
ACM Multimedia Systems Journal, Vol. 2, Nr. 2, August 1994.

Architecture and Algorithms of the
Xphone Multimedia Communication System
A. Eleftheriadis, S. Pejhan, and D. Anastassiou

Electrical Engineering Department and Center for Telecommunications Research
Columbia University, New York, NY 10027, USA
e-mail: [eleft,sassan,anastas]@ctr.columbia.edu

[the date of receipt and acceptance should be inserted later]

Abstract.
We describe the architecture and the algorithms used in

Columbia University’s “Xphone” multimedia communication
system. The system assumes a “best-effort” operating system
and network and provides facilities for call management, intra-
application scheduling for support of continuous data flow
and integration with the windowing system, and synchronized
video/audioacquisition/playback(locally or across a network)
with minimized and bounded end-to-end delay. Synchroniza-
tion is achieved using an algorithm based on time-stamps and
device state information. The effects of jitter (delay variation)
are mitigated using silence detection; the end-to-end delay
is kept bounded using a restart mechanism. Finally, for live
video sources, we describe a source bit-rate adaptation algo-
rithm that maximizes the video image quality to the available
network bandwidth and video display window size.

Key words: Multimedia communication systems – Media
synchronization – Source rate control – Application devel-
opment systems

1 Introduction

One of the enabling technologies for multimedia systems
is video compression algorithms. Recent advances in com-
pression technology for images and video (JPEG, MPEG-1,
MPEG-2) have resulted in bandwidth reductions of two orders
of magnitude, down to 1–2 Mbit/sec. In addition, the work of
international standardization organizations and the increased
interest in video applications for computers and consumer
electronics products have resulted in VLSI implementations
of these algorithms which can be used for the development
of real systems (MPEG 1990; CCITT 1990; JPEG 1991; An-
guilar et al. 1991; LeGall 1991; Liou 1991; Wallace 1991).

Video coding, however, is just one of the components of a
multimedia system. The support of continuous, high-volume
and real-time data (like video or audio) in both computers
and networks represents a tremendous shift in design method-
ology, resulting in a re-evaluation of basic principles. Time

dependency of information as a concept existed only in dedi-
cated systems (e.g. the telephone network, or embedded sys-
tems); with multimedia, it becomes an issue for practically
any application. The focal point of multimedia research is to
provide bit-pipe characteristics (guaranteed bandwidth, low
and constant delay, accurate synchronization) to packet-based
systems, using algorithms and architectures that can be widely
deployed.

The availability of some kind of real-time support from
the underlying operating system and network is important
for high-quality, wide-area multimedia communications, and
is currently a very active area of research (see e.g. Clark et
al. 1992, Habib and Saadawi 1992, Jamin et al. 1992, Zhang
and Fisher 1992, and references therein). It isnevertheless pos-
sible to provide multimedia communication even in environ-
ments where delay uncertainty prevails (best-effort systems),
albeit with some quality degradation. In addition, algorithms
employed in non-real-time and real-time systems can be the
same; although the latter will definitely perform better, the
techniques used to achieve this performance can be similar
(especially if the real-time support is not “hard”). Throughout
this paper we assume the use of a best-effort operating system
and network; in other words, no time-related guarantees are
provided.

A number of systems and techniques have appeared in the
literature, addressing various aspects of multimedia systems.
Early efforts provided audio communication only (Aguilar et
al. 1986). Some systems use analog video and audio com-
munication (Ahuja and Ensor 1992), with the corresponding
self-evident limitations in terms of media integration in user
applications. A significant volume of work has been reported
at the system architecture level (Dannenberg et al. 1992; Niko-
laou 1990; Vonderweidt et al. 1991), describing the interface
between applications and multimedia services and the latter’s
structure. In the area of media synchronization, a number of
techniques have been proposed. These include incorporation
of time constraints and scheduling of multimedia documents
(Buchanan and Zellweger 1992; Kretz and Colaitis 1992; Lit-
tle and Ghafoor 1990), media synchronization for database



Fig. 1. Xphone in a projection of the “multimedia systems space”

The structure of the paper is as follows. In Section 1 we
briefly describe the architecture of the system, and show how
the individual algorithms described later on are integrated. In
Section 2 we describe our source bit-rate control algorithm.
Section 3 describes the end-to-end delay properties of the
system, and shows how silence detection has been employed
for its reduction by a factor of 50%. In Section 4 we describe
the audio/video synchronization algorithm used. We conclude
the paper with a summary of the major points and future work
plans in Section 5.

