B T Csmin
min *�  

the presentation is schedulable only if the available buffer is at least equal 

toBmin . 

4.5 Scheduling Algorithms 

In this section we describe a family of scheduling algorithms for AV object 

scheduling. Given an AV presentation, the scheduling algorithms compute a delivery 

schedule according to the selected criteria. We assume that the terminal buffer is 

fixed and compute startup delay-optimal or bandwidth-minimizing schedules. The 

algorithms can also be re-purposed to compute the minimum terminal buffer required 

for a given channel capacity. Figure 4.4 shows the flowchart for selecting an 

appropriate scheduling algorithm. The choice of the algorithm depends on the 

applications, resource availability, and constraints. 
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4.5.1 Algorithm FullSched 

This algorithm is based on the last-to-first idea mentioned in [96] for scheduling jobs 

on a single machine. The main principle behind this algorithm is scheduling an AU 

with latest deadline first and scheduling it as close to the deadline as possible. The 

algorithm computes the schedule starting with an AU with the latest decoding time in 

the presentation. This algorithm computes the schedule, the required startup delay, 

and any channel idle times. The channel idle times computed are used in the gap-

scheduling algorithm described in Section 4.5.2. 

 

Presentation Resources 

Is this 
Schedulable? 

Find 
schedule 

YES NO 

Acquire 
resources?  

YES NO 

Relax 
Constraints? 

NO 

No schedule 

END 

YES 

Use priorities. 
Drop AUs 

Find the best 
schedule 

Acquire 
bandwidth?  

YES 

Find the bandwidth 
optimal schedule 

END 

NO 

Find delay 
optimal schedule 

Figure 4.4.  Determining the Schedulability of a Presentation 
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Let S be the set of current AUs to be scheduled. Initialize S to contain the last AU of 

each of the objects to be scheduled. Let xj be the index of the next AU of object j to 

be scheduled. 

x n j Nj j� � �,             1  

Initialize S A x j Nj j� � �{ ( )},            1  

S j( )   is the AU of object j to be scheduled next.  

S contains at most one AU for every object j. 

G is the set of channel idle times. Idle time is given by a tuple <t, d>, i.e, the channel 

is idle for duration d starting at time t. Initialize G � { }�  

Set current time i � �  

Sort AU of objects in the decreasing order of their decoding times. 

BEGIN 

 while ( )S � � { 

  i = min{i, max{T kj
d ( ) }},     T k A k Sj

d
j( ) ( )� �     

  T xj
s

j( )= i - d xj j( ) ; //send time for A xj j( )  

                        // Update i 

  i -= d xj j( ) ; 

  xj--; 

  // Update S by removing S j( )from S 

  S S j� � ( );  

  // add A xj j( )to S 

  if( x j � 0)  

   S AU j x j	 � ( , )     

  if i T kj
d( max{ ( )})� ,                T k A k Sj

d
j( ) ( )� �  

   // there is a gap on the channel 

   G T k i T kj
d

j
d 	 � �({max{ ( )}, {max{ ( )}) 
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 } 

 if Tfirst
s � 0 

 then T Ts first
s�  

 T k T j kj
d

s( ) , ,                  	 � �  

 END 

 

The process begins with S initialized with the last AU of each of the objects in the 

presentation and G initially empty. In each of the iterations, the AU with the latest 

decoding time is scheduled as close to the decoding time as possible. Ties are broken 

arbitrarily. Once the AU of an object is scheduled, the next AU of that object is added 

to S as long as there are AUs to be scheduled. The current time is given by i. A value 

of i greater than the largest decoding time of AUs in S (max{ ( )}T kj
d ) indicates idle 

time on the channel (gaps or slots). The channel is idle because nothing can be 

scheduled between max{ ( )}T kj
d  and i. This is illustrated in the example below. 

 

EXAMPLE:  Consider two objects O1 with two AUs and object O2 with one AU with 

duration on channel, d, and decoding time stamp, T given as a set of tuples <d,T>. O1 

={<7,7>, <10, 21>} and O2 = {<5, 6>}. After A1 2( )  is scheduled, at time T s
1 2( ) = 11, 

nothing can be scheduled between T d
1 1( )  = 7 and current time i=11 resulting in a gap 

d1(1)=7 d1(2)=10   d2(1)=5 

 T d
1 2 21( ) �  

0 

gap 

 T d
2 1 6( ) �  

 T d
1 1 7( ) �  

Figure 4.5. Applying FullSched to a two-object Presentation 

 T s
1 2 11( ) �   T d

1 1 0( ) �   T d
2 1 5( ) � �  
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on the channel. A negative value of the send time indicates that the AU has to be 

transmitted before the presentation starts giving rise to a startup delay. 

 

When S becomes empty, i.e., all AUs are scheduled, a negative value of i indicates 

the required startup delay for the presentation and G gives the set of gaps on the 

channel. Since the decoding times, T kj ( ) , are all non-negative, once i becomes 

negative, there are no gaps on the channel indicating that the AUs are tightly packed. 

A gap is not an indication of the sub-optimality of the schedule. However, it may 

indicate the sub-optimality of the bandwidth-optimized schedule; i.e, it may be 

possible to schedule the presentation at a lower bandwidth. When N=1, this algorithm 

can be used to determine the schedulability of individual objects and determine the 

un-schedulability of a presentation. This is especially useful during the content 

creation process where objects are added to create presentations. When an object is 

added during an editing operation, it is faster to determine the un-schedulability of a 

presentation by computing the independent schedules of objects and adding the 

startup delays of the independent schedules. However, a full schedule should still be 

computed after the editing operations to determine the schedulability of the 

presentation under given resource constraints. This algorithm is not efficient in 

computing the schedulability during the content creation process, as the full schedule 

needs to be re-computed every time an object is added. We next present a gap-

scheduling algorithm that computes incremental schedules to determine the 

schedulability of a presentation and is well suited for the content creation process. We 
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also prove that FullSched and gap-scheduling algorithm compute startup delay 

optimal schedules. 

