
Mobile Networks and Applications 3 (1998) 5–32 5

MPEG-4: An object-based multimedia coding standard
supporting mobile applications

Atul Puri a and Alexandros Eleftheriadis b

a AT&T Laboratories, NSL 3-237, 100 Shultz Drive – Middletown, Red Bank, NJ 07701, USA
b Department of Electrical Engineering, Columbia University, New York, NY 10027, USA

The ISO MPEG committee, after successful completion of the MPEG-1 and the MPEG-2 standards is currently working on MPEG-4,
the third MPEG standard. Originally, MPEG-4 was conceived to be a standard for coding of limited complexity audio-visual scenes at
very low bit-rates; however, in July 1994, its scope was expanded to include coding of scenes as a collection of individual audio-visual
objects and enabling a range of advanced functionalities not supported by other standards. One of the key functionalities supported
by MPEG-4 is robustness in error prone environments. In general, the MPEG-4 standard provides solutions for coding of natural or
synthetic video and audio, as well as a system for multiplex/demultiplex and description of scenes in a truly flexible manner. With
focus on the mobile multimedia functionality, we present an overview of the current status as well as the details of the MPEG-4 coding
standard. We also discuss profiles, a mechanism used for partitioning MPEG-4 into realizable subsets. Finally, plans for testing and
verification of current MPEG-4 (Version 1) standard, ongoing work for MPEG-4 Version 2, as well as directions for MPEG-7, the next
MPEG standard, are briefly discussed.

1. Introduction

The need for mobile communications is ever increas-
ing due to the sense of timeliness and flexibilities it offers.
Increasingly, in mobile communications, a diverse set of
media such as speech, data, synthetic and natural images
as well as synthetic and natural video are becoming nec-
essary as mobile communications aims to supplement or
replace traditional fixed communications. In general, mul-
timedia is expensive in the sense of its bandwidth require-
ment, with video being highly bandwidth intensive. Effi-
cient compression of video is therefore critical to making
any form of multimedia feasible. Further, the feasibility of
mobile multimedia of acceptable quality poses a significant
additional challenge. This is so because wireless channels
impose a fairly harsh environment for multimedia commu-
nications, and while the goal of compression is to squeeze
redundancy out of signals to fit them on limited available
bandwidth, the requirements for robust delivery necessitate
some amount of redundancy. As in the case for wired or
wireless environments, the success of multimedia terminals,
products or services [8] depends on many factors, of par-
ticular significance is interworking which is facilitated by
standardization.

Mobile multimedia applications can be classified into
two primary classes, indoor and outdoor. Mobile indoor
applications are characterized by lower mobility and higher
bandwidth (about 1 Mbit/s or higher) while mobile out-
door applications typically tend to involve higher mobility
(including higher speeds) and relatively lower bandwidths
(a few kbit/s to a few tens of kbit/s or so). Of course,
a number of other applications [43] in between these two
extremes also exist. Considering the limitations of the ex-
isting standards when used in mobile environment, this is

an area of active research. However, the focus of this pa-
per is to examine particular considerations for robustness
in the state of the art standards being developed. As a
passing reference, the ISO MPEG-1 video standard [18]
was primarily optimized for coding of noninterlaced video
at bit-rates of 1.2–1.5 Mbit/s and the ISO MPEG-2 video
standard [15,19] was primarily optimized for coding of in-
terlaced video at bit-rates of 4–9 Mbit/s. Furthermore, the
MPEG-1 standard assumed a relatively error free channel
and the MPEG-2 standard, due to its generic nature, only
considered the very basic error resilience techniques such
as slice synchronization, intra refresh, and a mechanism to
facilitate error concealment, motion vectors for intra coded
blocks.

The currently ongoing MPEG standard (MPEG-4) [3,23,
40,42] was started in 1993 with intended completion by late
1998. Its original focus was modified in July 1994 from
that of coding with high efficiency of videophone scenes at
very low bit-rates, to flexible coding of generic scenes facil-
itating a number of important functionalities not supported
by other standards. Among the functionalities [3] that were
considered important for MPEG-4 were content-based cod-
ing, universal accessibility (which includes robustness to
errors) and good coding efficiency. Further, MPEG-4 video
is being optimized for bit-rates ranging from about 10 kbit/s
to around 1.5 Mbit/s and is expected to be applicable to
even higher bit-rates. Incidentally, the range of bit-rates
discussed for MPEG-4 encompasses the bit-rates applica-
ble to both indoor and oudoor mobile applications. It is
worthwhile pointing out that the MPEG standards [18,19]
are essentially decoding standards and thus only specify
the bitstream representation and the semantics of the de-
coding process, in other words, the encoding algorithm
is not standardized. Furthermore, unlike earlier standards,

 Baltzer Science Publishers BV

6 A. Puri, A. Eleftheriadis / MPEG-4: An object-based multimedia coding standard

Figure 1. A high level view of an MPEG-4 terminal.

MPEG-4 is expected to consist of at least two versions –
MPEG-4 Version 1 and Version 2; this paper mainly ad-
dresses the MPEG-4 Version 1 standard. Details of ver-
sioning of MPEG-4 are still evolving and the current status
is discussed in section 9. The specification of MPEG-4 [28,
33,35], since MPEG-4 is designed to be a truly multimedia
standard, goes much beyond that of previous MPEG stan-
dards and addresses not only audio coding [28], video cod-
ing [35] and multiplexing of coded data [33] but also coding
of text/graphics and synthetic images [35] as well as flexible
representation of audio-visual scene and composition [33].

Figure 1 shows a high level view of an MPEG-4 terminal
[45,46,48]. We use the term “terminal” in a generic sense,
including both standalone hardware as well as software run-
ning on general purpose computers. A set of individually
coded audiovisual objects (natural or synthetic) are obtained
multiplexed from a storage or transmission medium. They
are accompanied with scene description information, which
describes how these objects should be combined in space
and time in order to form the scene intended by the content
creator. The scene description is thus used during compo-
sition and rendering, which results in individual frames or
audio samples being presented to the user. In addition, the
user may have the option to interact with the content, either
locally or with the source, using an upstream channel (if
available).

The rest of the paper is organized as follows. In sec-
tion 2, we present an overview of the ITU-T video and sys-
tems standards. In section 3, we review the applications, re-
quirements, tests, and the organization of the MPEG-4 stan-
dard. Next, section 4 discusses MPEG-4 visual tools with
emphasis on error resilience tools. In section 5, MPEG-4
audio standard is briefly discussed. In section 6, MPEG-4

systems is discussed in detail. In section 7, we discuss the
issue of profiles, and in section 8 the plans for verifica-
tion tests are presented. Section 9 discusses the work in
progress for version 2 of MPEG-4, as well as the plans for
MPEG-7, the next MPEG standard. Section 10 summarizes
the key points presented in the paper.

2. Related ITU-T standards

Besides the ISO standards, the ITU-T has also devel-
oped video and audio coding as well as multiplex standards.
The ITU-T H.263 standard [19] is aimed at coding of video
at low bit-rates of 10–24 kbit/s and is based on the ear-
lier ITU-T H.261 video standard [22] which was optimized
at 64 kbit/s (although it allows a range of 64 kbit/s to
2 Mbit/s). In a general sense, the H.263 standard [23] uses
the motion compensated DCT coding framework which is
also common to the H.261, the MPEG-1 and the MPEG-2
standards. This consists of partitioning each picture into
macroblocks, where a macroblock consists of 16 × 16 lu-
minance (Y) block (composed of 4, 8× 8 blocks) and the
corresponding 8 × 8 chrominance blocks of Cb, and Cr.
Each macroblock can be coded as intra (original signal)
or as inter (prediction error signal). Spatial redundancy
is exploited by DCT coding. Temporal redundancy is ex-
ploited by motion compensation which is used to deter-
mine the prediction error signal. Block DCT coefficients
are quantized and entropy coded. Details of H.263 include
motion compensation with accuracy of half-pixel (like that
of MPEG-1, whereas H.261 supports only integer-pixel ac-
curacy) as well as optional modes such as PB-frames (a
substitute for B-pictures of MPEG-1), unrestricted motion

A. Puri, A. Eleftheriadis / MPEG-4: An object-based multimedia coding standard 7

vector, advanced 8 × 8 block prediction, and syntax based
arithmetic coding. Incidentally, these modes are options
that are negotiated between a decoder and an encoder. The
ITU-T has continued work on further embellishing H.263
by adding yet many more features and optional modes [26].

The ITU-T H.324 [27] is a multimedia communica-
tions standard consisting of component standards, such as
V.34 modem, H.223 multiplexer, H.245 control protocol,
G.723.1 audio decoder, and H.263 (or H.261) video de-
coder. H.223 is the multiplexer used to mix audio, video,
data and control channels together for transmission on V.34
modem. The ITU-T H.223 Annex A multiplexer has been
designed for error prone channels and therefore features a
robust packet synchronization and constant packet length.
ITU-T H.324 Annex C specifies features of multimedia ter-
minals operating in mobile radio environments, in terms of
differences with normal terminals.

3. MPEG-4 overview

MPEG-4 was originally intended for very high com-
pression coding of audio-visual information at very low
bit-rates of 64 kbit/s or under. When MPEG-4 video was
started, it was anticipated that with continuing advances in
advanced (non-block based) coding schemes, for example,
in region based and model based coding, a scheme capable
of achieving very high compression, mature for standard-
ization would emerge. By mid 1994, two things became
clear. First, video coding schemes that were likely to be
mature within the time frame of MPEG were likely to offer
only moderate increase in compression (say, by a factor of
1.5 or so) over then existing methods as compared to the
original goal of MPEG-4. Second, a new class of multi-
media applications were emerging that required increasing
levels of functionality than that provided by any other video
standard at bit-rates in the range of 10 kbit/s to 1024 kbit/s.
This lead to broadening of the original scope of MPEG-4
to a larger range of bit-rates and important new functional-
ities [3]. Basically, three important trends were identified,
which are as follows:

• The trend towards wireless communications.

• The trend towards interactive computer applications.

• The trend towards integration of audio-visual data into
a number of applications.

The focus and scope of MPEG-4 was redefined as the in-
tersection of the traditionally separate industries of telecom-
munications, computer, and TV/film where audio-visual ap-
plications exist. The mission and the focus statement of
MPEG-4 explaining the trends leading up to MPEG-4 and
what can be expected in the future are documented in the
MPEG-4 Proposal Package Description (PPD) document
[3]. Figure 2 shows the application areas of interest to
MPEG-4 arising at the intersection of the aforementioned
industries.

Figure 2. Applications areas addressed by MPEG-4 (shaded region).

To make the discussion a bit more concrete, we now pro-
vide a few examples of applications or application classes
[45] that the MPEG-4 standard is aimed at:

• Internet and Intranet video.

• Wireless video.

• Video databases.

• Interactive home shopping.

• Video e-mail, home movies.

• Virtual reality games, simulation and training.

With this revised understanding of the goals of MPEG-4,
the MPEG-4 work was subsequently reorganized and par-
titioned into the following subgroups:

• Requirements – develops requirements, application sce-
narios and meaningful clustering of coding tool combi-
nations for interoperability (profiles).

• Tests – develops methods for subjective and objective
assesment and conducts tests.

• Video – develops coded representation of moving pic-
tures of natural origin.

• Synthetic and Natural Hybrid Coding (SNHC) – devel-
ops coded representation of synthetic audio, graphics
and moving images.

• Audio – develops coded representation of audio of nat-
ural origin.

• Systems – develops techniques for multiplexing/demul-
tiplexing and presentation of moving images, audio,
graphics and data.

• Digital Media Integration Framework (DMIF) – devel-
ops standard interfaces between digital storage media,
networks, servers and clients for delivery bitstreams in
networked environments.

• Implementation studies – evaluates realizability of cod-
ing tools and techniques.

On the way to becoming an International Standard,
MPEG-4 undergoes a sequence of interim steps as a Work-
ing Draft, a Committee Draft, a Final Committee Draft and
a Draft International Standard; in table 1, we provide the
schedule of these steps for MPEG-4 Version 1.

8 A. Puri, A. Eleftheriadis / MPEG-4: An object-based multimedia coding standard

Table 1
MPEG-4 Version 1 workplan.

Working Draft Committee Draft Final Committee Draft International International
Draft Standard Standard

November 1996 November 1997 July 1998 November 1998 January 1999

Table 2
Functionalities expected to be supported by MPEG-4 Version 1.

Content-based interactivity

Hybrid natural and synthetic data coding: The ability to code and manipulate natural and synthetic objects in a scene including decoder controllable
methods of compositing of synthetic data with ordinary video and audio, allowing for interactivity.

Improved temporal random access: The ability to efficiently access randomly in a limited time and with fine resolution parts (frames or objects) within
an audio-visual sequence. This also includes the requirement for conventional random access.

Content-based manipulation and bitstream editing: The ability to provide manipulation of contents and editing of audio-visual bitstreams without the
requirement for transcoding.

Universal access

Robustness in error prone environments: The capability to allow robust access to applications over a variety of wireless and wired networks and storage
media. Sufficient robustness is required, especially, for low bit-rate applications under severe error conditions.

Content-based scalability: The ability to achieve scalability with fine granularity in spatial, temporal or amplitude resolution, quality or complexity.
Content based scaling of audio-visual information requires these scalabilities.

Compression

Improved coding efficiency: The ability to provide subjectively better audio-visual quality at bit-rates compared to existing or emerging video coding
standards.

The MPEG-4 standard (ISO/IEC 14496) [46] is planned
to consist of the following basic parts. Other parts may be
added when the need is identified.

• ISO/IEC 14496-1: Systems.

• ISO/IEC 14496-2: Visual (Natural and Synthetic Video).

• ISO/IEC 14496-3: Audio (Natural and Synthetic Au-
dio).

• ISO/IEC 14496-4: Conformance.

• ISO/IEC 14496-5: Software.

• ISO/IEC 14496-6: DMIF.

3.1. MPEG-4 functionalities and requirements

Now that we have some idea of the type of applications
MPEG-4 is aimed for, we clarify the three basic functional-
ity classes [3,15] that the MPEG-4 standard is addressing.
They are as follows:

• Content-based interactivity allows the ability to interact
with objects in a scene. Currently such interaction is
typically only possible for synthetic objects; extending
such interaction to natural and hybrid synthetic/natural
objects is important to enable new audio-visual applica-
tions.

• Universal accessibility means the ability to access audio-
visual data over a diverse range of storage and trans-
mission media. Due to increasing trend toward mobile
communications, it is important that access be available
to applications via wireless networks. Thus acceptable

performance is needed over error-prone environments
and at low bit-rates.

• Improved compression is needed to allow increase in ef-
ficiency in transmission or decrease in amount of storage
required. For low bit-rate applications, high compres-
sion is very important to enable new applications.