2 The Xphone System Architecture

The objective of the system is to provide distributed multi-
media services to application programmers. In other words,
Xphone is not an application per se, but rather a facility that
multimedia system developers can employ for their specific
needs. Basic features that had to be provided are:

� support for continuous data streams, such as video and
audio, and intra-application scheduling,

� synchronization facilities, especially for video and audio,
both locally and across a network connection,

� an easy to use and robust session management facility, and
� compatibility with existing interactive application envi-

ronments and development practices (e.g. the X Window
System).

It is not our intention to provide a specific multimedia object
structuring like the one found in multimedia documents; such
constructions are located hierarchically higher than Xphone,
and can be easily accommodated by it.

The system comprises four main subsystems: call man-
agement, scheduling, network transport and media-specific
support. The latter includes support for I/O operations for
various media types and also the appropriate synchronization
mechanisms (which for fine-grain synchronization are depen-
dent on the media device specifics). In the followingwe briefly



Fig. 3. Call state model

Consequently, a scheduling facility is provided so that: 1)
software development can still be based on the established
call-back architecture, and 2) continuity of data flow is guar-
anteed. In doing so, the facility has to be seamlessly integrated
to the windowing environment; this has the additional benefit
that existing applications will be able to use multimedia ser-
vices with no modifications of their already developed code.
In our software we provide support for the XView and X
Toolkit Intrinsics packages (other toolkits can of course be
easily added). The support consists of equivalent substitutes
to main-loop control functions of these packages, which use
the Xphone scheduler for window system event processing.
Xphone event processing (e.g. a call request) is performed
synchronously with the scheduler; in other words events are
only dispatched between scheduler tasks in order to guarantee
state consistency.

The scheduler can be seen as a static priority one, with
the difference that tasks are usually not removed from the
scheduling queue. The scheduler processes tasks in a round
robin fashion, starting from the ones with highest priority. The
applicationprogram has the option of restarting a round, hence
skipping low priority tasks. Certain tasks – like windowing
system event processing – are always given the highest prior-
ity, as they can adversely affect the interactive response time
of the application.

Data I/O is performed via the scheduler as follows. Each
medium (video, audio etc.) is assigned a unique identifier
by the application. For each such medium read and write
functions have to be provided. The former reads data from
the medium device (or a storage device) and submits it to
Xphone for network transmission. The latter receives data
from Xphone, originating from the network, and plays it back
on the medium device (or perhaps stores it in a file). These
two functions are registered to the scheduler under the medium
identifier with a specified priority. If the priority is non-zero,
the scheduler will automatically invoke the read function when
appropriate. The write function is invoked by the scheduler



4

whenever a packet with data of this specific type is retrieved
from the network. The system attempts to read data from
the network between tasks and, if successful, it immediately
dispatches them.

With this scheme, the application can guarantee continu-
ous data flow with a single call to the scheduler that registers
the appropriate I/O operations. The fact that event processing
is synchronous greatly simplifies the application’s code. More-
over, the overhead of these operations is very small, and when
appropriately optimized allows the application to operate with
very high performance.

2.3 Network Transport

The system currently uses the TCP/IP protocol stack, and
hence the processing here is minimal. The system structures
the transmitted data with a header which includes the medium
id, packet length and time-stamp information. When a packet
is received by Xphone, the header is transformed to a larger
one which includes an entry for a “reception” time-stamp.
This can be used later on for time keeping purposes (e.g. to
monitor the end-to-end delay).

It is possible in a network connection to not be able to
completely read or write a medium packet from or to the net-
work. While network read operations may be incomplete (the
system will complete the operation at a later time), write oper-
ations must be completed when ordered. Although an output
queue could be used, it would increase the end-to-end delay
considerably. To avoid this problem and also to help increase
throughput, after incomplete write attempts a read operation
is performed which, if successful, will dispatch a packet to
the appropriate medium write function. The incomplete write
attempt is then resumed.

2.4 Media-Specific Support

This component is responsible for handling I/O and control
operations for the various media types. These operations de-
pend heavily on the specific hardware platform selected, and
its accompanying software interfaces. In our environment the
audio hardware is treated at the application level as a regular
UNIX device, while the XVideo board is operated through X
Window based operations. Although a generic device inter-
face would help application developers (and it has frequently
been proposed in the literature), it is extremely difficult to
capture the richness of the various interfaces under a single
entity. In addition, layering such a generic interface on top
of differing native interfaces may degrade performance. Our
approach consists of providing support for I/O operations that
conform to the Xphone scheduler interface, but allowing the
application the option to fullycontrol other operations (e.g. the
video window size or its placement in a user interface).

Media synchronization is performed in this component, as
it heavily depends on the specifics of the implementation. Syn-
chronization in our system is based on time-stamps, which are
placed by the acquisition routines (the media read functions)

in the medium data header. Fine-grain inter-media synchro-
nization (basically between video and audio) is performed by
supervised output; the media write routines of the media types
to be synchronized are encapsulated under a single write oper-
ation which performs the necessary decisions and invokes the
appropriate media write operations when necessary. Coarse-
grain synchronization can be effected by the time-stamp time
line.