Theorem 3:  Algorithm FullSched produces a startup delay-optimal 

schedule. 

 

Proof: The algorithm selects an AU with the latest decoding time and schedules 

it as close to the deadline as possible. i.e., the algorithm schedules the AUs in 

non-increasing order of their decoding times. On a conceptual timeline, with 

time increasing from left to right, we are stacking the AUs as much to the right 

as possible. Gaps occur only when there is nothing to be scheduled in that gap. 

Any (or part of) AUs that appear to the left of the origin (time = 0) give the 

startup delay. Since the algorithm always moves the AUs to the right whenever 

possible, the startup delay is minimized. A smaller startup delay is not possible 

because, it would mean moving the AUs to the right implying that there is a 

usable gap on the channel. This cannot be the case because the algorithm 

would have scheduled an AU in that gap! 

4.5.2 The GapSched Algorithm 

The gap-scheduling (GapSched) algorithm schedules AUs in the available gaps on a 

channel. It starts with available gaps on a channel and tries to fit an access unit or a 

partial AU using the SplitAndSchedule procedure. The initial set of gaps may 

be obtained by using FullSched to schedule a single object. The algorithm looks for 

the first available gap starting at a time less than the decoding time of the AU to be 

scheduled. Since G is already sorted in the decreasing order of gap-times, the look up 

can be done very efficiently. If the gap duration is not long enough to fit an AU, the 

AU is split, with one part scheduled in the current gap and the other added to S to be 
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scheduled next. The AUs in the presentation are iteratively scheduled until S becomes 

empty. 

S contains all the AU of the object j 

S A k k n j Nj j� � � �{ ( )}, , { }           1  

Sort AUs in S in the decreasing order of their decoding times 

G � �set of available slots { }� . 

G(l), is the l th tuple in G with start time G(l).t and duration G(l).d. 

k n j�  

BEGIN 

 while ( )S � � { 

  find a slot l, G(l), such that T k G l tj
d ( ) � ( ).  

  if G l d d kj( ( ). ( ))
 { 

   T k G l t d kj
s

j( ) ( ). ( )� �    //send time for A kj ( )  

   k--; 

   // update the gap 

   if G l d d kj( ( ). ( ) )� � 0  

    G l d G l d d kj  ( ). ( ). ( )� �  

   else 

    G G l � � { ( )}; 

                        // remove AU from the set 

   S A kj� � ( ); 

  } 

  else{ 

   PROCEDURE SplitAndSchedule ( A kj ( ) ,G(l)); 

  } 

 } 

END 
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Split the AU into two parts, one part that is scheduled in G(l) and the other that is 

placed back in S. 

PROCEDURE SplitAndSchedule ( A kj ( ) ,G(l)){ 

Create a sub - AU of length  containing the last  bytes of the AU

 

G l d G l d C

t k G l t

d k d k G l d

G G l

j

j j

( ). ( ). *

( ) ( ). ;

( ) ( ) ( ). ;

{ ( )};

’ �

� �
� �

} 

4.5.3 The IncSched Algorithm  

The incremental scheduling (IncSched) algorithm computes the schedule for a 

presentation by considering one object at a time. This is a typical content creation 

scenario where objects are composed to create a presentation. Instead of re-computing 

the full schedule with FullSched algorithm each time an object is added, this 

algorithm computes the schedules incrementally by scheduling the AU in the 

available gaps. Note that not all the gaps are schedulable. A gap is un-schedulable if 

there are no AUs with decoding times greater than the gap time. An un-schedulable 

gap indicates unused bandwidth, which is either due to the structure of the 

presentation or due to a sub-optimal schedule. The IncSched algorithm uses 

FullSched and GapSched algorithms to schedule a presentation. This algorithm 

appears to be more efficient than FullSched as it schedules parts of AUs and fills all 

the gaps. However, this is only as efficient as FullSched as far as startup delay is 

concerned. Splitting the AUs in order to pack the gaps is not going to decrease the 

startup delay, as the available channel capacity is the same. The startup delay, like in 

other cases, is given by the send-time of the first AU transmitted. 
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OBJ is the set of objects in the presentation. 

BEGIN 

Apply FullSched and compute schedule for object 1. 

//LRG is a sufficiently large number to accommodate startup delay. 

 G LRG i LRG 	 � � � � �{ , } 

 for j OBJ� � { }1 , apply gap scheduling GS to j. 

 for j OBJ� , find t first , the send time of the first AU to be transmitted 

(smallest t kj ( ) ) 

 if Tfirst
s � 0 

 then T Ts first
s�  

 T k T j kj
d

s( ) , ,                  	 � �   

END 

 

Theorem 4: The IncSched algorithm is startup delay-optimal. 