Although we have looked at general classes of function-
alities being addressed by MPEG-4 it is desirable to look at
specific functionalities that MPEG-4 Version 1 expects to
offer; in table 2 we now show a list of 6 such functionalities
[3,6,15] and show their clustering into three functionality
classes.

Besides the new functionalities, MPEG-4 is also sup-
porting the basic functionalities such as synchronization of
audio and video, auxilliary data streams capability, multi-
point capability, low delay mode, coding of a variety of
audio types, interoperability with other audio-visual sys-
tems, support for interactivity, ability to efficiently operate
in the 9.6 to 1024 kbit/s range, ability to operate in differ-
ent media environments, and the ability to operate in low
complexity mode.

To keep up with marketplace needs for practical timely
standards and to follow the evolving trends, the require-
ments collection process for MPEG-4 is kept flexible. The
major restructuring of MPEG-4 effort in July 1994 to ex-
pand its scope was a response to the evolving trends in
the marketplace. Evaluating requirements for MPEG-4 is
an ongoing exercise that uses both top down (common re-
quirements of related applications) and bottom up approach
(related functions provided by a tool, which may be needed

A. Puri, A. Eleftheriadis / MPEG-4: An object-based multimedia coding standard 9

Table 3
List of MPEG-4 first evaluation formal tests and their explanation.

Compression

Class A sequences at 10, 24 and 48 kbit/s: Coding to achieve the highest compression efficiency. Input video resolution is CCIR-601 and although
any spatial and temporal resolution can be used for coding, the display format is CIF on a windowed display. The test method employed is SS.

Class B sequences at 24, 48 and 112 kbit/s: Coding to achieve the highest compression efficiency. Input video resolution is CCIR-601 and although
any combination of spatial and temporal resolutions can be used for coding, the display format is CIF on a windowed display. The test method
employed is SS.

Class C sequences at 320, 512 and 1024 kbit/s: Coding to achieve the highest compression efficiency. Input video resolution is CCIR-601 and
although any combination of spatial and temporal resolution can be used for coding, the display format is CCIR-601 on a full display. The test method
employed is DSCQS.

Error robustness

Error resilience at 24 kbit/s for Class A, 48 kbit/s for Class B, and 512 kbit/s for Class C: Test with high random bit error rate (BER) of 10−3,
multiple burst errors with 3 bursts of errors with 50% BER within a burst, and a combination of high random bit errors and multiple burst errors. The
display format for Class A and Class B sequences is CIF on a windowed display and for Class C sequences is CCIR-601 on full display. The test
method employed for Class A and Class B is SS and that for Class C is DSCQS.

Error recovery at 24 kbit/s for Class A, 48 kbit/s for Class B and 512 kbit/s for Class C: Test with long burst errors of 50% BER within a burst and
a burst length of 1 to 2 seconds. Display format for Class A and Class B is CIF on a windowed display and Class C is CCIR-601 on full display. The
test method employed for Class A and Class B is SS and that for Class C is DSCQS.

Scalability

Object scalability at 48 kbit/s for Class A, 320 kbit/s for Class E, and 1024 kbit/s for Class B/C sequences: Coding to permit dropping of specified
objects resulting in remaining scene at lower then total bit-rate; each object and the remaining scene is evaluated separately by experts. The display
format for Class A is CIF on a windowed display and for Class B/C and Class E is CCIR-601 on a full display. The test method employed for Class
A is SS, for Class B/C is DSCQS, and for Class E is DSIS.

Spatial scalability at 48 kbit/s for Class A, and 1024 kbit/s for Class B/C/E sequences: Coding of a scene as two spatial layers with each layer using
half of the total bit-rate, however, full flexibility in choice of spatial resolution of objects in each layer is allowed. The display format for Class A is
CIF on a windowed display and that for Class B/C/E is CCIR-601 on a full display. The test method employed for Class A is SS, and that for Class
B/C/E is DSCQS.

Temporal scalability at 48 kbit/s for Class A, and 1024 kbit/s for Class B/C/E sequences: Coding of a scene as two temporal layers with each layer
using half of the total bit-rate, however, full flexibility in choice of temporal resolution of objects in each layer is allowed. The display format for
Class A is CIF on a windowed display and that for Class B/C/E is CCIR-601 on a full display.

in various applications). The collected requirements are
clustered and translated into general directions for coding
methods/tools development for individual subgroups such
as Video, Audio, SNHC, Systems and DMIF. Finally, taking
into account requirements of similar applications, a cluster-
ing of tools into profiles takes place (see section 7).

3.2. Tests and evaluation

We now discuss the testing and evaluation that took
place in the competitive phase to determine the potential
of the proposed technologies for MPEG-4. We also indi-
cate how the outcome of tests and evaluation was used to
initiate the collaborative phase.

3.2.1. Video tests
The competitive phase of MPEG-4 video began with

an open call for proposals in November 1994 (and sub-
sequently revised [6]), inviting technical proposals for the
first testing and evaluation [4] which took place in Octo-
ber 1995. A proposal package description (PPD) and a
test/evaluation procedures document was finalized by July
1995. Some functionalities were formally tested while the
others were informally evaluated by experts.

Video scenes are classified from relatively simple to
more complex by categorizing them into three classes:
Class A, Class B and Class C. Two other classes of scenes,
Class D (stereoscopic) and Class E (hybrid of natural and
synthetic) were additionally defined. Many of the test
scenes were presegmented (semiautomatically) into objects
and a segmentation mask was provided along with test
scenes. Also, since a variety of functionalities had to be
tested, three type of tests were devised: Single Stimulus
(SS), Double Stimulus Impairment Scale (DSIS) and Dou-
ble Stimulus Continuous Quality Scale (DSCQS).

Table 3 summarizes the list of formal subjective tests
[4], an explanation of each test and the type of method
employed for each test.

The results [30] of tests revealed that DCT based coding
performed reasonably well. Furthermore, it seemed pos-
sible to code shape of objects efficiently allowing object
based functionalities. A collaborative effort was begun by
first defining a set of core experiments (in November 1995)
and soon after a Verification Model, VM (in January 1996)
as the basis for further experimentation. Further, tentative
plans were also made for a second test for verification of
adopted coding algorithms/tools by mid 1997.

10 A. Puri, A. Eleftheriadis / MPEG-4: An object-based multimedia coding standard

3.2.2. Audio tests
The MPEG-4 Audio also underwent subjective testing,

similar to video. Three classes of audio test sequences,
Class A, B and C were identified:

• Class A: Single source sequences consisting of a clean
recording of a solo instrument.

• Class B: Single source with background sequences con-
sisting of a person speaking with background noise.

• Class C: Complex sequences consisting of an orchestral
recording.

All sequences were originally sampled at 48 kHz with
16 bits/sample and were monophonic in nature. For gener-
ating reference formats, filters were specified to downsam-
ple them to 24, 16 and 8 kHz. A number of bit-rates such
as 2, 6, 16, 24, 40 and 64 kbit/s were selected for testing
of audio/speech. The first three bit-rates are obviously only
suitable for speech material. The audio test procedures used
were as defined in ITU-R Recommendation 814.

The proposals submitted for testing included variants
of MPEG-2 Advanced Audio Coding (AAC), variations of
MPEG-1 audio coding and new coding schemes. For spe-
cific bit-rates, some candidates outperformed the reference
coding schemes, although for all combinations tested, no
single scheme was the clear winner. After subjective test-
ing, the collaborative work started and an initial MPEG-4
Audio VM was developed. The MPEG-4 Audio develop-
ment underwent a core experiments process similar to that
of the MPEG-4 Video development process.

3.2.3. SNHC tests
The SNHC group started its work much later than the

video group. Its focus was primarily on coding for storage
and communication of 2D and 3D scenes involving syn-
thetic images, sounds, and animated geometry and its inte-
gration into scenes that contain coded natural images/video
and sound. Further, it was sought that the coded represen-
tation should also facilitate various forms of interactions.

In the SNHC call for proposals [29] and PPD [30], pro-
posals in the areas of efficient compression and simplifi-
cation of synthetic data, parameterized animated models,
new primitive operations for compositing of natural and
hybrid objects, scalability, real-time interactivity with syn-
thetic/hybrid environments, modeling of timing and syn-
chronization, synthetic audio, etc., were sought.

In the competitive phase, for the purpose of standard-
ized evaluation, a database of test data set was established.
The actual evaluation of proposals by a group of experts
took place in September 1996. The evaluation criteria was
based on the functionality addressed such as coding ef-
ficiency, quality of decoded model, real-time interactivity,
anticipated performance in future, and implementation cost.
After the evaluation, the collaborative phase was begun by
defining a verification model (VM).

3.3. Video development

Video development was started by identifying a number
of needed tools and the options available for each tool as
well as a reference framework. A total of about 40 core
experiments were defined by January 1996 and were cate-
gorized for evaluation by the following 4 ad hoc groups:

• Coding efficiency – prediction, frame texture coding,
quantization and rate control.

• Shape and object texture coding – binary and grey scale
shape coding, object texture coding.

• Robust coding – error resilience and error concealment.

• Multifunctional coding – bandwidth and complexity
scalability, object manipulation, post processing.

A reference coding framework known as the first Veri-
fication Model (VM1) was released on 24th January 1996.
It supported the following features:

• Coding of arbitrary shaped objects using Video Object
Planes (VOPs).

• Coding of binary and grey scale shape of arbitrary
shaped objects.

• Padding of pixels to fill the region outside of an object
to full blocks for motion compensation and DCT.

• Macroblock based motion-texture (motion compensated
DCT) coding derived from H.263.

• A mode allowing separation of motion and texture data
for increased error resilience.

During the March 1996 MPEG meeting, a number of
additional features were added to VM1 and thus VM2 [29]
was released on 29th March 1996. The additional features
were as follows:

• Bidirectional VOPs derived from combination of H.263
PB-frames mode and MPEG-1/2 B-pictures.

• DC coefficients prediction for intra macroblocks as per
MPEG-1/2.

• Extended motion vector range.

• Quantization visibility matrices as per MPEG-1/2.

The process of iterative development and refinement of
video VM’s via core experiments has continued and there
have been seven iterations on the first VM. At the October
1997 meeting, a number of mature tools from VM8 were
accepted for MPEG-4 Video Version 1 for the Commit-
tee Draft. The remaining tools as well as some new tools
are being considered for MPEG-4 Video Version 2. In sec-
tion 4, we describe the basic coding methods formed by the
tools accepted for the MPEG-4 Video Version 1 standard.

3.4. Audio development

The MPEG-4 Audio coding effort occurred in parallel
with the MPEG-2 AAC (formerly, Non-Backward Com-
patible (NBC)) coding effort. The MPEG-2 standard origi-

A. Puri, A. Eleftheriadis / MPEG-4: An object-based multimedia coding standard 11

nally had an audio coding mode called backward compati-
ble (BC) mode which as the name suggests was backward
compatible with MPEG-1 audio coding. However, at a
late stage in MPEG-2 it was discovered that the BC audio
coding was rather inefficient compared to non compatible
solutions and thus work on NBC mode was begun and over-
lapped with the MPEG-4 schedule. The NBC mode was
renamed AAC and became a new part of MPEG-2 achiev-
ing International Standard status in April 1997 (although it
had reached a mature status in mid 1996).

Towards the very low bit-rate end a valid question to ask
is why not use the existing ITU-T coders? As an answer
to this question, the ITU-T speech coders currently oper-
ate at 6.3/5.3 kbit/s (G.723), 8 kbit/s (G.729), 16 kbit/s
(G.728), 32 kbit/s (G.721) 48/56/64 kbit/s (G.722). In
comparison, MPEG-4 speech coding is being designed to
operate at bit rates between 2–24 kbit/s for the 8 kHz mode
and 14–24 kbit/s for the 16 kHz mode, whereas ITU-T
coders do not operate at bit-rates as low 2 kbit/s for the
8 kHz mode, or 14–24 kbit/s for the 16 kHz mode. Fur-
thermore, MPEG-4 speech coders are being designed for
bit-rate scalability, complexity scalability and multi-bit-rate
operation from 2–24 kbit/s. The coding quality of the coder
is comparable to that of the ITU coder at corresponding bit-
rates but the MPEG-4 speech coder can operate down to
2 kbit/s. The quality at 2 kbit/s is “communication qual-
ity” and could be used for usual conversation, performing
better than the FS1016 4.8 kbit/s coder.

Therefore, the MPEG-4 Audio VMs have targeted bit-
rates from 2 kbit/s to 64 kbit/s; a number of coding
schemes are used to cover portions of this range. Besides
coding efficiency, content based coding of audio objects and
scalability are being investigated. There have been a total
of four iterations of audio VM, from VM1 to VM4; the last
VM was released in July 1997. In fact, the more mature
tools of Audio VM3 have been accepted for the audio part
[28] of the MPEG-4 Version 1 standard.

In section 5, we briefly discuss the basic coding tech-
niques accepted for part 3 of the MPEG-4 Version 1 stan-
dard.

3.5. SNHC development

There have been a total of four iterations of SNHC VM,
from VM1 to VM4; the last VM was released in July 1997.
In fact, the more mature tools of SNHC VM3 have been
accepted for the visual part of the MPEG-4 Version 1 stan-
dard; the remaining tools have been left in VM4 for con-
sideration for the next version of MPEG-4.

In section 4 we describe the SNHC tools expected to
be included in the visual part of the MPEG-4 Version 1
standard. In section 5, we discuss the SNHC tools expected
to be included in the audio part of the MPEG-4 Version 1
standard.

Figure 3. MPEG-2 Systems.

3.6. Systems development

The Systems layer in MPEG has been traditionally re-
sponsible for integrating media components into a single
system, providing multiplexing and synchronization ser-
vices for audio and video streams.

In MPEG-2 [3,15], for example, these are the primary
functionalities, and were designed for two types of transport
facilities. The first, Program Stream, is intended for reliable
media such as storage devices, and can only carry a single
program (combinations of synchronized audio and video
streams). It also provided backwards compatibility with
MPEG-1 [23]. The second, Transport Stream, is intended
for potentially unreliable media and can carry multiple pro-
grams. This is shown in figure 3. The object-based nature
of MPEG-4 necessitates a much more complex Systems
layer since, in addition to still addressing multiplexing and
synchronization, it must also provide for ways to combine
simple audio or visual objects into meaningful scenes.

Considering the object-based nature of MPEG-4, a key
requirement from the System part is the capability to com-
bine individual audiovisual objects in scenes. In late 1995,
this was accomplished by using Java [14]. Issues of perfor-
mance and compliance soon arose. Clearly, it is essential
for a content creator to be assured that the content generated
will be shown in an identical way (or nearly so) regard-
less of the terminal used, if both such terminals comply to
the standard. A three-step approach was adopted, involv-
ing three different flexibility levels, as shown in figure 4.
In level 0, no programmability was allowed. In level 1,
facilities were provided to combine different tools into al-
gorithms, while in level 2 even individual tools were con-
sidered as targets for programmable behavior. The group
was also renamed to MPEG-4 System and Description Lan-
guages (MSDL), separating system and syntactic descrip-
tion [5]. After further examination, in late 1996 it was
decided that any meaningful operation of level 1 would re-
quire the complexity of implementing a level 2 system, and
hence this intermediate level was eliminated.