In the current implementation, the system uses the Sun
audio device which provides 8-bit�-law companded audio at
an 8 KHz sampling rate, and the XVideo board from Paral-
lax Graphics which provides “on-demand” JPEG coded video
frames of sizes up to NTSC resolution (640� 480). On-
demand implies that frame acquisition/playbackand compres-
sion/decompression are under complete program control; in
other words, there is no buffering of the video source at the
device driver level (as opposed to audio which is continuously
sampled).

3 Source Bit-Rate Control

An important parameter of a multimedia communication sys-
tem is the target bit-rate of video. Factors affecting its selection
include the available network resources, the capabilities of the
computer hosting the video codec, as well as the structure of
the codec itself. For example, the bandwidth provided by to-
day’s local and wide area networks spans more than an order of
magnitude, from 10 Mbps Ethernet to 100 Mbps or more with
FDDI and ATM. Most importantly, in environments where the
network does not provide guaranteed bandwidth or delay, the
available bandwidth, as seen by the application, is often highly
variable. Use of a constant target bit-rate in this case may ad-
versely affect both the end-to-end delay of the system and the
video frame rate (the latter will be affected when on-demand
video coding or frame skipping is used).

The capabilities of the host computer also place limitations
on the system performance, as there are specific limits of data
throughput sustainable by the various components (bus, CPU
etc.). Finally, the actual codec used has a dominant effect on
the range of achievable bit-rates, as it directly controls both
the compression ratio and the maximum attainable frame rate.
In cases where the compression paremeters are fixed, the only
possible way to control the source rate is by modifying the
frame rate. Most codecs (including JPEG), however, have the
capability to trade-off image quality and bit-rate. By exploiting
this capability, one can adapt to large variations of the network
load. The algorithm described here assumes the use of the
JPEG compression algorithm, and it also provides for adaption
of the source rate to video display window size (possibly
performed by the user).

The JPEG algorithm for still image compression could
be briefly described as follows (JPEG 1991; Wallace 1991).
Each color component of the original image is divided into
non-overlapping blocks of 8� 8 pixels. Each block is first
offset by�2P�1, whereP is the number of bits per color
component (8 for true color). It is then transformed by a For-



5

ward Discrete Cosine Transform to yield 64 frequency coef-
ficients. These coefficients are then quantized according to an
implementation-dependent quantization table which is under
user control. High frequencies, to which the human eye is less
sensitive, are quantized using a coarse step size, while low
frequency components are subject to a much finer quantiza-
tion. This quantization step is the principle source of lossiness
in the JPEG algorithm. Next, the quantized coefficients are
rearranged in ascending order of spatial frequency by starting
with the DC (top-left) coefficient and proceeding in a zig-zag
manner. The DC coefficients are then differentially encoded.
The other 63 coefficients are run-length encoded to produce
a string of zero AC coefficients followed by a non-zero AC
coefficient. The run-lengths are then entropy coded (Huffman
or arithmetic coding) to achieve compression. Huffman tables
are also customizable. At the decoder the reverse procedure
takes place.

By varying the quantization tables, applications can
achieve a trade-off between compression ratio and output
image quality: the coarser the quantization, the higher the
compression ratio since the quantized coefficients will be
smaller and the strings of zeros preceding a non-zero coef-
ficient longer. The quality of the output image, however, will
become poorer. In the specific video coding equipment that
we used, the quantization process is controlled by a single
parameterQ; the higher the value ofQ, the coarser the quan-
tization. In addition, the achievable frame rate is an increasing
function onQ (a higherQ yields a higher frame rate). This is
due to various system-level (bus, device driver etc.) bandwidth
bottlenecks.

In order to adapt to network load and image size variations,
it is necessary to find an explicit relationship betweenQ, the
source bit-rate and the image size. An analytical derivation
of such a formula is not possible, as the resultant bit-rate is
dependent on the source material. We have derived such a
relationship by fitting a non-linear model to experimentally
obtained data. We have used 18 different image sizes ranging
from 96� 72 to 640� 480 (aspect ratio 4/3). For each image
size, several minutes of video data (head and shoulders) were
recorded and played back, for values ofQ ranging from 25 up
to 600 (in steps of 25). For each such combination, an average
source bit-rate was estimated (using the instantaneous values
of frame size over inter-frame time). These values where fitted
using minimum squared error techniques to the followingnon-
linear model:

B = p1(W ) + p2(W ) log(Q) (1)

whereB is the source bit-rate in Mbps (here 1 Mbit = 1024�
1024 bits),W is the image area (measured in pixels), andp1(�)
andp2(�) are 5-th order polynomials.