 

Proof: The first object is scheduled using FullSched producing a startup delay-

optimal schedule for that object. GapSched, when applied iteratively to the 

remaining objects, packs the AUs tightly; i.e., an access unit is scheduled if the 

gap time is less than the decoding time for that AU. The resulting startup delay 

is optimal because the algorithm would reduce the startup delay by moving the 

AU to the right on the timeline if any schedulable gap is available.  
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EXAMPLE:  Consider two objects O1 with two AUs and object O2 with one AU with 

duration on channel, d, and decoding time stamp, T given as a set of tuples <d,T>. O1 

={<7,7>, <10, 21>} and O2 = {<5, 6>}. The top part of the Figure 4.6 shows the 

schedule computed using FullSched and the bottom half shows the schedule 

computed with IS, with object 2 scheduled first using FullSched. The figure also 

shows un-schedulable gaps in both the schedules.d 

 

There may be cases where splitting the AUs is necessary, for example, the underlying 

transport layer may not be able to handle large AUs. This result shows that AUs can 

be split while maintaining the optimality of the schedule. Although the IncSched 

algorithm produces an optimal schedule and is useful in determining the 

schedulability of a presentation in applications such as content creation, the schedule 

generated by FullSched may be more efficient when the overhead due to splitting and 

packetizing is significant.  

d1(1)=7 d1(2)=10   d2(1)=5 

0 

Split A1 (1) 

d1(2)=10   d2(1)=5 

0 

Startup delay = 5 Un-usable gaps 

Figure 4.6. Schedules Computed Using FullSched and IncSched 

 T d
1 2 21( ) �   T d

1 1 7( ) �  

 T d
2 1 6( ) �  



92 

 

4.5.4 Algorithm MinC 

In scheduling audio-visual objects, we have so far answered two questions: 1) is the 

given presentation schedulable under the given resource constraints and 2) what is the 

minimum startup delay required for this presentation. If the answer to question 1 is 

negative (or if bandwidth consumption needs to be minimized), the question we need 

to address is: what are the minimum amounts of resources required to schedule the 

presentation. Since we cannot make assumptions about decoder buffers in order to 

keep the schedules player-independent, the only resource that can be acquired is the 

bandwidth (C). We next present the MinC algorithm that computes the minimum 

bandwidth required (CBR) to schedule a presentation. 

 

This algorithm is based on the premise that there is a gap on the channel only when 

everything else after the gap-time has been scheduled. Otherwise an un-scheduled 

AU would have taken up the gap. The presentation is not schedulable because there is 

not enough channel capacity until the first gap time, Tg (smallest gap time). Consider 

the case in Figure 4.7. Tg is the first gap-time, Ts
max, is the maximum allowable startup 

delay with the current channel capacity, and Ts is the current start-up dealy. The 

channel capacity should be increased to accommodate Ts -Ts
max in the duration Tg -

Ts
max. The new value of C then is C T T T T T T Cg s s s g snew  � 	 	 � 	(( ) ( )) / ( ) *max .  The 

   

  Ts max 0   Ts 

Scheduled AUs       

  Tg   Tlast 

Figure 4.7. First gap-time and startup delay of a presentation 
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algorithm also outputs the bandwidth profile (BP) for the presentation in the form of 

3-tuples <capacity, start, end>. Note that the increased channel capacity is not going 

to affect the schedule from Tg to Tlast. A finer bandwidth profile can be obtained by 

initializing C with Cmin and increasing C by a small value in each iteration. 

BEGIN 

 G Gc �  = gap count, number of gaps on the channel. 

 BP � { }�  

 Tlast is the decoding time of the first AU scheduled (= duration of the 

presentation)  

 C = Cmin, computed using the results of theorem 2.  

SCHEDULE: compute schedule using FullSched 

If schedulable goto END 

if  (Gc == 0) 

 Tg = Tlast   

else { 

 Tg-old = Tg    

 Find the smallest gap time, Tg  

 BP += {<C, Tg, Tg-old >} 

} 

C T T T T T T Cg s s s g s � 	 	 � 	(( ) ( )) / ( ) *max   

goto: SCHEDULE 

END 

 

The channel capacity output by the algorithm is in the form of a set of 3-tuples 

forming a bandwidth profile. The minimum CBR channel required is given by the 

maximum value of C in the bandwidth profile. This profile may also be used to 

reserve session bandwidth efficiently. Since the schedule is computed from last to 

first (right-to-left on the timeline), the bandwidth profile will always be a step 
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function with possible steps (decreasing) from left to right. Figure 8 shows some 

sample profiles. This algorithm does not give the best profile to reserve variable 

session bandwidth since the algorithm does not reduce the bandwidth when it is 

unused. Consider the example shown in the Figure 4.8. At Tg, a capacity increase is 

necessary. Suppose the increase in C at Tg is sufficient to schedule the presentation. It 

is possible that the presentation from 0 to Tb could have been scheduled with a much 

smaller capacity. 

4.5.5 Algorithm BestSched 

When a presentation cannot be scheduled with the given resources, and additional 

resources cannot be acquired, the only way to schedule the presentation is to drop 

some access units. AUs cannot be dropped arbitrarily as they have different effects on 

the presentation. Content creators should assign priorities to objects and possibly AUs 

of objects to help a scheduler in determining the AUs to be dropped. The following 

algorithm schedules a presentation by dropping lower priority objects. 

 

BEGIN 

SCHEDULE: Compute schedule using FullSched. 

 if (B <= Ts * C) { 

  Remove A kj ( )of lower priority objects such that,  

  R A k d k T C Bj j s� � 
 ��{ ( )} ( ) *             C *   

0 Tlast Tg Tb 

Figure 4.8. Typical shapes of bandwidth usage generated by MinC 
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  A R � � { } 

  goto: SCHEDULE 

 } 

END 

4.6 Discussion and Results 

Determining the schedulability of a presentation is of O(n) complexity, where n is the 

number of AUs in the presentation. Both FullSched and GapSched fall under this 

category. These algorithms are used to determine the schedulability, compute an 

optimal startup delay for the given channel capacity, and for computing incremental 

schedules. The MinC algorithm, used to compute the minimum channel capacity 

required to schedule the presentation, calls FullSched iteratively with channel 

capacity incremented in each iteration. The number of iterations depends on the 

structure of the presentation and the initial value of C. The complexity of this 

algorithm is O(Kn) = O(n), where K is a constant determined by the structure of the 

presentation and the initial channel capacity. The proposed algorithms are fast enough 

to determine the schedulability of the presentations in real-time.  