The group subsequently focused on a parametric (bit-
stream oriented, non-programmable) solution for describ-
ing how objects should be combined together. Using the

12 A. Puri, A. Eleftheriadis / MPEG-4: An object-based multimedia coding standard

Figure 4. Evolution of MPEG-4 systems architecture (1996).

above figure, that would be a level 0 design. The group
also reverted to the use of the traditional term “Systems”,
reflecting the varied components that it addresses. A pro-
grammable approach is still being considered and is dis-
cussed in more detail in section 6.2.4.

In addition to the overall architectural issues, the issue
of multiplexing in MPEG-4 also underwent several stages
of evolution. The H.223 Annex A multiplexer was used as
a basis, including error protection tools (interleaving and
ARQ). A key requirement [48], however, for MPEG-4 was
the need to be transport-independent. As a result, services
that belong to a transport layer were subsequently removed
from the set of specified tools, so that efficient implemen-
tation of MPEG-4 systems could be performed in a very
broad range of environment (broadcast, ATM, IP, and wire-
less).

3.7. DMIF development

At a recent MPEG meeting, the significance of the DMIF
activity has been recognized and DMIF has been given the
status of a new group [7]. Previously, DMIF was an ad
hoc group operating under the systems group. The charter
of the DMIF group is to develop standards for interfaces
between Digital Storage Media (DSM), networks, servers
and clients for the purpose of managing DSM resources and
controlling the delivery of MPEG bitstreams and associated
data. The ongoing work of this group is expected to result
in part 6 of the MPEG-4 standard.

4. MPEG-4 visual

The ongoing work on MPEG-4 visual standard specifi-
cation [35] consists of tools and methods from two major
areas – coding of (natural) video and coding of synthetic
video (visual part of the SNHC work). We address both
these areas; in sections 4.1–4.4 we discuss tools and tech-
niques relevant to natural video coding and in sections 4.5–
4.7 we discuss tools and techniques relevant to synthetic
video coding.

4.1. MPEG-4 video coding basics

In this and the next section, we describe the coding meth-
ods and tools of MPEG-4 video; the encoding description is
borrowed from Video VM7 [37], the decoding description
follows [35]. An input video sequence can be defined as a
sequence of related snapshots or pictures, separated in time.
In MPEG-4, each picture is considered as consisting of tem-
poral instances of objects that undergo a variety of changes
such as translations, rotations, scaling, brightness and color
variations etc. Moreover, new objects enter a scene and/or
existing objects depart, leading to the presence of temporal
instances of certain objects only in certain pictures. Some-
times, scene change occurs, and thus the entire scene may
either get reorganized or replaced by a new scene. Many
of MPEG-4 functionalities require access not only to entire
sequence of pictures, but to an entire object, and further, not
only to individual pictures, but also to temporal instances
of these objects within a picture. A temporal instance of
a video object can be thought of as a snapshot of arbitrary
shaped object that occurs within a picture, such that like a
picture, it is intended to be an access unit, and, unlike a
picture, it is expected to have a semantic meaning.

The concept of Video Objects (VOs) and their tempo-
ral instances, Video Object Planes (VOPs) is central to
MPEG-4 video. A VOP can be fully described by tex-
ture variations (a set of luminance and chrominance values)
and (explicit or implicit) shape representation. In natural
scenes, VOPs are obtained by semi-automatic or automatic
segmentation, and the resulting shape information can be
represented as a binary shape mask. On the other hand, for
hybrid (of natural and synthetic) scenes generated by blue
screen composition, shape information is represented by an
8-bit component, referred to as grey scale shape. In fig-
ure 5, we show the decomposition of a picture into a number
of separate VOPs. The scene consists of two objects (head
and shoulders view of a human, and a logo) and the back-
ground. The objects are segmented by semi-automatic or
automatic means and are referred to as VOP1 and VOP2,
while the background without these objects is referred to
as VOP0. Each picture in the sequence is segmented into
VOPs in this manner. Thus, a segmented sequence contains
a set of VOP0s, a set of VOP1s and a set of VOP2s, in other
words, in our example, a segmented sequence consists of
VO0, VO1 and VO2.

Each VO is encoded separately and multiplexed to form
a bitstream that users can access and manipulate (cut, paste,
etc.). The encoder sends together with VOs, information
about scene composition to indicate where and when VOPs
of a VO are to be displayed. This information is however
optional and may be ignored at the decoder which may use
user-specified information about composition.

In figure 6 we show a high level logical structure of
a VO based coder. Its main components are VO Seg-
menter/Formatter, VO Encoders, Systems Multiplexer Sys-
tems Demultiplexer, VO Decoders and VO Compositor.
VO Segmenter segments the input scene into VOs for en-

A. Puri, A. Eleftheriadis / MPEG-4: An object-based multimedia coding standard 13

Figure 5. Semantic segmentation of a picture in to VOPs.

Figure 6. Logical structure of Video Object based codec of MPEG-4
video.

Figure 7. An example prediction structure when using I-, P- and B-VOPs.

coding by VO Encoders. The coded data of various VOs is
multiplexed for storage or transmission, following which it
is demultiplexed and decoded by VO decoders and offered
to compositer, which renders the decoded scene.

To see how coding takes place in a video object en-
coder, consider a sequence of VOPs. Extending the con-
cept of intra (I-) pictures, predictive (P-) and bidirection-
ally predictive (B-) pictures of MPEG-1/2 to VOPs, I-VOP,
P-VOP and B-VOP result. If two consecutive B-VOPs
are used between a pair of reference VOPs (I- or a P-
VOPs), the resulting coding structure is as shown in fig-
ure 7.

In figure 8 we show the internal structure of the VM
based encoder which codes a number of VOs of a scene.
Its main components are: Motion Coder, Texture and Shape
Coder. The Motion Coder uses macroblock and block mo-
tion estimation and compensation, similar to H.263 and
MPEG-1/2 but modified to work with arbitrary shapes. The
Texture Coder uses block DCT coding based on H.263 and
MPEG-1/2 but much better optimized; further it is also
adapted to work with arbitrary shapes. An entirely new
component is the Shape Coder. The partial data of VOs
(such as VOPs) is buffered and sent to the Systems Multi-
plexer.

Figure 8. Detailed structure of video objects encoder.

Figure 9. Class hierarchy for structuring coded video data.

From a top-down perspective, the organization of coded
MPEG-4 Video data can be described by the following class
hierarchy:

• VideoSession: A Video Session represents the highest
level in the class hierarchy and simply consists of an
ordered collection of Video Objects. This class has only
been a place holder for video VM and core experiments
work and, since composition of objects is now handled
by systems, it is not needed.

• VideoObject: A Video Object (2D + time) represents a
complete scene or a portion of a scene with a semantic
meaning.

• VideoObjectLayer (VOL): A Video Object Layer (2D+
time) represents various instantiations of an Video Ob-
ject. For instance, different VOLs may correspond to
different layers, such as in the case of scalability.

• GroupOfVideoObjectPlanes (GOV): Group of Video
Object Planes are optional entities and are essentially
access units for editing, tune-in or synchronization.

• VideoObjectPlane (VOP): A Video Object Plane repre-
sents a snap shot in time of a Video Object. A simple
example may be an entire frame or a portion of a frame.
Different coding methods from MPEG-1/2 such as intra
(I-) coding, predictive (P-) coding and bidirectionally
predictive (B-) coding can now be applied to VOPs.

The class hierarchy used for representation of coded bit-
stream described above is shown by the tree structure of
figure 9.

14 A. Puri, A. Eleftheriadis / MPEG-4: An object-based multimedia coding standard

Figure 10. A VOP in a bounding box.

4.2. Video coding details

4.2.1. Binary shape coder
Compared to other standards, the ability to represent ar-

bitrary shapes is an important capability of the MPEG-4
video standard. In general, shape representation can be
either implicit (based on chroma-key and texture coding)
or explicit (boundary coding separate from texture coding).
Implicit shape representation, although it offers less encod-
ing flexibility, can result in quite usable shapes while being
relatively simple and computationally inexpensive. Explicit
shape representation although it can offer flexible encoding
and somewhat better quality shapes, it is more complex and
computationally expensive. Regardless of the implications,
the explicit shape representation was chosen in MPEG-4
video; we now briefly describe the essence of this method
[35,37] without its many details.

For each VO given as a sequence of VOPs of arbitrary
shapes, the corresponding sequence of binary alpha planes
is assumed to be known (generated via segmentation or
via chroma-key). For the binary alpha plane, a rectangular
bounding box enclosing the shape to coded is formed such
that its horizontal and vertical dimensions are multiples of
16 pixels (macroblock size). For efficient coding, it is im-
portant to minimize the number of macroblocks contained
in the bounding box. The pixels on the boundaries or inside
the object are assigned a value of 255 and are considered
opaque while the pixels outside the object but inside the
bounding box are considered transparent and are assigned
a value of 0. If a 16 × 16 block structure is overlaid on
the bounding box, three types of binary alpha blocks exist:
completely transparent, completely opaque, and partially
transparent (or partially opaque). Figure 10 shows an exam-
ple of an arbitrary shape VOP with a bounding box and the
overlaid 16× 16 block structure; the opaque area is shown
shaded whereas the transparent area is shown unshaded.

Coding of each 16 × 16 binary alpha block represent-
ing shape can be performed either lossy or losslessly. The
degree of lossiness in coding the shape of a video object
is controlled by a threshold which can take values of 0,
16, 32, 64, . . . , 256. The higher the value of this thresh-
old, the more lossy the shape representation; a zero value
implies lossless shape coding. Within the global bound of
specified lossiness, local control, if needed, can be exerted
by selecting a maximum subsampling factor on a 16× 16
binary alpha that results in just acceptable distortion. The

(a) (b)

Figure 11. Pixel templates used for (a) intra and (b) inter context de-
termination of a binary alpha block (BAB). Pixel to be coded is marked

with‘?’.

estimation of this factor is iterative and consists of using
the same subsampling factor in both dimensions and de-
termining the acceptability of resulting shape quality. To
be specific, a 4:1 downsampled binary alpha block is used
first and if the shape errors are higher than acceptable, a
2:1 downsampled binary alpha block is used next, again
if it is found unacceptable, an unsubsampled binary alpha
block is used.

Further, each binary alpha block can be coded in intra
mode or in inter mode, similar to coding of texture mac-
roblocks. In intra mode, no explicit prediction is performed.
In inter mode, shape information is differenced with respect
to the prediction obtained using a motion vector, the result-
ing binary shape prediction error may or may not be coded.
The motion vector of a binary alpha block is estimated at
the encoder by first finding a suitable initial candidate from
among the motion vectors of 3 previously decoded sur-
rounding texture macroblocks as well as the 3 previously
decoded surrounding shape binary alpha blocks. Next, the
initial candidate is either accepted as the shape motion vec-
tor, or is used as the starting basis for a new motion vector
search, depending on if the resulting prediction errors of the
initial motion vectors are below a threshold. The motion
vector is coded differentially and included in the bitstream.
Following this procedure, a binary alpha block is assigned
a mode from among the following choices:

1. Zero differential motion vector and no inter shape up-
date.

2. Nonzero differential motion vector and no inter shape
update.

3. Transparent.

4. Opaque.

5. Intra shape.

6. Zero differential motion vector and inter shape update.

7. Nonzero differential motion vector and inter shape up-
date.

Depending on the coding mode and whether it is an
I-, P- or B-VOP, a variable length codeword is assigned
identifying the coding type of the binary alpha block. The

A. Puri, A. Eleftheriadis / MPEG-4: An object-based multimedia coding standard 15

entropy coding of shape data is performed by using the
context information determined on a pixel basis to drive
an adaptive arithmetic coder. The pixels of binary alpha
block are raster scanned, however, a binary alpha block
maybe transposed. Next, a context number is determined
and is used to index a probability table, and further, the
indexed probability is used to drive the arithmetic coder.
To determine the context, different templates of surrounding
pixels are used for intra and inter coded binary alpha blocks,
as shown in figure 11.

The decoding of binary alpha block follows the inverse
sequence of operations with the exception of encoder spe-
cific tasks such as motion estimation, subsampling factor
determination, mode decision, etc., which are readily ex-
tracted from the coded bitstream.

4.2.2. Motion Coder
The Motion Coder [35,37] consists of a Motion Esti-

mator, Motion Compensator, Previous/Next VOPs Store
and Motion Vector (MV) Predictor and Coder. In case
of P-VOPs, Motion Estimator computes motion vectors
using the current VOP and temporally previous recon-
structed VOP available from the Previous Reconstructed
VOPs Store. In case of B-VOPs, Motion Estimator com-
putes motion vectors using the current VOP and tempo-
rally previous reconstructed VOP from the Previous Re-
constructed VOP Store, as well as, the current VOP and
temporally next VOP from the Next Reconstructed VOP
Store. The Motion Compensator uses these motion vectors
to compute motion compensated prediction signal using the
temporally previous reconstructed version of the same VOP
(reference VOP). The MV Predictor and Coder generates
prediction for the MV to be coded. We now discuss the
details of padding needed for motion compensation of arbi-
trary shaped VOPs, as well as the various modes of motion
compensation allowed.

In the reference VOP, based on its shape information,
two types of macroblocks require padding, those that lie on
the boundary and (depending on encoding choice, some or
all of) the other that lie outside of the VOP. Macroblocks
that lie on the VOP boundary are padded by first replicating
the boundary pixels in the horizontal direction, followed
by replicating the boundary pixels in the vertical direction
making sure that if a pixel can be assigned a value by both
horizontal and vertical padding, it is assigned an average
value. Next, the macroblocks that lie outside of the VOP
are padded by extending the boundary macroblock pixels,
up, down, left and right, and averaging wherever a pixel
is assigned a value from more than one directions. The
processing for the previous step can be reduced by only
padding macroblocks that are outside of the VOP but right
next to the boundary pixels.

The basic motion estimation and compensation is per-
formed on 16× 16 luminance block of a macroblock. The
motion vector is specified to half-pixel accuracy. The mo-
tion estimation is performed by full search to integer pixel
accuracy vector and using it as the initial estimate, a half

pixel search is performed around it. The luminance block
motion vector is scaled by a factor of 2 for each compo-
nent and rounded for use on 8 × 8 chrominance blocks.
MPEG-4 video, like H.263, supports an unrestricted range
for motion estimation and compensation. Basically, motion
vectors are allowed to point out of the VOP bounding box,
by extending the reference VOP bounding box in all four
directions. Further, a larger range of motion vectors is sup-
ported for motion vector coding in MPEG-4 as compared
to H.263.

Often a single motion vector for a 16 × 16 luminance
block does not reduce the prediction errors sufficiently or
when dealing with boundary macroblocks, motion vectors
can be sent for individual 8× 8 blocks. Further, the 8× 8
block motion vectors are used to generate overlapped block
motion compensated prediction. Both the 8×8 block mo-
tion compensation and overlapped motion compensated pre-
diction are referred to as advanced prediction in H.263
and are adapted in MPEG-4 to work with arbitrary shaped
VOPs.

An intra versus inter coding decision is performed to
determine if motion vector(s) need to be sent for the mac-
roblock being coded; further, a decision is also performed
to determine if 16× 16 or 8× 8 block motion vectors will
be sent for the macroblock being coded. All motion vec-
tors are coded differentially using median of neighboring
three decoded macroblock (or block in case of 8×8 coding)
motion vectors as the prediction.

As mentioned earlier, a B-VOP is a VOP which is coded
bidirectionally. For example, macroblocks in a B-VOP can
be predicted using the forward, the backward or both using
the forward and backward motion vectors; this has similar-
ities to MPEG-1/2 in which B-pictures can use such motion
vectors. However, MPEG-4 video also supports an H.263
based mode for motion compensation, referred to as the
direct mode. In direct mode, the motion vector for a mac-
roblock in a B-VOP is obtained by scaling of the P-VOP
motion vector, and further correcting it by a small (delta)
motion vector. The actual motion compensation mode to be
used for a macroblock is decided taking into account the
motion compensated prediction errors produced by vari-
ous choices and the coding overhead of any additional mo-
tion vectors. All motion vectors (except delta) are coded
differentially with respect to motion vectors of the same
type.

MPEG-4 also supports efficient coding of interlaced
video. It combines the macroblock based frame/field mo-
tion compensation of MPEG-2 with the normal motion
compensation of MPEG-4, resulting in overall improved
motion compensation. Furthermore, it allows motion com-
pensation of arbitrary shaped VOPs of interlaced video
whereas MPEG-2 only supports rectangular pictures of in-
terlaced video.

4.2.3. Video Texture Coder
The Texture Coder [35,37] codes the luminance and

chrominance variations of blocks forming macroblocks

16 A. Puri, A. Eleftheriadis / MPEG-4: An object-based multimedia coding standard

Table 4
Nonlinear scaler for DC coefficients of DCT blocks.

Component DC scaler for Quantizer (Qp) range

1–4 5–8 9–24 25–31

Luminance 8 2Qp Qp + 8 2Qp − 16
Chrominance 8 (Qp + 13)/2 Qp − 6

within a VOP. Two types of macroblocks exist, those that
lie inside the VOP and those that lie on the boundary of the
VOP. The blocks that lie inside the VOP are coded using
DCT coding similar to that used in H.263 but optimized
in MPEG-4. The blocks that lie on the VOP boundary are
first padded and then coded similar to the block that lie
inside the VOP. The remaining blocks are transparent (they
lie inside the bounding box but outside of the coded VOP
shape) and are not coded at all.

The texture coder uses block DCT coding and codes
blocks of size 8× 8 similar to H.263 and MPEG-1/2, with
the difference that since VOP shapes can be arbitrary, the
blocks on the VOP boundary require padding prior to tex-
ture coding. The general operations in the texture encoder
are: DCT on original or prediction error blocks of size 8×8,
quantization of 8× 8 block DCT coefficients, scanning of
quantized coefficients and variable length coding of quan-
tized coefficients. For inter (prediction error block) coding,
the texture coding details are similar to that of H.263 and
MPEG-1/2. However, for intra coding of texture data, a
number of improvements are included. We now discuss the
quantization for intra and inter macroblocks, followed by
coefficient prediction, scanning and entropy of intra mac-
roblocks, and finally the entropy coding of inter blocks.

Typically, the DC coefficients of DCT of blocks belong-
ing to an intra macroblock, are scaled by a constant scaling
factor of 8, however, in MPEG-4 video, a nonlinear scaler
[44] as per table 4 is used to provide a higher coding ef-
ficiency while keeping the blockiness artifacts under the
visibility threshold. The characteristics of nonlinear scal-
ing are different between the luminance and chrominance
blocks and further depends on the quantizer used for the
block.

MPEG-4 video supports two techniques of quantization,
one referred to as the H.263 quantization method (with
deadzone for intra and inter), and the other, the MPEG
quantization method (no deadzone for intra but uses dead-
zone for inter, and intra and inter quantization matrices).
Further, the quantization matrices are downloadable like in
MPEG-1/2, but with the difference that it is possible to
update matrices partially.

Unlike H.263, the quantized intra DC coefficients are
predicted [44] with respect to 3 previous decoded DC co-
efficients, for example, quantized DC coefficients of blocks
A, B and C when predicting quantized DC value for block
X in figure 12. Although MPEG-1/2 also allows prediction
of DC coefficients, however the gradient based prediction
of MPEG-4 is more effective. In computing the prediction
for block X, if the absolute value of a horizontal gradient

Figure 12. Prediction of DC coefficients of blocks in an intra macroblock.

Figure 13. Prediction of AC coefficients of blocks in an intra macroblock.

|QDCA−QDCB| is less than the absolute value of a vertical
gradient |QDCB −QDCC|, then the QDC value of block C
is the prediction, else QDC value of block A is used as pre-
diction. This process is independently repeated for every
block of an intra macroblock using horizontally and ver-
tically adjacent blocks. Further, the procedure is identical
for luminance and chrominance blocks.

Not only the DC coefficients of intra blocks are predicted
and coded differentially, so are some of the AC coefficients
[44]. In particular, on a block basis, either the first row or
the first column of AC coefficients of DCT blocks of each
intra macroblock are predicted. The direction (horizontal
or vertical) used for prediction of DC coefficient of a block
is also used for predicting the corresponding first column
or row of AC coefficients. The prediction direction can
differ from block to block within each intra macroblock.
Further, the AC coefficient prediction can be disabled for a
macroblock when it does not work well. Figure 13 shows
the prediction of quantized AC coefficients belonging to
the first column or the first row of block X from the corrre-
sponding quantized AC coefficients of block A or block C.

The predicted DC and AC coefficients (as well as the
unpredicted AC coefficients) of DCT blocks of intra mac-
roblocks are scanned by one of the three scans [44]:
alternate-horizontal, alternate-vertical (MPEG-2 interlace
scan) and the zigzag scan (normal scan used in H.263 and
MPEG-1). The actual scan used depends on the coefficient

A. Puri, A. Eleftheriadis / MPEG-4: An object-based multimedia coding standard 17

(a)

(b)

(c)

Figure 14. Scans for intra blocks: (a) alternate-horizontal, (b) alternate-
vertical, (c) zigzag.

predictions used. For instance, if AC coefficient prediction
is disabled for a intra macroblock, all blocks in that mac-
roblock are zigzag-scanned. If AC coefficient prediction is
enabled and DC coefficient prediction was selected from
the horizontally adjacent block, alternate-vertical scan is
used, likewise, if AC coefficient prediction is enabled and
DC coefficient prediction was selected from the vertically
adjacent block, alternate-horizontal scan isused. Figure 14
shows the three scans used.

A three dimensional variable length code is used to code
the scanned DCT events of intra blocks. An event is a com-
bination of three items (last, run, level). The ‘last’ indicates
if a coefficient is the last nonzero coefficient of a block or
not, the ‘run’ indicates number of zero coefficients preceed-
ing the current nonzero coefficient and level indicates the
amplitude of the quantized coefficient.

The DCT coefficients of inter blocks, unlike DCT co-
efficients of inter blocks do not undergo any prediction or
adaptive scanning, in fact they use the fixed zigzag scan
of figure 14(c). The scanned coefficients of inter blocks
are also coded by a three dimensional variable length code
table with similar structure as the intra variable length code
table but with code entries optimized for inter statistics.

Finally, as mentioned earlier, MPEG-4 also supports ef-
ficient coding of interlaced video. It combines the mac-
roblock based frame/field DCT coding of MPEG-2 with
the improved DC coefficient coding, quantization, scanning
and variable length coding of normal MPEG-4 video cod-
ing resulting in improved coding efficiency. Furthermore, it
allows DCT coding of arbitrary shaped VOPs of interlaced
video where as MPEG-2 only supports rectangular pictures
of interlaced video.

4.2.4. Sprite coding
In computer games, a sprite refers to an synthetic

object that undergoes some form of transformation (in-
cluding animation). Also, in the literature, and in con-
nection with highly efficient representation of natural
video, the term ‘mosaic’ or ‘world image’ is used to de-
scribe a large image built by integration of many frames
of a sequence spatially and/or many frames of a se-
quence temporally; in MPEG-4 terminology, such an
image is referred to as a static sprite. Static sprites
can improve the overall coding efficiency, for example,
by coding the background only once and warping it to
generate the rendition required at a specific time in-
stance.

A static sprite [35,37] is usually built offline and can be
used to represent synthetic or natural objects. It is quite
suitable for natural objects that undergo rigid motion and
where a wall paper like rendering is sufficient. One of the
main components in coding using natural sprites is gener-
ation of the sprite itself. For generating a static sprite, the
entire video object is assumed to be available. For each
VOP in the VO, the global motion is estimated according
to a transformation model (say, perspective transformation)
using which a VOP is then registered with the sprite by
warping the VOP to sprite coordinate system. Finally, the
warped VOP is blended with the sprite which is used for
estimation of motion of the subsequent VOP.

A number of choices regarding the transformations mod-
els exist such as stationary, translation, magnification–
rotation–translation, affine, and perspective transformation.
Each transformation can be defined as either a set of coef-
ficients or the motion trajectories of some reference points;
the former, is convenient for performing the transforma-
tions whereas the later for encoding the transformations.
If four reference points are used, perspective transforma-
tion can be employed for warping and is defined by the
following:

x′ = (ax+ by + c)/(gx+ hy + l),

y′ = (dx+ ey + f)/(gx+ hy + l),

where {a, b, c, d, e, f , g,h, l} are the coefficients of the
transformation, (x, y) is one of the reference points of in-
terest in current VOP which corresponds to point (x′, y′) in
the sprite, expressed in sprite coordinate system.

Once the sprite is available, global motion between the
current VOP and the sprite is estimated, using the perspec-
tive transform, for example. The reconstructed VOPs are
generated from the sprite by directly warping the quantized
sprite using specified motion parameters. Residual error be-
tween the original VOP and the warped sprite is not sent.

4.3. Scalable video coding

Scalability of video is the property that allows a video
decoder to decode portions of the coded bitstreams to gener-
ate decoded video of quality commensurate with the amount
of data decoded. In other words, scalability allows a simple

18 A. Puri, A. Eleftheriadis / MPEG-4: An object-based multimedia coding standard

Figure 15. Temporal scalability.

video decoder to decode and produce basic quality video
while an enhanced decoder may decode and produce en-
hanced quality video, all from the same coded video bit-
stream. This is possible because scalable video encoding
ensures that input video data is coded as two or more lay-
ers, an independently coded base layer and one or more en-
hancement layers coded dependently, thus producing scal-
able video bitstreams. The first enhancement layer is coded
with respect to the base layer, the second enhancement layer
with respect to the first enhancement layer and so forth.

MPEG-4 video offers a generalized scalability [35,37,
44] framework supporting both the Temporal and the Spa-
tial scalabilities, the primary type of scalabilities. Tem-
porally scalable encoding offers decoders a means to in-
crease temporal resolution of decoded video using de-
coded enhancement layer VOPs in conjunction with de-
coded base layer VOPs. Spatial scalability encoding on the
other hand offers decoders a means to decode and display
either the base layer or the enhancement layer output; typ-
ically, since base layer uses one-quarter resolution of the
enhancement layer, the enhancement layer output provides
the better quality, albeit requiring increased decoding com-
plexity. The MPEG-4 generalized scalability framework
employs modified B-VOPs that only exist in enhancement
layer to achieve both temporal and spatial scalability; the
modified enhancement layer B-VOPs use the same syntax
as normal B-VOPs but for modified semantics which allows
them to utilize a number of interlayer prediction structures
needed for scalable coding.

Figure 15 shows an example of the prediction struc-
ture used in temporally scalable coding. The base layer is
shown to have one-half of the total temporal resolution to
be coded, the remaining one-half is carried by the enhance-
ment layer. Base layer is coded independently as in normal
video coding where as the enhancement layer uses B-VOPs
that use both, an immediate temporally previous decoded
base layer VOP as well as an immediate temporally fol-
lowing decoded base layer VOP for prediction.

Next, figure 16 shows an example of prediction structure
used in spatially scalable coding. The base layer is shown
to have one-quarter resolution of the enhancement layer.
Base layer is coded independently as in normal video cod-
ing where as the enhancement layer mainly uses B-VOPs
that use both, an immediate previous decoded enhancement

Figure 16. Spatial scalability.

layer VOP as well as a coincident decoded base layer VOP
for prediction.

In reality, some flexibility is allowed in choice of spatial
and temporal resolutions for base and enhancement layers
as well as the prediction structures allowed for the enhance-
ment layer to cope with a variety of conditions in which
scalable coding may be needed. Further, both spatial and
temporal scalability with rectangular VOPs and temporal
scalability of arbitrary shape VOPs is expected to be sup-
ported in MPEG-4 Version 1. Figures 15 and 16 are ap-
plicable not only to rectangular VOP scalability but also
to arbitrary shape VOP scalability (in this case only the
shaded region depicting the head and shoulder view is used
for predictions in scalable coding, and the rectangle repre-
sents the bounding box). MPEG-4 Video Version 1 supports
the spatial and temporal scalability with rectangular VOPs
as well as temporal scalability with arbitrary shape VOPs,
however, spatial scalability with arbitrary shape VOPs will
be supported in Version 2.

4.4. Robust video coding

Truly robust video coding requires a diversity of strate-
gies. MPEG-4 video offers a number of tools which an
encoder operating in the error resilient mode [37] can em-
ploy. MPEG-4 video also offers other tools (not specific to
error resilience) that can be used to provide robust video
coding. We now discuss the various available tools and
how they can be used by themselves or in conjunction to
provide robust video coding.

4.4.1. Object priorities
The object based organization of MPEG-4 video poten-

tially makes it easier to achieve a higher degree of error ro-
bustness due to the possibility of prioritizing each semantic
object based on its relevance. Further, MPEG-4 systems,
since it offers scene description and composition flexibili-
ties can ensure that the reconstructed scenes are meaningful
even if low priority objects are only partially available or
become unavailable (say due to data loss or corruption).
Currently, MPEG-4 systems offers a way of providing pri-
orities to each stream; if these are found insufficient, prior-
ities may also be assigned to VOs and VOLs in the video
bitstream (this has not yet been resolved). Further, VOP
types themselves lend to a form of automatic prioritization

A. Puri, A. Eleftheriadis / MPEG-4: An object-based multimedia coding standard 19

Table 5
Recommended spacings for resync markers.