 

I1 

I2 

I3 

I4 

S1 

O1 

I5 

I6 

I7 

I8 

I9 
I10 

I11 

I12 

0  
10  15 16 122  

Time in seconds 

Figure 4.9. Structure of the presentation in the example 

80  
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The structure of the presentation has significant impact on the performance of MinC 

algorithm. To aid the discussion, we consider a relatively complex MPEG-4 

presentation with structural overview as shown in Figure 4.9. The properties of the 

objects in the presentation are tabulated in Table 4.1. 

Table 4.1: Properties of objects in the example 

Object 

FileName (ID) 

Size (KB) Start 
Time 

AU 
Count 

Scene.od (O1) 0.5 0 1 

Scene.bif (S1) 1 (1025 Bytes) 0 4 

Main1.jpg (I1) 25 0 1 

Main2.jpg (I2)  22 0 1 

Main3.jpg (I3) 19 0 1 

Main4.jpg (I4) 20 0 1 

main_ui.jpg (I5) 39 10 1 

Advent_logo.jpg (I6) 7 10 1 

CU_logo.jpg (I7) 9 10 1 

Lm_logo.jpg (I8) 6 10 1 

Xbind_logo.jpg (I9) 8 10 1 

geo_pict.jpg (I10) 23 15 11 

dance_pict.jpg (I11) 29 15 1 

next_page.jpg (I12) 51 16 1 

clip01.h263 (V1) 552 16 974 

clip01.g723 (A1) 64 16 3233 
 

In the following discussion we refer to objects by the codes shown in the first column 

of the table. The presentation is made up of 16 objects including scene description, 

object description, images, audio, and video. The presentation is composed of three 

scenes. Before the scenes are loaded, the scene description and object description 
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streams are received and decoded by the terminal. The first scene consists of four 

jpeg images (I1 - I4) animated to give a breakout effect. The scene is encoded to 

animate the images for 10 seconds and then load the second scene. The second scene 

consists of a background image (I5), four logos with animation effects (I6 - I9), and 

two images (I10 and I11) with descriptive text of the following audio-visual scene. 

The last scene consists of a background image, an audio stream, and a video stream. 

The temporal layout of the presentation is shown in Figure 4.9. The times indicated 

are the decoding times of the first AUs of the objects starting at that time. Thus the 

first four images (I1-I4), the scene description (S1) and the object descriptor stream 

(O1) should reach the decoder before anything is displayed on the screen. This 

amounts to the minimum startup delay for the presentation. The objects I5 - I9 should 

reach the decoder by the time t = 10, I10 and I11 by 15, and the first AU of V1 and 

A1, and the object I12 should reach the terminal by the time t = 16. The video ends at 

t = 80 while the audio stream continues until the end of the presentation. The total 

length of the presentation is 122 seconds. This temporal ordering of objects in the 

presentation results in higher data rates toward the beginning of the presentation 

(object data to be delivered in the first 16 seconds: 261 KB ~= 130 Kbps). 

4.7 Startup Delay and Capacity Computation 

Figure 4.10 shows the plot of the minimum channel capacity required for a given 

startup delay. This is a scenario with variable buffer at the terminal. We assume a 

work-conserving transport layer that delivers the objects at the minimum required 

capacity. The amount of buffer available at the terminal should be at least sufficient 

to store the data during the startup. For a startup delay of Ts , if Cmin  is the min 
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Figure 4.10. Computing min capacity using MinC 

capacity required, then the buffer at the terminal B T Csmin min� � . This curve is useful 

to determine the amount of buffer (delay) required based on the available network 

capacity, especially with terminals such as PCs with sufficient memory. As 

mentioned earlier in the discussion of the MinC algorithm, the MinC algorithm also 

computes the bandwidth profile for presentations. Figure 4.11 shows the bandwidth 

profile computed for a startup delay of 5 seconds. The minimum capacity in the 

profile is 59 Kbps even for the segment (80 - 120 secs) that only has low bit rate 

audio (6 Kbps). This is because MinC starts with an initial value of C computed using 

the residual data volume as described in Section 4.4. This starting point is acceptable 

for computing a CBR channel required; for a profile to be used in reserving variable 

network resources, a lower initial value of C should be selected. The final bandwidth 

jump in the profile gives the minimum channel capacity required for the given delay 

or buffer. 
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Figure 4.11. Computing the bandwidth profile using MinC 

Bandwidth profile given startup delay (5000 ms)

135

79 75

59
50

70

90

110

130

150

16000 79162 80086 122656

Time (msec)

C
h
an

n
el

 C
ap

ac
it

y
 (
K

b
p
s)

 

4.8 Buffer and Capacity Computation 

The available buffer at the terminal determines the amount of startup delay a terminal 

can support. The available channel capacity imposes a lower limit on the buffer 

required. Lower channel capacity implies higher startup delays and hence larger 

required buffer.  Figure 4.13 gives the required buffer at various channel capacities. 