Bit-rate (kbit/s) Spacing (bits)

6 24 480
25–48 736

since, B-VOPs are noncausal and do not contribute to error
propagation and thus can be assigned a lower priority and
perhaps even be discarded in case of severe errors.

Although in principle, coding of scenes as arbitrary
shaped objects can be advantageous, the down side can be
shape overhead, increase in decoding complexity and the
sensitivity of shape coding (which can be interframe and
context dependent) to errors.

4.4.2. Resynchronization
VOPs already offer a means of resynchronization to pre-

vent accumulation of errors. Further, it is possible for an
encoder to offer increased error resilience by placing resyn-
chronization (resync) markers in the bitstream with approx-
imately constant spacing. The resync marker is a unique
17 bit code that normally can not be emulated by any valid
combination of VLC codewords that may precede it. The
VM7 error resilient encoding recommends the spacings of
table 5, in bits as a function of the coding bit-rate.

In fact, to enable recovery from errors, a video packet
header is used which in addition to resync marker contains
macroblock number, quantizer scale and an optional exten-
sion header (when present, it includes VOP time and coding
type information). The timing information ensures that the
decoder can determine the VOP to which the video packet
header belongs.

4.4.3. Data partitioning
Data partitioning provides a mechanism to increase error

resilience by separating the normal motion and texture data
of all macroblocks in a video packet and send all of the
motion data followed by a motion marker, followed by all
of the texture data. The motion marker is a unique 17 bit
code that cannot be emulated by any valid combination of
VLC codewords that may precede it.

The motion data per macroblock is arranged to contain
coded/not coded information followed by combined mac-
roblock type and coded block pattern information followed
by motion vector(s); the motion data of the next macroblock
follows that of the previous macroblock till the motion data
for all macroblocks in the video packet can be sent. The
texture data per macroblock is arranged in two parts. The
first part contains coded block information of luminance
blocks in a macroblock followed by optional differential
quantizer information, this is repeated for all macrolocks
in the video packet. The second part contains coded DCT
coefficients of a macroblock, followed by that of the next
macroblock till DCT coefficients for all macroblocks in the
video packet can be sent.

4.4.4. Reversible VLCs
The reversible VLCs offer a mechanism for a decoder

to recover additional texture data in the presence of errors
since the special design of reversible VLCs enables de-
coding of codewords in both the forward (normal) and the
reverse direction. The encoder decides whether for coding
of DCT coefficients, to use the reversible VLCs or normal
VLCs (depending on the coding efficiency versus error re-
silience tradeoffs needed) by signalling this information as
part of the bitstream. It is possible to invoke the error re-
silience mode independent of whether reversible VLCs are
used or not.

The process of additional texture recovery in a corrupted
bitstream starts by first detecting the error and searching
forward in the bitstream to locate the next resync marker.
Once the next resync marker is located, from that point, due
to use of reversible VLCs for texture coding, the texture
data can be decoded in the reverse direction until an error
is detected. Further, when errors are detected in texture
data, the decoder can use correctly decoded motion vector
information to perform motion compensation and conceal
these errors.

4.4.5. Other tools: intra update and scalable coding
Typically, intra coding of macroblocks although it can

provide refresh from coding errors, is expensive when used
very frequently due to higher coding cost when video data
is coded in intra mode. In MPEG-4, considerable effort
has been placed in improving the efficiency of intra cod-
ing and the resulting scheme offers higher efficiency than
H.263 or MPEG-1 based intra coding. Thus, encoders re-
quiring higher error resilience can choose to code increased
number of macroblocks in intra coding mode than with pre-
vious standards, providing an improved refresh from coding
errors.

Scalable coding can offer a means of graceful degrada-
tion in quality when packet errors due to noisy conditions
or packet losses due to congestion on the network are likely.
Since scalable coding involves independent coding of the
base layer, the base layer data can be assigned a higher
priority and be better protected. Since the enhancement
layers only offer improvement in spatial or temporal reso-
lution, the enhancement layer data can be assigned a lower
priority.

4.4.6. Correction and concealment strategies
Due to the channel specific nature of the degree and type

of error correction needed, MPEG-4 is not likely to recom-
mend a specific error correction method, but leaves it up
to the chosen data transport layer to implement the needed
technique. Further, error concealment strategies although
encouraged are not standardized by MPEG-4; perhaps the
work done on this topic in MPEG-2 can be useful.

20 A. Puri, A. Eleftheriadis / MPEG-4: An object-based multimedia coding standard

Table 6
Viseme number 1 to 14, its related phoneme set and examples.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

(p,b,m) (f,v) (T,D) (t,d) (k,g) (tS,dZ,S) (s,z) (n,l) (r) (A:) (e) (I) (Q) (U)
put far think tip call chair sir lot red car bed tip top book
bed voice that doll gas join zeal not
mill she

4.5. Facial animation coding

The Facial Animation Parameters (FAPs) and the Facial
Definition Parameters (FDPs) [35] are sets of parameters
designed to allow animation of faces reproducing expres-
sions, emotions and speech pronunciation, as well as, def-
inition of facial shape and texture. The same set of FAPs
when applied to different facial models result in reasonably
similar expressions and speech pronunciation without the
need to initialize or calibrate the model. The FDPs, on the
other hand, allow the definition of a precise facial shape
and texture in the setup phase. If the FDPs are used in
the setup phase, it is also possible to precisely produce the
movements of particular facial features. Using a phoneme
to FAP conversion it is possible to control facial models
accepting FAPs via text to speech (TTS) systems; this con-
version is not standardized. Since it is assumed that every
decoder has a default face model with default parameters
the set up stage is not necessary to create face animation
but for customizing the face at the decoder.

The FAP set contains two high level parameters visemes
and expressions. A viseme is a visual correlate to a pho-
neme. The viseme parameter allows viseme rendering
(without having to express them in terms of other para-
meters) and enhances the result of other parameters, ensur-
ing the correct rendering of visemes. Only static visemes
which are clearly distinguished are included in the stan-
dard set; examples of such visemes are shown in table 6.
The expression parameter similarly allows the definition of
high level facial expressions. The facial expression para-
meter values are defined by textual descriptions such as,
joy, sadness, anger, fear, disgust, surprise.

All the parameters involving translational movement
are expressed in terms of the Facial Animation Parame-
ter Units (FAPU). These units are defined in order to al-
low interpretation of the FAPs on any facial model in a
consistent way, producing reasonable results in terms of
expression and speech pronunciation. The measurement
units are shown in figure 17 and are defined as follows:
IRISD0: Iris diameter (by definition it is equal to the dis-

tance between upper and lower eyelid) in neutral
face; IRISD = IRISD0/1024;

ES0: eye separation; ES = ES0/1024;
ENS0: eye–nose separation; ENS = ENS0/1024;
MNS0: mouth–nose separation; MNS = MNS0/1024;
MW0: mouth width; MW = MW0/1024;
AU: angle unit = 10−5 rad.

The FDPs (figure 18) are used to customize the propri-
etary face model of the decoder to a particular face or to

Figure 17. Facial animation parameter units.

Figure 18. Facial definition feature set.

A. Puri, A. Eleftheriadis / MPEG-4: An object-based multimedia coding standard 21

download a face model along with the information about
how to animate it. The FDPs are normally transmitted once
per session, followed by a stream of compressed FAPs.
However, if the decoder does not receive the FDPs, the use
of FAPUs ensures that it can still interpret the FAP stream.
This ensures minimal operation in broadcast or teleconfer-
encing applications.

The FDP set is specified using the FDP node (in MPEG-
4 systems) which defines the face model to be used at the
receiver. Two options are supported:

• Calibration information is downloaded so that the pro-
prietary face of the receiver can be configured using
facial feature points and optionally a 3D mesh or tex-
ture.

• A face model is downloaded with the animation defi-
nition of the Facial Animation Parameters. This face
model replaces the proprietary face model in the re-
ceiver.

4.6. Object mesh coding

For general natural or synthetic visual objects, mesh
based representation [35] can be useful for enabling a num-
ber of functions such temporal rate conversion, content ma-
nipulation, animation, augmentation (overlay), transfigura-
tion (merging or replacing natural video with synthetic) and
others. MPEG-4 includes a tool for triangular mesh based
representation of general purpose objects.

A visual object of interest, when it first appears (as a
2D VOP) in the scene, is tassellated into triangular patches
resulting in a 2D triangular mesh. The vertices of the trian-
gular patches forming the mesh are referred to as the node
points. The node points of the initial mesh are then tracked
as the VOP moves within the scene. The 2D motion of
a Video Object can thus be compactly represented by the
motion vectors of the node points in the mesh. Motion
compensation can then be achieved by texture mapping the
patches from VOP to VOP according to affine transforms.
Coding of video texture or still texture (to be discussed
next) of object is performed by the normal texture coding
tools of MPEG-4. Thus, efficient storage and transmission
of the mesh representation of a moving object (dynamic
mesh) requires compression of its geometry and motion.

The initial 2D triangular mesh is either a uniform mesh
or a Delaunay mesh, the mesh triangular topology (links
between node points) is not coded; only the 2D node point
coordinates −→pn = (xn, yn) are coded. A uniform mesh can
be completely specified using five parameters such as the
number of nodes horizontally and the number of nodes ver-
tically, the horizontal and the vertical dimensions of each
quadrangle consisting of two triangles, and the type of split-
ting applied on each quadrangle to obtain triangles. For a
Delaunay mesh, the node point coordinates are coded by
first coding the boundary node points and then the interior
node points of the mesh. To encode the interior node po-
sitions, the nodes are traversed one by one using a nearest

Figure 19. 2D Mesh representation of an object, and coding of mesh
geometry.

neighbor strategy. A linear ordering of the node points is
computed such that each node is visited only once. When
a node is visited, its position is differentially coded with
respect to the position of previous coded node used as the
predictor. By sending the total number of node points and
the number of boundary node points, the decoder knows
how many node points will follow, and how many of those
are boundary nodes; thus it is able to reconstruct the polyg-
onal boundary and the locations of all nodes. The mesh
based representation of an object and the traversal of nodes
for mesh geometry coding is illustrated in figure 19 by an
example.

First, the total number of nodes and the number of
boundary nodes is encoded. The top-left node −→p0 is coded
without prediction. Then, the next clockwise boundary
node −→p1 is found and the difference between −→p0 and −→p1
is encoded; then all other boundary nodes are encoded in a
similar fashion. Then, the not previously encoded interior
node that is nearest to the last boundary node is found and
the difference between these is encoded; this process is re-
peated until all the interior nodes are covered. The mesh
geometry is only encoded when a new mesh needs to be
initialized with respect to a particular VOP of the corre-
sponding visual object; it consists of the initial positions of
the mesh nodes.

The mesh motion is encoded [52] at subsequent time
instants to describe the motion of the corresponding video
object; it consists of a motion vector for each mesh node
such that the motion vector points from a node point of
the previous mesh in the sequence to a node point of the
current mesh. The mesh bitstream syntax consists of the
two parts: mesh geometry and mesh motion. The node
coordinates and node motion vectors are specified to one-
half pixel accuracy.

4.7. Still texture coding

The Discrete Wavelet Transform (DWT) [35,37] is used
to code still image data employed for texture mapping. Be-
sides coding efficiency, an important requirement for coding
texture map data is that it should be coded in a manner fa-
cilitating continuous scalability, thus allowing many resolu-
tion/qualities to be derived from the same coded bitstream.

22 A. Puri, A. Eleftheriadis / MPEG-4: An object-based multimedia coding standard

Figure 20. Block diagram of the DWT encoder of still image texture.

While DCT based coding is able to provide comparable
coding efficiency as well as a few scalability layers, DWT
based coding offers flexibility in organization and number
of scalability layers.

The principle of DWT encoding is shown in figure 20.
The basic modules of a zero-tree wavelet based coding

scheme are as follows:

1. Decomposition of the texture using discrete wavelet
transform (DWT).

2. Quantization of the wavelet coefficients.

3. Coding of the lowest frequency subband using a pre-
dictive scheme.

4. Zero-tree scanning of the higher order subband wavelet
coefficients.

5. Entropy coding of the scanned quantized wavelet co-
efficients and the significance map.

A 2D separable wavelet decomposition is applied to the
still texture to be coded. The wavelet decomposition is
performed using a Daubechies (9,3) tap biorthogonal filter
which has been shown to provide good compression per-
formance. The filter coefficients are:

Lowpass =0.033 145 630 368 12 −0.066 291 260 736 24 −0.176 776 695 296 65

0.419 844 651 329 52 0.994 368 911 043 60 0.419 844 651 329 52

0.176 776 695 296 65 −0.066 291 260 736 24 0.033 145 630 368 12


Highpass =[
−0.353 553 390 593 27 0.707 106 781 186 55 −0.353 553 390 593 27

]
.

A group delay is applied to each filter to avoid the phase
shift on both of the image domain and the wavelet domain.

The wavelet coefficients of the lowest band are coded
independently from the other bands. These coefficients are
quantized using a uniform midrise quantizer. After quanti-
zation of the lowest subband coefficients, an implicit pre-
diction (same as that used for DC prediction in intra DCT
coding) is applied to compute the prediction error which
is then encoded using an adaptive arithmetic coder which
uses min-max coding.

The wavelet coefficients of the higher bands are first
quantized by multilevel quantization which provides the
flexibility needed to tradeoff number of levels, type of scal-
ability (spatial or SNR), complexity and coding efficiency.
Different quantization step sizes (one for luminance and one
for chrominance) can be specified for each level of scala-
bility. All the quantizers of the higher bands are uniform

Figure 21. Scalable decoding of still object texture.

mid-rise quantizer with a dead zone 2 times the quantization
step size. The quantization step sizes are specified by the
encoder in the bitstream. In order to achieve the fine gran-
ularity of SNR scalability, a bi-level quantization scheme is
used for all the multiple quantizers. This quantizer is also
a uniform mid rise quantizer with a dead zone 2 times the
quantization step size. The coefficients that lie outside the
dead zone (in the current and previous pass) are quantized
with a 1 bit accuracy. The number of quantizers is equal to
the maximum number of bitplanes in the wavelet transform
representation. In this bi-level case, instead of the quanti-
zation step sizes, the maximum number of the bitplanes is
specified in the bitstream.

After quantization, each wavelet coefficient is either zero
or nonzero. The coefficients of all bands (except the low-
est) are scanned by zero-tree scanning. Zero-tree scanning
is based on the observation that strong correlation exists
in the amplitudes of the wavelet coefficients across scales,
and on the idea of partial ordering of the coefficients. The
coefficient at the coarse scale is called the parent, and all
coefficients at the same spatial location, and of similar ori-
entation, at the next finer scale are that parent’s children.
Since the lowest frequency subband is coded separately, the
wavelet trees start from the adjacent higher bands. In or-
der to achieve a wide range of scalability levels efficiently
as needed by the application, a multiscale zerotree coding
scheme is employed. The zero-tree symbols and the quan-
tized values are coded using an adaptive arithmetic encoder
which uses a three-symbol alphabet.

The process of scalable decoding the various spa-
tial/SNR layers from a single DWT coded bitstream is
shown in figure 21.

5. MPEG-4 audio

The benefits of the MPEG-4 speech coder can be ex-
ploited in a number of applications. As an example,
the MPEG-4-based Internet-phone system offers robustness
against packet loss or change in transmission bit-rates. Fur-
thermore, low bit-rate is useful for “Party talk”. Besides
speech coding MPEG-4 also offers multichannel audio cod-
ing based on optimized MPEG-2 AAC coding. MPEG-4

A. Puri, A. Eleftheriadis / MPEG-4: An object-based multimedia coding standard 23

Figure 22. Natural audio coding in MPEG-4.

also offers solutions for medium bit-rate audio coding. Fur-
thermore, it supports the concept of audio objects. Just as
video scenes are made from visual objects, audio scenes
may be usefully described as the spatiotemporal combina-
tion of audio objects. An “audio object” is a single audio
stream coded using one of the MPEG-4 coding tools, like
CELP or Structured Audio. Audio objects are related to
each other by mixing, effects processing, switching, and
delaying them, and may be spatialized to a particular 3D
location. The effects processing is described abstractly in
terms of a signal-processing language (the same language
used for Structured Audio), so content providers may design
their own empirically, and include them in the bitstream.

5.1. Natural audio

As mentioned earlier, Natural Audio coding [16,28] in
MPEG-4 consists of the following:

• The lowest bit-rate range between 2 and 6 kbit/s is cov-
ered by Parametric Coding (mostly for speech coding).

• The medium bit-rates between 6 and 24 kbit/s use Code
Excited Linear Predictive (CELP) with two sampling
rates, 8 and 16 kHz, for a broader range of audio signals.

• For higher bit-rates starting at about 16 kbit/s, frequency
domain coding techniques are applied, e.g., optimized
version of MPEG-2 Advanced Audio Coding (AAC).
The audio signals in this region typically have band-
widths starting at 8 kHz.

Figure 22 provides a composite picture of the applica-
tions of MPEG-4 audio and speech coding, the signal band-
width and the type of coders used.

5.1.1. Parameteric coder
The parametric coder core provides two sets of tools.

The HVXC coding tools (Harmonic Vector eXcitation Cod-
ing) allow coding of speech signals at 2 kbit/s while the
Individual Line coding tools allow coding of non-speech
signals like music at bit rates of 4 kbit/s and higher. Both
sets of tools allow independent change of speed and pitch
during the decoding and can be combined to handle a wider
range of signals and bit rates.

5.1.2. CELP coder
The CELP coder is designed for speech coding at two

different sampling frequencies, namely, 8 kHz and 16 kHz.
The speech coders using 8 kHz sampling rate are referred to
as narrowband coders while those using 16 kHz sampling
rate are wideband coders. The CELP coder includes tools
offering a variety of functions including bit rate control, bit
rate scalability, speed control, complexity scalability and
speech enhancement. Using the narrowband and the wide-
band CELP coders, it is possible to span a wide range of
bit rates (4 kbps to 24 kbps). Real-time bit-rate control in
small steps can be provided. A common structure of tools
have been defined for both the narrowband and wideband
coders; many tools and processes have been designed to
be commonly usable for both narrowband and wideband
speech coders.

5.1.3. Time/frequency coder
The high-end audio coding in MPEG-4 [28] is based on

MPEG-2 AAC coding. MPEG-2 AAC is a state-of-the-art
audio compression algorithm that provides compression su-
perior to that provided by older algorithms. AAC is a trans-
form coder and uses a filterbank with a finer frequency res-
olution that enables superior signal compression. AAC also
uses a number of new tools such as temporal noise shap-
ing, backward adaptive linear prediction, joint stereo coding
techniques and Huffman coding of quantized components,
each of which provide additional audio compression capa-
bility. Furthermore, AAC supports a wide range of sam-
pling rates and bit-rates, from one to 48 audio channels, up
to 15 low frequency enhancement channels, multi-language
capability and up to 15 embedded data streams. MPEG-2
AAC provides a 5-channel audio coding capability, while
being a factor of two better in coding efficiency relative to
MPEG-2 BC; since AAC has no such backward compati-
bility requirement and it incorporates the recent advances,
in MPEG formal listening tests for 5-channel audio signals,
it provided slightly better audio quality at 320 kbit/s than
MPEG-2 BC can provide at 640 kbit/s.

5.2. Text to Speech

The Text-to-Speech (TTS) conversion system synthe-
sizes speech as its output when a text is accessed as its
input. In other words, when the text is accessed, the TTS
changes the text into a string of phonetic symbols and the
corresponding basic synthetic units are retrieved from a pre-
prepared database. Then the TTS concatenates the synthetic
units to synthesize the output speech with the rule-generated
prosody. Some application areas for MPEG-4 TTS are as
follows:

– artificial story teller (or story teller on demand);

– synthesized speech output synchronized with Facial An-
imation (FA);

– speech synthesizer for avatars in various Virtual Reality
(VR) applications;

24 A. Puri, A. Eleftheriadis / MPEG-4: An object-based multimedia coding standard

– voice news paper;

– dubbing tools for animated pictures;

– voice Internet;

– transportation timetables.

The MPEG-4 TTS [28] can not only synthesize speech
according to the input speech with a rule-generated prosody,
but also executes several other functions. They are as fol-
lows:

(1) Speech synthesis with the original prosody from the
original speech.

(2) Synchronized speech synthesis with Facial Animation
(FA) tools.

(3) Synchronized dubbing with moving pictures not by
recorded sound but by text and some lip shape infor-
mation.

(4) Trick mode functions such as stop, resume, forward,
backward without breaking the prosody even in the ap-
plications with Facial Animation (FA)/ Motion Pictures
(MP).

(5) Users can change the replaying speed, tone, volume,
speaker’s sex, and age.

MPEG-4 TTS can be used for many languages in the
world since it adopts the concept of the language code such
as the country code for an international call. Presently, only
25 countries, i.e., the current ISO members, have their own
code numbers, to identify that their own language has to
be synthesized, except the International Phonetic Alphabet
(IPA) code assigned as 0. However, 8 bits have been as-
signed for the language code to ensure that all countries
can be assigned language code when asked in the future.
IPA could be used to transmit all languages.

For MPEG-4 TTS, only the interface bitstream profiles
are the subject of standardization. Because there are already
many different types of TTS and each country has several or
a few tens of different TTSs synthesizing its own language,
it is impossible to standardize all the things related to TTS.
However, it is believed that almost all TTSs can be modified
to accept MPEG-4 TTS interface very quickly by a TTS
expert because of the rather simple structure of the MPEG-4
TTS interface bitstream profiles.

5.3. Structured audio

Structured audio formats use ultra-low bit-rate algorith-
mic sound models to code and transmit sound. MPEG-4
standardizes an algorithmic sound language and several re-
lated tools for the structured coding of audio objects. Using
these tools, algorithms which represent the exact specifica-
tion of a sound scene are created by the content designer,
transmitted over a channel, and executed to produce sound
at the terminal. Structured audio techniques in MPEG-4
[28] allow the transmission of synthetic music and sound

effects at bit-rates from 0.01 to 10 kbit/s, and the concise
description of parametric sound post-production for mix-
ing multiple streams and adding effects processing to audio
scenes

MPEG-4 does not standardize a synthesis method, but a
signal-processing language for describing synthesis meth-
ods. SAOL, pronounced “sail”, stands for “Structured Au-
dio Orchestra Language” and is the signal-processing lan-
guage enabling music-synthesis and effects post-production
in MPEG-4. It falls into the music-synthesis category of
“Music V” languages; that is, its fundamental processing
model is based on the interaction of oscillators running at
various rates. However, SAOL has added many new ca-
pabilities to the Music V language model which allow for
more powerful and flexible synthesis description. Using
this language, any current or future synthesis method may
be described by a content provider and included in the bit-
stream. This language is entirely normative and standard-
ized, so that every piece of synthetic music will sound ex-
actly the same on every compliant MPEG-4 decoder, which
is an improvement over the great variety in MIDI-based
synthesis systems.

The techniques required for automatically producing a
Structured Audio bitstream from an arbitrary sound are be-
yond today’s state of the art and are referred to as “auto-
matic source separation” or “automatic transcription”. In
the mean time, content authors will use special content cre-
ation tools to directly create Structured Audio bitstreams.
This is not a fundamental obstacle to the use of MPEG-
4 Structured Audio, because these tools are very similar
to the ones that content authors use already; all that is
required is to make them capable of producing MPEG-4
output bitstreams. There is no fixed complexity which is
adequate for decoding every conceivable Structured Au-
dio bitstream. Simple synthesis methods are very low-
complexity, and complex synthesis methods require more
computing power and memory. Since the description of
the synthesis methods is under the control of the content
provider, the content provider is responsible for understand-
ing the complexity needs of the bitstreams. Past versions of
structured audio systems with similar capability have been
optimized to provide multitimbral, highly polyphonic mu-
sic and post-production effects in real-time on a 150 MHz
Pentium computer or simple DSP chip.

6. MPEG-4 systems

The Systems [33] part of MPEG-4 perhaps represents
the most radical departure from previous MPEG specifica-
tions. Indeed, the object-based nature of MPEG-4 necessi-
tates a totally new approach on what the Systems layer is
required to provide. Issues of synchronization and multi-
plexing are, of course, still very essential. Note, however,
that an MPEG-4 scene may be composed of several ob-
jects, and hence synchronization between a large number
of streams is required. In addition, the spatio-temporal po-

A. Puri, A. Eleftheriadis / MPEG-4: An object-based multimedia coding standard 25

Figure 23. System decoder model.

sitioning of such objects forming a scene (or scene descrip-
tion) is a key component. Finally, issues of interactivity
are also quite new in MPEG as well.

6.1. System decoder model

A key problem in designing an audiovisual communi-
cation system is ensuring that time is properly represented
and reconstructed by the terminal. This serves two pur-
poses: (1) it ensures that “events” occur at designated times
as indicated by the content creator, and (2) that the sender
can properly control the behavior of the receiver. The latter
is essentially providing an open-loop flow control mecha-
nism, a requirement for a specification that covers broad-
cast channels (without an upstream, or feedback, channel).
Assuming a finite set of buffer resources at the receiver,
by proper clock recovery and timestamping of events the
source can always ensure that these resources are not ex-
hausted.

Clock recovery is typically performed using clock ref-
erences. The receiving system has a local system clock
which is controlled by a PLL, driven by the differences
in received clock references and the local clock references
at the time of their arrival. This way the receiver’s clock
speed is increased or decreased, matching that of the sender.
In addition, coded units are associated with decoding time
stamps, indicating the time instance in which a unit is re-
moved from the receiving system’s decoding buffer. The
combination of clock references and time stamps is suffi-
cient for full control of the receiver.

In order to properly address specification issues without
making unnecessary assumption about system implementa-
tion, MPEG-4 Systems defines a System Decoder Model.
This represents an idealized unit, in which operations can be
unambiguously controlled and characterized. The MPEG-4
System Decoder Model exposes resources available at the
receiving terminal, and defines how they can be controlled
by the sender or content creator. The model is shown in
figure 23. It is composed of a set of decoders (for the var-
ious audio or visual object types), provided with two types
of buffers: decoding and composition.

The decoding buffers have the same functionality as in
previous MPEG specifications, and are controlled by clock
references and decoding timestamps. In MPEG-2, each

program had its own clock. Proper synchronization was
ensured by using the same clock for coding and transmit-
ting the audio and video components. In MPEG-4, each
individual object is assumed to have its own clock, or Ob-
ject Time Base (OTB). Of course, several objects may share
the same clock. In addition, coded units of individual ob-
jects (Access Units – AUs, corresponding to an instance
of a video object or a set of audio samples) are associated
with Decoding Timestamps (DTSs). Note that the decoding
operation at DTS is considered (in this ideal model) to be
instantaneous.

The composition buffers which are present at the de-
coder outputs form a second set of buffers. Their use is
related to object persistence. In some situations, a con-
tent creator may want to reuse a particular object after it
has been presented. By exposing a composition buffer,
the content creator can control the lifetime of data in this
buffer for later use. This lifetime is controlled by an Expi-
ration Timestamp (ETS). A decoded object is assumed to
remain in this buffer until its ETS is reached, and can be
used repeatedly until that time. This feature may be par-
ticularly useful in low bandwidth wireless environments.
MPEG-4 defines an additional timestamp, the Composition
Timestamp (CTS), which defines the time at which data is
taken from the composition buffer for (instantaneous) com-
position and presentation.

In order to coordinate the various objects, a single Sys-
tem Time Base (STB) is assumed to be present at the receiv-
ing system. All object time bases are subsequently mapped
into the system time base, so that a single notion of time
exists in the terminal. For clock recovery purposes, a single
stream must be designated as the master. The current spec-
ification does not indicate the stream that has this role, but
a plausible candidate is the one which contains the scene
description. Note also that, in contrast with MPEG-2, the
resolution of both the STB and the Object Clock References
(OCRs) is not mandated by the specification. In fact, the
size of the OCR fields for individual Access Units is fully
configurable, as discussed later.

In other designs (e.g., IETF’s RTP), the assumption of
a globally known clock can be made (provided by other
network services such as NTP). There is work underway to
provide a unified methodology so that mapping of MPEG-4
timing architecture can be seamlessly performed in such

26 A. Puri, A. Eleftheriadis / MPEG-4: An object-based multimedia coding standard

an environment as well. This is facilitated by the flexi-
ble multiplexing methodology adopted in MPEG-4, and is
discussed later.

6.2. Scene description

Scene description refers to the specification of the spatio-
temporal positioning and behaviour of individual objects. It
is a totally new component in the MPEG specifications, and
allows the easy creation of compelling audiovisual content.
Scene description involves an architectural component, i.e.,
the proper way to conceptually organize audiovisual infor-
mation, and a syntactic component which is the mapping
of such architecture into a bitstream. Note that the scene
description is transmitted in a separate stream from the indi-
vidual media objects. This allows one to change the scene
description without operating on any of the constituent ob-
jects themselves.

6.2.1. Architecture
The architecture of MPEG-4’s scene description is based

on the Virtual Reality Modeling Language (VRML) [2,20].
Scenes are described as hierarchies of nodes forming a
tree. Leafs of the tree correspond to media objects (audio
or visual, natural or synthetic), while intermediate nodes
perform operations on their underlying nodes (grouping,
transformation, etc.). Nodes also expose attributes through
which their behaviour can be controlled. This hierarchical
design is shown in figure 24.