This can be directly converted to the startup delay at that capacity. Computing the 

capacity for a given buffer is bit more computationally intensive. Unlike the previous 

case where we assumed enough capacity to support the required startup delay, the 

buffer capacity is fixed in this case. This typically the scenario when using dedicated 

devices such as set-top-boxed with fixed receiving buffers. Since the buffer is fixed, 

the supported startup delay decreases as channel capacity increases. For MinC 

algorithm to complete, the reduction in startup delay due to increased channel 

capacity should be greater than the reduction in startup delay supported by the buffer. 
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Figure 4.12. Minimum required buffer 

Figure 4.13. Min Capacity for a given buffer 
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Figure 4.14 shows a case with terminal buffer � Bmin . For the given presentation, 

B KBmin � 85 , the size of objects to be decoded at time 0. As discussed in Section 4.4, 

for a presentation to be schedulable, the available buffer should be greater than Bmin , 

the lower bound on the required buffer capacity for the presentation. Since the 

terminal buffer is less than the required buffer, at any given capacity C, the supported 

startup delay 
B

C

B

C
term � min , the required startup-delay. The presentation is hence un-

schedulable with terminal buffer capacity of 84 KB. This is depicted in Figure 4.14, 
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Figure 4.14. Partial profile for low terminal buffer 

which shows the presentation is un-schedulable even at 3323 Kbps. The plot shows 

that no matter how much the channel capacity is increased, the presentation cannot be 

scheduled because of limited terminal buffer. To avoid infinite loops in MinC, the 

scheduler should first examine the available and required buffer capacities.  
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4.9 Conclusion 

We presented the problem of scheduling audio-visual objects under resource 

constraints. The problem is ��-complete in the strong sense. We explored 

similarities with the problem of sequencing jobs on a single machine and used the 

idea of last-to-first scheduling to develop heuristic algorithms to determine 

schedulability and compute startup delay-optimal schedules. We introduced the 

notion of residual data volume to compute lower bounds on buffer, channel capacity 

and startup delay. Determining the schedulability of presentations online is important 

for applications like content creation where an additional object may make the 

presentation un-schedulable. We presented an algorithm that computes incremental 

schedules and produces a startup delay optimal schedule. Starting with a lower bound 



102 

 

on the channel capacity for scheduling a presentation, the MinC algorithms minimizes 

the CBR channel capacity required to schedule the presentation. The proposed 

algorithms are of low complexity and can be implemented efficiently.  
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Chapter 5 
 
Scheduling Interactive AV Presentations 

5.1 Introduction 

Interactivity in the context of audio-visual presentations suggests the features 

enabling the users to interact with the presentation. In the case of object-based 

presentations, this includes user interaction with individual objects and interaction 

among the objects themselves.  Interaction with the objects in a presentation results in 

events that may alter the presentation or may just process some information without 

affecting the objects in the presentation. These events can be synchronous, happening 

at a predetermined time or asynchronous, happening anytime, usually within a time 

window during a presentation. Synchronous events can be classified into two types: 

certain events, happening at a predetermined time, and user events, happening at a 

predetermined time but only if the user interacts with an object (e.g., user interaction 

changing the ending of a movie). Asynchronous events, as the name indicates, happen 

when a user interacts with the objects and hence timing of such events is not known 

until the event happens. Of significance to the delivery-scheduling problem are the 

events that alter the presentation by adding and removing objects.  

 

AV Object
SERVER 

User 
Terminal 

User interaction messages 

AV Objects 

Session with reserved resources 

Figure 5.1. Message Exchange in User Interaction 



104 

 

Figure 5.1 shows the exchange of messages in interactive audio-visual presentations. 

If an event results in the addition of objects to a presentation, new resources will be 

required in order to schedule the altered presentation. A new schedule is needed only 

when the objects are added to a presentation. When objects are removed from a 

presentation, it does not affect the rest of the schedule, however rescheduling may 

save some network resources. 

 

When a user is presented with a choice to interact with the presentation, the number 

of objects delivered changes only when the user chooses to interact with the 

presentation; i.e., for every possible user event, there are two possible schedules. 

With each event resulting in an altered schedule, the possible number of schedules 

grows exponentially with the number of events (2n). A brute-force way of 

determining the schedulability by computing the feasibility of each of these schedules 

becomes impractical as the number of events grows. Figure 5.2 shows the exponential 

growth in the number of possible schedules due to user events. Consider the case 

depicted in Figure 5.3. When an event e1 happens, the objects are scheduled 

according to the schedule S12 and scheduled according to the schedule S11 if the event 

does not happen. It is easy to see that the options increase exponentially with the 

number of events (2n, where n is the number of events). To determine the 

schedulability of interactive presentations, we have to examine if the presentation is 

schedulable under all the possible combination of events. The events have to be 

analyzed with respect to the resources required to support the events and the 

resources available when the events happen. To make the problem of determining the 
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schedulability of interactive presentations tractable, a presentation can be viewed as 

consisting of a core and an interactive component. The core component of the 

presentation contains objects that are delivered synchronously while the interactive 

component contains objects that may be added/removed upon user interaction. To 

determine the schedulability of a presentation, we can compute the schedulability of 

the core presentation and the interactive components of the presentation separately. 

Typically events happen within specific time windows during a presentation. These 

event windows are designed by a content creator during the content creation process. 