There are however several key differences between the
domains that VRML and MPEG-4 address, which necessi-
tate the adoption of slightly different approaches. MPEG-4
is concerned with the description of highly dynamic scenes,
where temporal evolution is more dominant than naviga-
tion. VRML, on the other hand, allows the definition of a
static 3D world (static in the sense that all the objects in
that world are predefined and cannot be changed) in which
a user is allowed to navigate. As a result, scene descrip-
tions in MPEG-4 actually have their own time base, and
can be updated at any time. Updates can take the form
of a node’s replacement, elimination, insertion, or attribute
value modification. The presence of a time base and de-
coding time stamps ensures the application of such updates
at the correct time instances.

In addition, MPEG-4 also needs to address pure 2D com-
position of objects. The complexity and cost of 3D graphics
versus the possibility of developing low-cost or low-power
systems makes it desirable to partition the space of graph-
ics capabilities. In figure 24 we see an example where both
2D and 3D components coexist.

As a result of the close relationship of the MPEG-4 scene
description with VRML, the types of scene description ca-
pabilities provided by MPEG-4 are essentially those pro-
vided by VRML nodes. It is currently examined if MPEG-4
can be cast as an extension of VRML, with appropriately
defined subsets as MPEG-4 specific profiles.

Figure 24. Scene description.

6.2.2. Binary format for scenes
The mapping of the scene description into a paramet-

ric form, suitable for low-overhead transmission has re-
sulted in a scene description format called BInary Format
for Scenes (BIFS). This representation format associates
each node with a node type. Nodes are then represented by
their node type and a set of attribute value specifications.
To avoid the specification of all attributes of a node, default
values are used, and attributes are individually addressable
within a node. This way one can, for example, only specify
a non-default value for attribute X of a node of type Y.

Furthermore, nodes can optionally be reused. In this
case, they are associated with an identifier which can appear
in place of a node of the same type. In figure 24, for
example, the node “3D Obj 3” contains the child node “2D
Scene-1” which is used elsewhere in the scene as well. As
mentioned earlier, scene descriptions can be updated: nodes
can be inserted, deleted, replaced, or their attributes can be
modified.

In addition to the VRML set of nodes, MPEG-4 defines
its own set of nodes, particularly to handle media objects
including natural audio and video, still images, face ani-
mation, basic MIDI, text-to-speech synthesizer, streaming
text, 2-D composition operators, layout control, etc.

6.2.3. Interactivity
Interactivity in MPEG-4 can take two forms, client-

based and server-based. In the client-based case, user op-
erations affect the local scene description. The VRML
model of events and routes is used within the BIFS format,
thus providing direct support for a large variety of circum-
stances. In addition, and noting that user events can be
transformed to scene updates, one can also have a form of
interactivity that does not necessitate normative support by
the specification: user events can form a secondary source
of scene updates.

Server-based interaction requires the presence of an up-
stream channel. The details of such a mode of interactivity
are still under investigation, as they are slightly complicated
by the needs for network-independence.

A. Puri, A. Eleftheriadis / MPEG-4: An object-based multimedia coding standard 27

6.2.4. Adaptive audio-visual session
An additional, flexible mechanism for describing scenes

is also being developed, called Adaptive Audio-Visual Ses-
sion (AAVS). This is based on the use of the Java language
for constructing scenes, but not for composition, rendering,
or decoding. By taking the programmable aspect of the
system outside of the main data flow of decoders and the
rendering engine (which have to operate extremely fast),
overall performance can be kept high. Note that the AAVS
approach is being designed as an extension of BIFS. In
that sense, a BIFS scene can be a subset of an AAVS scene
(but not vice versa). The AAVS work although started for
MPEG-4 Version 1, will only be included in Version 2.

The benefits of the AAVS approach are in three major
categories. First, because of its flexible nature, the scene
description is capable of adapting to terminal capabilities
hence providing a form of graceful degradation. Secondly,
when scene description operations can be expressed con-
cisely in a flexible way (e.g., a spline trajectory), using
a flexible approach may result in increased compression.
Finally, by allowing programmability, user interaction can
extend beyond the modes defined in a parametric scene de-
scription and become as rich as the content creator wishes.
The use of programmability in an audiovisual terminal cer-
tainly opens up a very broad spectrum of opportunities for
a new generation multimedia applications.

6.3. Associating scene description with elementary streams

6.3.1. Object descriptors
Individual object data as well as scene description infor-

mation is carried in separate Elementary Streams (ES). As
a result, BIFS media nodes need a mechanism to associate
themselves with the ESs that carry their data (coded natural
video object data etc.). A direct mechanism would neces-
sitate the inclusion of transport-related information into the
scene description. As we mentioned earlier, an important
requirement in MPEG-4 is transport-independence. As a
result, an indirect way was adopted, using Object Descrip-
tors (ODs).

Each media node is associated with an object identifier,
which in turn uniquely identifies an OD. Within an OD,
there is information on how many ESs are associated with
this particular object (may be more than one for scalable
video/audio coding, or mutli-channel audio coding), and
information describing each of those streams. The latter
information includes the type of the stream, as well as how
to locate it within the particular networking environment
used. This approach simplifies remultiplexing (e.g., going
through a wired-wireless interface), as there is only one
entity that may need to be modified.

6.3.2. Stream map table
The object descriptor allows unique reference of an el-

ementary stream by an id; this id may be assigned by an
application layer when the content is created. The transport
channel in which this stream is carried may only be assigned

at a later time by a transport entity; it is identified by a
channel association tag associated to an elementary stream
id by a stream map table. In interactive applications, the re-
ceiving terminal may select the desired elementary streams,
send a request and receive the stream map table in return.
In broadcast and storage applications, the complete stream
map table must be included in the applications signalling
channel.

6.4. Multiplexing

The key underlying concept in the design of the MPEG-4
multiplexer is network independence. MPEG-4 content
may be delivered across a wide variety of channels, from
very low bit rate wireless, to high-speed ATM and broad-
cast systems, to DVDs. A critical design question was
what should be the tools included in the specification for
mandatory implementation. Clearly, the broad spectrum of
channels could not allow a single solution to be used. At
the same time, inclusion of a large number of different tools
and configuration would make implementations extremely
complex and – through excessive fragmentation through
profiles – make interoperability extremely hard to achieve
in practice. Consequently, the assumption was made that
MPEG-4 would not provide specific transport-layer features
but would instead make sure that it could be easily mapped
to existing such layers. This is accomplished by allowing
several components of the multiplexer to be configurable,
thus allowing designers to achieve the desired trade-off be-
tween functionality and efficiency. In addition, it is as-
sumed that Quality of Service (QoS) guarantees may be
made available by the underlying transport service if so
desired.

The overall multiplexing architecture of MPEG-4 is
shown in figure 25. At the top-most level, we have the
Access Unit Layer (AL) which provides the basic con-
veyor of timing and framing information. It is at this
level where timestamps and clock references are provided.
The AL header, however, is very flexible: the presence of
OCR/DTS is optional, and their resolution (number of bits)
is configurable. In addition, the header contains information
about framing (start or end of a coded unit, random access
indicator), as well as sequence numbering. The latter is par-
ticularly useful in error-prone wireless or broadcast envi-
ronments, where preemptive retransmission of critical infor-
mation (e.g., scene description) may be performed. Using a
sequence number a receiver that has already accurately re-
ceived the information can ignore the duplicate. In order to
be able to “bootstrap” the demultiplexing process, the AL
header configuration information is carried in a channel that
has a predefined configuration.

Immediately below the AL we have the optional Flex-
ible Multiplexer or “FlexMux” layer. This is a very sim-
ple design, intended for systems that may not provide na-
tive multiplexing services. An example is the data channel
available in GSM cellular telephones. Its use, however, it
entirely optional, and does not affect the operation of the

28 A. Puri, A. Eleftheriadis / MPEG-4: An object-based multimedia coding standard

Figure 25. MPEG-4 multiplexing architecture.

Figure 26. FlexMux modes.

rest of the system. As shown in the right side of figure 25
there can be a “null” connection directly from the Access
Unit Layer to the lower layers. The FlexMux provides two
modes of operation, a “simple” and a “muxcode” mode, as
shown in figure 26.

In the simple mode, data from a single object (or scene
description) is present in the FlexMux payload (appropri-
ately encapsulated as an AL PDU). In the MuxCode mode,
data from multiple objects are placed in predefined posi-
tions within the FlexMux payload. The ‘index’ field of
the FlexMux header indicates which of the modes is used,
depending on its value.

Finally, at the lowest level, we have the Transport Mul-
tiplexing or “TransMux” layer which is not specified by
MPEG-4. This can be any current or future transport layer
facility, including MPEG-2 Transport Stream, RTP, H.223,
etc. For a mobile system, this layer must provide its own
protection sublayer to ensure the desired QoS characteris-
tics.

6.5. File format

The need for a file format for storage-based delivery
(e.g., CD-ROM or DVD) of MPEG-4 content was recog-
nized quite early during the MPEG-4 Systems work. In

addition to being a standardized format for interchange of
coded MPEG-4 data, it was envisaged that the file format
would support a host of functionalities including random
access to individual objects or portions of objects and ed-
itability of coded objects. An early solution addressing
these capabilities was adopted and consisted of a simple
layer that substituted the TransMux layer and where ran-
dom access information is provided in the form of direc-
tories; this would potentially allow a user to rapidly move
back and forth in an MPEG-4 file having immediate ac-
cess to Access Units of data. However, the anticipated role
of file format for MPEG-4 was revised to include stream-
ing of coded MPEG-4 among others, and with a new set
of requirements in place, an open call was made inviting
proposals for file format.

A number of proposals, some backed by large segments
of the multimedia industry, were received. Among the
proposals received were Quicktime (Apple, IBM, Oracle,
Netscape, SGI and Sun), Advanced Streaming Format (Mi-
crosoft and Intel) and Integrated Intermedia Format (AT&T
and Columbia Univ.). A review of the proposals revealed
that for an MPEG-4 file format to be widely accepted in the
multimedia community, it needed to focus on providing a
rich set of functionality while supporting existing multime-
dia (legacy) content. One of the proposals (Quicktime) was
selected as the starting basis for MPEG-4 file format. This
is expected to be embellished by incorporating key tools
from the other proposals to satisfy the unique requirements
of MPEG-4. It has also been decided that MPEG-4 will use
‘.mp4’ as the extension for its file name. The file format
will be included in MPEG-4 Version 2.

6.6. Syntactic description

Source coding, with its bit-oriented nature, directly con-
flicts with the byte-oriented structure of modern micro-
processors and makes the task of handling coded audio-

A. Puri, A. Eleftheriadis / MPEG-4: An object-based multimedia coding standard 29

visual information more difficult. A simple example is fast
decoding of variable length codes; every programmer that
wishes to use information using entropy coding must hand-
code the tables so that optimized execution can be achieved.
General-purpose programming languages such as C++ and
Java do not provide native facilities for coping with such
data. Even though other facilities already exist for repre-
senting syntax (e.g., ASN.1 – ISO International Standards
8824 and 8825), they cannot cope with the intricate com-
plexities of source coding operations (variable length cod-
ing etc.).

MPEG-4 Systems has adopted an object-based syntac-
tic description language for the definition of its bitstream
syntax (Flavor – Formal Language for Audio-Visual Object
Representation [5,10–12]). It is designed as an extension of
C++ and Java in which the type system is extended to incor-
porate bitstream representation semantics (hence forming a
syntactic description language). This allows the descrip-
tion, in a single place, of both the in-memory representation
of data as well as their bitstream-level (compressed) repre-
sentation as well. Also, Flavor is a declarative language,
and does not include methods or functions. By building
on languages widely used in multimedia application devel-
opment, one can facilitate integration with an application’s
structure.

Figure 27 shows a simple example of a Flavor repre-
sentation. Note the presence of bitstream representation
information right after the type within the class declara-
tion. The map declaration is the mechanism used in Flavor
to introduce constant or variable length code tables (1-to-n
mappings); in this case, binary codewords (denoted using
the ‘0b’ construct) are mapped to values of type unsigned
char. Flavor also has a full complement of object-oriented
features pertaining to bitstream representation (e.g., “bit-
stream polymorphism”) as well as flow control instructions
(if, for, do-while, etc.). The latter are placed within the
declaration part of a class, as they control the serialization
of the class’ variables into a bitstream.

A translator has been developed that automatically gen-
erates standard C++ and Java code from the Flavor source
code [5], so that direct access to, and generation of,
compressed information by application developers can be
achieved with essentially zero programming. This way, a
significant part of the work in developing a multimedia

Figure 27. A simple example of syntactic description.

application (including encoders, decoders, content creation
and editing suites, indexing and search engines) is elimi-
nated.

7. Profiles and levels

Although there are many tools in the MPEG-4 standard,
not every MPEG-4 decoder will have to implement all of
them. In fact, only a few classes of MPEG-4 decoders are
expected to exist with each class addressing clusters of ap-
plications with similar requirements; this is accomplished
via the concept of profiles. Similar to that in MPEG-2, a
profile is a defined sub-set of the entire bitstream syntax of
all the tools. A level is a defined set of constraints imposed
on parameters in the bitstream. Conformance tests will be
carried out against defined profiles at defined levels. The
purpose of defining conformance points in the form of pro-
files and levels is to facilitate bitstream interchange among
different applications. Implementors of MPEG-4 are en-
couraged to produce decoders and bitstreams which corre-
spond to those defined conformance regions. The discretely
defined profiles and levels are the means of bitstream in-
terchange between different applications of MPEG-4. The
concept of profiles and levels of MPEG-2 Video [15,19]
has been extended to MPEG-4 Video, Audio and Systems
specifications.

Currently, MPEG is defining profiles for video objects,
audio objects and systems for MPEG-4. In addition, it
is likely that profiles may also be defined for composition.
The work on profiles is ongoing and is thus likely to evolve;
we now present the current structure of profiles envisaged
and their key requirements [31,47,48]. Currently, three pro-
files each are being considered for each of the three parts,
video, audio and system objects; the requirements for these
profiles are being established.

The profiles currently being considered for video are as
follows:

• Video simple object profile.

• Video random access object profile.

• Video main object profile.

In addition, recently, a profile known as ultra simple profile
addressing mobile and other applications has been proposed
and is likely to be accepted.

Similarly, for audio, a number of profiles are being dis-
cussed and are listed as follows:

• Audio speech object profile.

• Audio low delay object profile.

• Audio main object profile.

The three profiles being considered for systems are as fol-
lows:

• Systems simple profile.

• Systems interactive profile.

• Systems main profile.

30 A. Puri, A. Eleftheriadis / MPEG-4: An object-based multimedia coding standard

Table 7
Wireless network.

PCS IMT2000 (1) IMT2000 (2)

Data rate (total) 32 kbit/s 128 kbit/s 384 kbit/s
Error conditions Random Random Random

and burst and burst and burst

8. Verification tests

MPEG-4 is planning to hold verification tests to confirm
the performance of its various combination of tools that
will form profiles. The first of the series of such tests [1]
will take place in March 1998 and is aimed to verify error
resilience tools.

Version 1 of the MPEG-4 video codec is already im-
plemented in software. It will be combined with simula-
tions of the Universal Access Layer, a component of the
MPEG-4 System Layer, and a TransMux. The particular
TransMux to be implemented depends upon the applica-
tion and corresponding network. For wireless applications
the TransMux will be ITU’s mobile multiplexing standard,
H.223/Mobile. The overall encoding system to be sim-
ulated for the demonstration of MPEG-4 over a wireless
network consists of an application layer consisting of an
MPEG-4 error resilient video encoder and simulated audio
data, an access unit layer consisting of adaptation layers
for audio and video data, H.223/Mobile layer consisting of
adaptation layers and a multiplexer. The multiplexed data
is to be stored on PC hard drive and passes through phys-
ical layer simulation to the decoding system that performs
the inverse operations such as H.223/Mobile demultiplexing
and adaptation layers for audio and video, access unit layer
consisting of adaptation layer for audio and video data, and
back to application layer which consists of simulated audio
data and MPEG-4 error resilient video decoder. The test
conditions being considered are shown in table 7.

9. Beyond current MPEG-4 work

As mentioned earlier, the MPEG-4 work has been re-
cently divided into two versions. The tools that were mature
for standardization have been incorporated in Version 1 and
are complete while the work on the remaining tools con-
tinues for Version 2. Version 2 tools are expected to either
provide new functionalities not supported by Version 1 or
provide some of the same functionality but a lot more ef-
ficiently (or with higher quality or lower implementation
cost). Generally, Version 2 is expected to maintain back-
ward compatibility with Version 1.

Besides MPEG-4, the MPEG committee has recently ac-
cepted a new work item on “Multimedia content description
interface”, and is dubbed as MPEG-7, the next MPEG stan-
dard. MPEG-7 has the primary goal of addressing the lim-
ited capabilities and interoperability problems of proprietary
systems for content search and retrieval. Thus MPEG-7 will
specify [49] a standard set of descriptors that can be used to

identify various types of multimedia information. This de-
scription shall be associated with the content itself, to allow
fast and efficient searching for material of a user’s interest.
AV material that has MPEG-7 data associated with it can
thus be indexed and searched. However, MPEG-7 is not
expected to specify the actual search and retrieval engine.

10. Summary

In this paper we have introduced the MPEG-4 standard
currently in progress. The necessary background informa-
tion leading up to the MPEG-4 standard and the multiple
facets of this standard were discussed including the direc-
tions for the future. The success of MPEG-4 will eventually
depend on many factors such as market needs, competing
standards, software versus hardware paradigms, complexity
versus functionality tradeoffs, timing, profiles, etc. Techni-
cally, MPEG-4 appears to have a significant potential due
to the integration of natural and synthetic worlds, comput-
ers and communication applications, and the functionalities
and flexibilities it offers. Initially, perhaps only the very
basic functionalities will be useful. As the demand for so-
phisticated multimedia grows, the advanced functionalities
may be useful. Up-to-date information on progress on var-
ious topics in MPEG-4 can be found by visiting MPEG
related websites [13,21,32,34,38].

References

[1] Ad Hoc Group on Error Resilience Core Experiments, Plan for
March 1998 error resilience verification test, ISO/IEC JTC1/SC29/
WG11 N1829, Stockholm (July 1997).

[2] A.L. Ames, D.R. Nadeau and J.L. Moreland, The VRML Sourcebook
(Wiley, New York, 1996).

[3] AOE Group, MPEG-4 proposal package description (PPD) – Rev.
3, ISO/IEC JTC1/SC29/WG11 N0998, Tokyo (July 1995).

[4] AOE Group, MPEG-4 testing and evaluation procedures document,
ISO/IEC JTC1/SC29/WG11 N0999, Tokyo (July 1995).

[5] O. Avaro, P. Chou, A. Eleftheriadis, C. Herpel and C. Reader, The
MPEG-4 system and description languages, Signal Processing: Im-
age Communication (Special issue on MPEG-4), to appear in 1997.

[6] L. Chiariglione, MPEG-4 call for proposals, ISO/IEC JTC1/
SC29/WG11 N0997, Tokyo (July 1995).

[7] L. Chiariglione, Resolutions of 40th WG11 meeting, ISO/IEC
JTC1/SC29/WG11 N1716, Stockholm (July 1997).

[8] R. Cox, B. Haskell, Y. LeCun, B. Shahraray and L. Rabiner, On the
applications of multimedia processing to communications, AT&T
internal technical memo; to appear in IEEE Transactions.

[9] T. Ebrahimi, Report of ad hoc group on definition of VMs for con-
tent based video representation, ISO/IEC JTC1/SC29/WG11 MPEG
96/0642, Munich (January 1996).

[10] A. Eleftheriadis, The MPEG-4 system description language: From
practice to theory, in: Proceedings of 1997 IEEE International Con-
ference on Circuits and Systems ISCAS ’97, Hong Kong (June 1997).

[11] A. Eleftheriadis, Flavor: A language for media representation, Pro-
ceedings, ACM Multimedia ’97 Conference (November 1997) (to
appear).

[12] Y. Fang and A. Eleftheriadis, A syntactic framework for bitstream-
level representation of audio-visual objects, in: Proceedings of 3rd
IEEE International Conference on Image Processing ICIP ’96, Lau-
sanne, Switzerland (September 1996).

A. Puri, A. Eleftheriadis / MPEG-4: An object-based multimedia coding standard 31

[13] Flavor Web Site: http://www.ee.columbia.edu/flavor.
[14] J. Gosling, B. Joy and G. Steele, The Java Language Specification

(Addison-Wesley, Reading, MA, 1996).
[15] B.G. Haskell, A. Puri and A.N. Netravali, Digital Video: An Intro-

duction to MPEG-2 (Chapman and Hall, London, 1997).
[16] B.G. Haskell, A. Puri and J. Osterman, Happenings in ISO MPEG:

An introduction to MPEG-4, invited presentation at Data Compres-
sion Conference, Snow Bird (March 1997).

[17] IEEE Transactions on Circuits and Systems for Video Technology
(Special issue on MPEG-4) 7(1) (February 1997).

[18] ISO/IEC 11172 International Standard (MPEG-1), Information tech-
nology – Coding of moving pictures and associated audio for digital
storage media at up to about 1,5 Mbit/s (1993).

[19] ISO/IEC 13818 International Standard (MPEG-2), Information tech-
nology – Generic coding of moving pictures and associated audio
(also ITU-T Rec. H.262) (1995).

[20] ISO/IEC 14472 draft international standard: Virtual reality modeling
language (1997).

[21] ISO/IEC JTC1/SC29/WG11 (MPEG) Web Site: http://drogo.cselt.it/
mpeg.

[22] ITU-T Recommendation H.261, Video codec for audio-visual ser-
vices at p×64 kbit/s (1990).

[23] ITU-T, Draft ITU-T Recommendation H.263: Video coding for low
bit-rate communication (December 1995).

[24] ITU-T Recommendation H.223: Multiplexing protocol for low bit-
rate multimedia communication (1995).

[25] ITU-T Recommendation H.223 Annex A: Multiplexing protocol for
low bit-rate mobile multimedia communication (1996).

[26] ITU-T H.263+ Video Group, Draft 12 of ITU-T Recommendation
H.263+ (May 1997).

[27] D. Lindbergh, The H.324 multimedia communication standard, IEEE
Communications Magazine 34(12) (December 1996) 46–51.

[28] MPEG-4 Audio Group, MPEG-4 audio working draft version 4.0,
ISO/IEC JTC1/SC29/WG11 N1745, Stockholm (July 1997).

[29] MPEG-4 Integration Group, MPEG-4 SNHC call for proposals,
ISO/IEC JTC1/SC29/WG11 N1195, Florence (March 1996).

[30] MPEG-4 Integration Group, MPEG-4 SNHC proposal package
description, ISO/IEC JTC1/SC29/WG11 N1199, Florence (March
1996).

[31] MPEG-4 Requirements Ad Hoc Group, Draft of MPEG-4 require-
ments, ISO/IEC JTC1/SC29/WG11 N1238, Florence (March 1996).

[32] MPEG-4 SNHC Web Site: http://www.es.com/mpeg4-snhc.
[33] MPEG-4 Systems Group, MPEG-4 systems working draft version

5.0, ISO/IEC JTC1/SC29/WG11 N1825, Stockholm (July 1997).
[34] MPEG-4 Systems Web Site: http://garuda.imag.fr/MPEG4.
[35] MPEG-4 Video and SNHC Groups, MPEG-4 visual working draft

version 4.0, ISO/IEC JTC1/SC29/WG11 N1797, Stockholm (July
1997).

[36] MPEG-4 Video Group, MPEG-4 video verification model version
2.0, ISO/IEC JTC1/SC29/WG11 N1260, Florence (March 1996).

[37] MPEG-4 Video Group, MPEG-4 video verification model version
7.0, ISO/IEC JTC1/SC29/WG11 N1642, Bristol (April 1997).

[38] MPEG-4 Video Web Site: http://wwwam.hhi.de/mpeg-video.
[39] H. Peterson, Report of the ad hoc group on MPEG-4 video testing

logistics, ISO/IEC JTC1/SC29/WG11 Doc. MPEG95/0532, (Novem-
ber 1995).

[40] A. Puri, Status and direction of the MPEG-4 standard, in: Inter-
national Symposium on Multimedia and Video Coding, New York
(October 1995); also published in a book by Plenum Press.

[41] A. Puri, Report of ad hoc group on coordination of future core
experiments in MPEG-4 video, ISO/IEC JTC1/SC29/WG11 MPEG
96/0669, Munich (January 1996).

[42] A. Puri, MPEG-4: A flexible and extensible multimedia coding stan-
dard in progress, invited paper in IEEE Multimedia book (1996).

[43] A. Puri, A.R. Reibman, R.L. Schmidt and B.G. Haskell, Robustness
considerations in ISO MPEG-4 and ITU-T mobile video standards,
in: Proceedings MoMuC-3, Princeton (September 1996) (Plenum
Press, 1997).

[44] A. Puri, R.L. Schmidt and B.G. Haskell, Improvements in DCT-
based video coding, in: Proc. SPIE Visual Communications and
Image Processing, San Jose (February 1997).

[45] Requirements Group, MPEG-4 applications document, ISO/IEC
JTC1/SC29/WG11 N1729, Stockholm (July 1997).

[46] Requirements Group, MPEG-4 overview, ISO/IEC JTC1/SC29/
WG11 N1730 (July 1997).

[47] Requirements Group, MPEG-4 profile requirements version 4,
ISO/IEC JTC1/SC29/WG11 N1728, Stockholm (July 1997).

[48] Requirements Group, MPEG-4 requirements version 4, ISO/IEC
JTC1/SC29/WG11 N1727, Stockholm (July 1997).

[49] Requirements Group, MPEG-7 context and objectives version 4,
ISO/IEC JTC1/SC29/WG11 N1733, Stockholm (July 1997).

[50] Signal Processing: Image Communication (Special issue on MPEG-
4, Part 1: Invited papers) 10(1–3) (May 1997).

[51] Signal Processing: Image Communication (Special issue on MPEG-
4, Part 2: Submitted papers) 10(4) (July 1997).

[52] P.J.L. van Beek, A.M. Tekalp and A. Puri, 2D mesh geometry and
motion compression for efficient object-based video compression,
IEEE Int. Conf. on Image Processing (October 1997), to appear.

Atul Puri received his B.S. in electrical engineer-
ing from India in 1980, his M.S. in electrical engi-
neering from City College of New York in 1982,
and his Ph.D., also in electrical engineering, from
the City University of New York in 1988. While
working on his dissertation, he was a consultant
in Visual Communications Research Department
of Bell Labs and gained experience in develop-
ing algorithms, software and hardware for video
communiucations. In 1988 he joined the same de-

partment at Bell Labs as a Member of Technical Staff. Since 1996, Dr.
Puri has been a Principal Member of Technical Staff in the Image Process-
ing Research Department of AT&T Labs and is presently located at Red
Bank, NJ. Dr. Puri has represented AT&T at the Moving Pictures Expert
Group standards of the International Standards Organization for the past
9 years and has actively contributed towards development of the MPEG-1,
the MPEG-2 and the MPEG-4 audio-visual coding standards. Currently
he is participating in video and systems parts of the MPEG-4 standard
and is also a technical editor of the standard. He has been involved in
research in video coding algorithms for a number of diverse applications
such as videoconferencing, video on digital storage media, HDTV, 3D-
TV and wireless video. His current interests are in the area of multimedia
services and systems for Web/Internet. Dr. Puri holds over 14 patents and
has applied for another 8 patents. He has also published over 30 techni-
cal papers in conferences and journals, including several invited papers.
He is the co-author of a book entitled “Digital Video: An Introduction to
MPEG-2”. He is currently coediting another book. He has been the recip-
ient of exceptional contribution and individual performance merit awards
of AT&T. Furthermore, he has also received awards from the Communi-
cation Services business unit, and the AT&T Technical Journal. He has
taught graduate courses on Digital Image and Video Coding at Columbia
University. He is also an active member of IEEE, its Communications,
and Signal Processing societies.
E-mail: apuri@research.att.com

Alexandros Eleftheriadis was born in Athens,
Greece, in 1967. He received the Diploma in elec-
trical engineering and computer science from the
National Technical University of Athens, Greece,
in 1990, and the M.S., M.Ph. and Ph.D. degrees
in electrical engineering from Columbia Univer-
sity, New York, in 1992, 1994 and 1995, respec-
tively. Since 1995 he has been an Assistant Pro-
fessor in the Department of Electrical Engineering
at Columbia University, where he is leading a re-

32 A. Puri, A. Eleftheriadis / MPEG-4: An object-based multimedia coding standard

search team working in the areas of visual information representation and
compression, video communication systems (including video-on-demand
and Internet video), distributed multimedia systems, and the fundamentals
of compression. During the summers of 1993 and 1994, he was with
AT&T Bell Laboratories, Murray Hill, NJ, developing low bit rate model-
assisted video coding techniques for videoconferencing applications. From
1990 until 1995, he was a Graduate Research Assistant in the Depart-

ment of Electrical Engineering at Columbia University. Dr. Eleftheri-
adis is a member of the ANSI NCITS L3.1 Committee and the ISO/IEC
JTC1/SC29/WG11 (MPEG) group that develop national and international
standards for audio-visual content representation and distribution. He is a
member of IEEE, ACM, and the Technical Chamber of Greece.
E-mail: eleft@ctr.columbia.edu