Figure 5.3 shows the event window, the start time TS, and the end time TE, for an 

event that adds an object of duration D. Since the event that adds objects to a 

presentation can happen anytime from TS to TE, the object playout could start as early 

as TS and last as long as TE + D. The time interval [TS, TE +D] is referred to as the 

event extent. The resources required to satisfy an event should be reserved at least 

until the end of the event window and can be released at the end of the event window 

if the event doesn’t happen. For overlapping extents, it is not possible to compute the 

S11 

S0 

S12 

Si2 Si1 Si3 Si2
i 

Sk2 Sk1 Sk3 Sk2
k 

S22 S21 S23 S24 

e  

e  

e  

e  

events 

Figure 5.2. Possible Schedules as a Result of User Events 
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schedules of the objects together without knowing when the events are going to 

happen. If there are two or more possible events overlapping in time, the resources 

required to complete the events should be computed separately. Since non-

overlapping events could use the same channel bandwidth, all the events should be 

considered when computing the amount of capacity required for the interactive 

component. Furthermore, if the required capacity is computed using MinC algorithm, 

the capacity cannot be reserved according to the resulting bandwidth profile since 

there is no way of determining when the event happens. The channel capacity 

required to complete an event is the CBR channel required for the objects involved. A 

combined object schedule for the objects added because of interaction should be 

computed only for those objects that are added as a result of the same event. Even 

though reserving resources that may not be used seems unreasonable, there is no other 

way to guarantee proper response to events in interactive presentations. The 

algorithms presented in the next section minimize the auxiliary capacity required to 

support interactive presentations. 

 

5.2 Event Specification 

We specify an event as a 4-tuple <  ,  ,  >T T D OS E, � . TS and TE are the beginning 

and end of the time window during which the event may happen, D is the duration of 

Object with playout duration D 

Event Window 

TS TE 

Figure 5.3. Event Window and Event Extent 

Event Extent 

TE
 * 
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the object added (0 if removed), and O is the object list with + indicating addition and 

- indicating removal of the object. With this notation, we can represent interactive 

audio-visual presentations as two sets of such 4-tuples, one with certain events 

corresponding to the objects in the core presentation (with TS = TE) and the other is 

the interactive component of the presentation, corresponding to the objects that are 

added or removed as a result of user interaction. An interactive presentation is 

schedulable only if the core and the interactive components are schedulable. We can 

determine the schedulability of the core and the interactive components of a 

presentation separately using the algorithms presented in Chapter 4. We also need 

algorithms that consider the event overlap and compute the minimum capacity 

required to support the interactive component. 

 

To support user interaction that involves adding objects to a presentation, it would be 

necessary to reserve some channel capacity to support anticipated user interaction. 

The issue here is to determine the minimum channel capacity required to support user 

events. It is necessary to compute the capacity required to complete each event 

separately for cases where only some of the events are supported because of resource 

constraints. 

5.3 The MinC-I Algorithm 

The algorithm MinC-I computes the minimum capacity necessary for the interactive 

component of a presentation. The algorithm first computes the minimum capacity 

required for each of the events separately using the MinC algorithm. In the next step, 

the algorithm finds non-overlapping time segments and the capacity required for each 
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of the segments. The event extents are linearized into a sequence of start-times and 

end-times of segments in a non-decreasing order. The set I contains 3-tuples, each 

formed with a start-time or an end-time, a boolean value indicating if the time is an 

end-time, and the channel capacity required for the event the 3-tuple belongs to. The 

elements of I are now 3-tuples <T, B, C>, where T is the start time or end time, the 

boolean B is true if the time is an end time of a an event, and C is the capacity 

required for that event. SEG is a set of 3-tuples, each 3-tuple representing a time 

segment with start-time, end-time and channel capacity for that segment. < TS, TE, C>. 

In each iteration, the next non-overlapping segment and the channel capacity required 

are computed. Since the segments are non-overlapping, the largest capacity segment 

gives the maximum capacity required to support the interactive presentation. The 

operation of the algorithm is illustrated in the example following the algorithm. 

 

S  is the set of 4-tuples representing the interactive component of a presentation 

resulting in object additions 

 

S i( ) is the ith 4-tuple of the set. 

BEGIN 

 // find the min C required for each event 

 while( )S � � { 

  MinC ( ( ))S i ; 

  S S i  � � ( ) ; 

  i++; 

 } 
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 //for every non-overlapping segments on the channel 

//find SEG(i).<st, et, C> 
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} 

END 

 

EXAMPLE: The example shows 5 event extents (start-time until the latest possible end 

time). The capacity required for each of the events is C ii ,  1 5� � . The start-time and 

end-time of the events are st et ii i,   , 1 5� � . 

I st F C st F C et T C et T C st F C

st F C et T C et T C st F C et T C

� � � � � � � � � � �
� � � � � � � � �

{ , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , }
1 1 2 2 1 1 2 2 3 3

4 4 4 4 3 3 5 5 5 5      <
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The table shows the segments and the channel capacity for each segment. Note that 

the algorithm outputs spurious segments of zero length, segments with same start-

time and end-time (marked with an * in the table). Such segments are discarded. 

Table 5.1: Example of the MinC-I Algorithm 

SEG(i) ST ET C 

1 st1 st2 C1 

2 st2 et1 C1 +C2 

3 et1 et2 *C2 

4 et2 st3 0 

5 st3 st4 *C3 

6 st4 et4 C3 +C4 

7 et4 et3 C3 

8 et3 st5 *0 

9 st51 et5 C5 

 

 

5.4 Dynamic Scheduling and Resource Re-negotiation 

When objects are added to or removed from a presentation, the channel capacity 

needed for the presentation changes. For additions, additional capacity should be 

acquired and for deletions channel capacity can be released. Additional channel 

capacity may not be available when an object is added to a presentation. In order to 

guarantee the support for interactive presentations, additional channel capacity 

required for added objects should be reserved at the beginning of the presentation. 

However, for objects that are deleted form a presentation, excess capacity can be 

1 

2 

3 

4 5 

Figure 5.4. Interactive components of a 
presentation showing the event extents and 

event numbers 
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released upon user interaction. The capacity to be released depends on the structure of 

the objects in the presentation and the structure of the presentation itself.   

 

Theorem 5:  C C j Nj
j

� � ��      1 , i.e., the capacity required to schedule a 

set of objects together is at most equal to the sum of the capacities required to 

schedule the objects individually.  

 

Proof: Consider the worst case, C C j
j

� � , this is apparently true since C can 

be split into N separate channels to schedule the presentation. When the objects 

are scheduled together any gaps on the channel when an object is scheduled 

individually may be used for scheduling other objects thus reducing the 

capacity required when scheduling the objects together. This result is useful in 

releasing resources when objects are removed upon user interaction. 

 

This result cannot be used to release resources in generic object-based presentations. 

Specifically, this result is useful only when the objects involved are periodic audio-

visual objects (such as audio and video). Consider the case depicted in Figure 5.5. 

Suppose that the structure of object 1 is such that, it does not have any access units to 

be scheduled during the period when object 2 and object 3 overlap. During that period, 

only objects 2 and 3 occupy the channel. The resulting presentation has a structure 

that results in a channel capacity roughly equal to the capacity required to deliver 2 

Obj 2 
Obj 3 

Obj 1 

t 

Figure 5.5. Overlapping events 
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objects. Further suppose that user interaction results in the removal of object 2 at time 

t. Upon such a user event, the capacity cannot be reduced by an amount 

corresponding to object 2 as it will render the remaining presentation un-schedulable. 

 

When objects are removed from a presentation, the channel capacity cannot always 

be reduced by releasing resources. The way resources are consumed is completely 

dependent on the structure of the objects and time-relationships among objects. 

Theorem 5 can be applied to reduce the reserved channel capacity only when the 

objects involved are continuous and periodic media streams. A server’s response to 

user interaction, in terms of renegotiating the channel capacity, thus becomes content 

dependent. 

 

For continuous media objects that are removed as a result of user interaction, the 

unused channel capacity can be released. The send-time of the remaining AUs should 

be updated to reflect the new reduced channel capacity. Algorithm AdjustSchedule, 

given below, re-computes the send time to reflect the changes. 

5.5 Algorithm AdjustSchedule 

Object k is removed from the presentation because of user interaction. 

C  = current channel capacity 

Ck = channel capacity required to schedule object k. 

C C Ck
’ � �  = reduced channel capacity 

n is the total number of AUs (from all objects) in the presentation. The AU are 

indexed in the increasing order of their send times. 
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m is the index of the first AU to be scheduled after removing object k. 

 

BEGIN 

 T T S Cn
s

n
d

n� � / ’ 

 

while n m

if T AU k

T T S C T S C

else

remove the AU from the schedule

n

n
s

n
s

n
d

n n
d

n

( ){

( , ){

max{ / , } / ;’ ’

�

� 

� 	 �

-

- - -

--

     (

        

    } {

             ;

    }

     ;

1

1 1 1

 

END 

 

Starting with the last AU to be scheduled, the algorithm adjusts the send time of the 

AUs. Since the AUs are already scheduled in the order of their decoding times, we 

traverse the schedule from the last to the current AU. If the AU belongs to the deleted 

object, it is removed from the schedule.  

5.6 Content Creation 

Creating object-based audio-visual presentations is not as straightforward as creating 

MPEG-2 content for TV broadcasting. The features of object-based presentations 

allow the creation of content that varies in complexity. The content can be as simple 

as multiplexed audio and video (e.g., MPEG-2 audio and video multiplex) or as 

complex as a presentation composed of a large number of objects of different types 

with dynamically changing scenes and user interaction. The complexity of object-

based presentations cannot be characterized by a single bitrate. The complexity of a 
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presentation depends on the number of objects in the presentation, the type of objects, 

and dynamic object addition and deletion due to user interactivity. 

 

One important consideration during content creation is the suitability of content for 

delivery over networks with different capacities and to terminals with different 

resources. During the content creation process, authors should specify alternative 

representations for objects so that the servers can deliver appropriate objects based on 

feedback from the terminals and the network. Determining the alternative 

representations for presentations dynamically is a difficult problem especially when 

considering both terminal and network resources. Content creators need the feedback 

from the scheduler during authoring in order to specify alternative representations for 

objects and/or their composition in order to make the presentation schedulable under 

different resource constraints. An un-schedulable presentation can be made 

schedulable by removing/replacing certain objects or by decreasing an object’s size 

(e.g., by decreasing the resolution) or by changing the object playout, i.e., the times 

when an object enters and leaves a scene. Assigning priorities to objects and access 

units for servers to drop certain objects and/or access units to deliver the presentation 

under resource constraints.  The content creator is in the best position to assign 

priorities so that the integrity of the presentation does not suffer when objects are 

dropped. 

 

When creating interactive presentations, the core and interactive components should 

be created as independent components with interactive component only enhancing the 
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core component. This separable design of interactive presentations does not force 

users to interact with the presentation. Furthermore, when interactive component 

cannot be delivered because of low network or terminal resources, the presentation 

will still be meaningful to the user.  

5.7 Conclusion 

We presented the problem of scheduling interactive audio-visual presentations under 

resource constraints and discussed the issues in delivering such presentations. User 

interaction may result in asynchronous or synchronous events. The events that affect 

the delivery are those events that add or delete objects in a scene. While adding 

requires more resources, both network and server resources, deleting objects reduces 

resource consumption. Since it may not be possible to acquire resources during a 

session, resources must be reserved during session setup to support user interaction 

that results in object addition. We introduced a notation to represent interactive 

presentations in terms of its core and interactive components. This allows us to 

determine the schedulability of core and interactive components separately. For the 

interactive component, we compute the resources required to complete each event. In 

the face of resource scarcity, only the most important events or the events that can be 

supported with the available auxiliary capacity can be supported. We presented 

algorithms to compute the additional capacity required for interactive events that 

result in object addition and to compute the amount of resources that can be released 

when objects are deleted. 

 



116 

 

Chapter 6 
 
 
Conclusions and Future Work 

 

We presented our work in the area of audio-visual communications. Our contributions 

follow the natural evolution of audio-visual services from delivering digital audio-

visual content to delivering object-based audio-visual services. Our initial 

contributions in this area are toward the development of Columbia’s VoD testbed. The 

key contributions made are the design of the application server for VoD services, 

distributed video pump, application signaling, adapting the system for browser-based 

clients, and contributions toward the development of DAVIC standards by means of 

proof of concept implementations and interoperability experiments.  

 

We designed the application server by separating the resource intensive audio-visual 

content delivery from data and service delivery using. These well-defined interfaces 

and their implementation using CORBA is essential for localizing bandwidth 

intensive video traffic to network segments. With streaming media over the Internet 

becoming more common, traffic localization together with congestion control 

mechanisms is necessary to prevent congestion collapse in networks. We designed the 

server interfaces to support different client platforms with the same server. We 

showed that implementation and experimentation is essential to standardizing systems 

with a very broad scope such as DAVIC. 
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The natural extension of our work in audio-visual services is object-based audio-

visual services that allow a finer grain of control on the delivery and presentation of 

audio-visual content. We contributed to the development of MPEG-4 Systems which 

specifies tools for representing object-based audio-visual presentations. Our 

contributions to the development of the MPEG-4 Systems standard are in the areas of  

bitstream design, terminal architecture, user interaction framework, and file format. 

We designed the bitstream architecture based on the premise of separating meta-data 

from the media data and hierarchical representation of object-based presentations. 

The bitstream is also designed to dynamically update the scenes using composition 

updates, node addition, and node deletion. We proposed the original architecture for 

user interaction and file format in MPEG-4 Systems. Even though the final form of 

these components in the MPEG-4 standard differ from the proposed versions, the 

contributions formed the underlying basis and helped in the final definition of the 

MPEG-4 Systems specification.  

 

We continued our work on object-based audio-visual services by considering the 

implications of object-based representation on scheduling and delivery over networks.  

The structure and nature of an MPEG-4 presentation determines the complexity of the 

content both for delivery and presentation. We presented the problem of scheduling 

audio-visual objects under resource constraints. We showed that the problem is NP-

complete in the strong sense. We explored similarities with the problem of 

sequencing jobs on a single machine and used the idea of last-to-first scheduling to 

develop heuristic algorithms to determine schedulability and compute startup delay-
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optimal schedules. We introduced the notion of residual data volume to compute 

lower bounds on buffer, channel capacity and startup delay. Determining the 

schedulability of presentations online is important for applications like content 

creation where an additional object may make the presentation un-schedulable. We 

presented an algorithm that computes incremental schedules and produces a startup 

delay optimal schedule. Starting with a lower bound on the channel capacity for 

scheduling a presentation, the MinC algorithm minimizes the CBR channel capacity 

required to schedule the presentation. The proposed algorithms are of low complexity 

and can be implemented efficiently.  

 

We also discussed the issues in delivering interactive audio-visual presentations. User 

interaction may result in asynchronous or synchronous events. The events that affect 

the delivery are those events that add or delete objects in a scene. While adding 

requires more resources (both network and server), deleting objects reduces resource 

consumption. Since it may not be possible to acquire resources during a session, 

resources must be reserved during session setup to support user interaction that results 

in object addition. We introduced a notation to represent interactive presentations in 

terms of their core and interactive components. This allows us to determine the 

schedulability of core and interactive components separately. For the interactive 

component, we compute the resources required to complete each event. In the face of 

resource scarcity, only the most important events or the events that can be supported 

with the available auxiliary capacity can be supported. We presented algorithms to 

compute the additional capacity required for interactive events that result in object 
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addition and to compute the amount of resources that can be released when objects 

are deleted. 

 

The natural extension of this work is delivering object-based presentations to 

terminals with varying resources (computational and bandwidth resources). The 

MPEG-4 Systems framework has a simple way for a presentation to query terminal 

resources. The problem of determining an alternative representation for object-based 

presentations is very complex. The alternative representations depend on the type of 

the content, type (encoding) of the objects in the content, and the resource availability 

at the terminal. The difficult part is finding a representation that does not compromise 

the integrity of the content. Content creators can provide general guidelines on 

scaling the content and prioritizing the objects in the content. Such guidelines would 

be helpful but cannot be exhaustive and cannot cover all the terminal and resource 

constraint scenarios. Determining alternative representations dynamically based on 

resource availability is a difficult problem but it also has valuable applications. 

 

As object-based content moves to resource constrained specialized devices such as 

set-top-boxes and hand-held/mobile devices, resource management on the terminal 

becomes critical. The resource management policies would depend on the type and 

structure of the content and the device playing back the content. Functionality 

provided by the frameworks such as MPEG-J, the Java extensions to MPEG-4 

Systems, are required for resource management. With these features, the content 
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delivered to a terminal would now include a Java applet programmed to manage 

resources during content playback.  
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