The selection of this specific model was based on its total
squared error performance. The coefficients ofp1 andp2 are
given in Table 1. Figure 4 depicts the relationship betweenB
andQ for various values ofW . We should note that a tradeoff
exists between the extent of the applicability of the model (in
terms of the values forp1 andp2) for various video material,
and the performance that it allows to be achieved. Furthermore,

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

100 200 300 400 500 600

Qfactor

B
itr

at
e 

(M
bi

t/s
ec

)

96x72

640x480

Fig. 4. B(Q) for various image sizes

Table 1. Coefficients ofp1(x) andp2(x) in Eq. 1

p1 p2

x0 0.1290 -0.0463
x1 5.3007e-05 -1.6840e-05
x2 -7.7014e-10 2.5060e-10
x3 5.3620e-15 -1.7803e-15
x4 -1.7126e-20 5.7934e-21
x5 2.0236e-26 -6.9550e-27

it should be emphasized that the above model encompasses the
whole video subsystem (i.e. acquisition, encoding, transfer to
main memory via the system’s bus), and not just the encoder.

Our algorithm employs Eq. (1) to adapt to network load
variations as follows. The system (video input function) main-
tains an estimate of the available network bandwidth, based on
measurements of actual throughput of the video stream only.
This is given by the average frame length times the average
frame rate, over a 10-frame window. Every 10 frames, this es-
timate is consulted and a possibly new value ofQ is selected.
Assume thatB(t) is the current bandwidth estimate,W (t) the
current image area, andQ(t) is the current value ofQ, as
shown in Fig. 5. Then under no network load, the output bit-
rate would be given by:B(t) = p1(W (t))+p2(W (t)) log(Q(t)).
If the network is loaded, then the actual bit-rate observed will
be lower, sayB̂(t), corresponding to aQ value given by:

Q̂(t) = 10
B̂(t)�p1(W (t))

p2(W (t)) � (2)

By selecting this new value, and hence moving from the op-
erating pointA1 to A3 in Figure 5, the system can lower its
bandwidth requirements, and yet maintain a sufficiently high
frame rate. This, of course, has the effect of degrading spatial
image quality; the objective here is to sustain a frame rate
which may already be marginally acceptable, by tolerating a
small degradation in spatial resolution.

It should be noted that the measured bandwidth cannot ex-
ceed the one specified by Eq. 1 (although this may some times



Fig. 6. Q adaptation mapping (�Q = Q(t) � Q̂(t), �Q� = Q(t +
�t)� Q̂(t))

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x105Time (milliseconds)

B
(t

),
 F

(t
)/

10
, Q

(t
)/

30
0

B(t)
Q(t)

F(t)

Fig. 7. Adaptation ofQ to network load

4 End-To-End Delay

The end-to-end delay in audio communication systems is a
very important factor, and is limited by the requirements im-
posed for human interaction. Acceptable end-to-end delay val-
ues prescribed for long-distance telephony are in the range of
a few hundred milliseconds. Consequently, and since video in
the Xphone system is on-demand coded, the end-to-end delay
requirements are dictated by that of the audio signal, which is
subject to a constant output processing rate.

We define the end-to-end delay as the time between acqui-
sition and playback of an audio sample. This delay consists
of several components. Firstly, there is the acquisition time
of the samples of an audio frame. Additional delay is intro-
duced by network transmission, which includes transport and
lower layer protocol processing and physical transmission of



Fig. 9. Restart protocol for end-to-end delay bounding

message, it knows that no more audio packets are on the way.
It then starts to monitor its audio buffer, and once it is empty it
sends a RESUME message to the transmitter. When the trans-
mitter receives this RESUME message, it resumes normal
operation. Note that the restart procedure should only be sel-
domly used, as it interrupts the communication process. The
duration of a restart procedure – and hence of communication
disruption – follows closely the current end-to-end delay. The
actual estimation of the end-to-end delay is described below.

In order to mitigate the adverse effects of jitter, we em-
ployed silence detection in the audio signal. Silence detec-
tion is widely used for bandwidth reduction purposes in voice
communication; here, however, we also use the silence parts
of the speech signal to reduce the end-to-end delay. Essen-
tially, silent parts of audio provide “relief” periods in which
the output buffer is allowed to drain. The waiting time at the
output buffer is then considerably reduced. The effectiveness
of this technique is directly related to the speech activity fac-
tor, which for telephone conversations is approximately 50 %.
In our system we have found that the activity factor is actually
lower (around 40 %) due to the effect of the higher end-to-end
delay (similar to a long distance connection). Clearly, in the
case of an audio stream with no silence such an algorithm will
have no effect. We should note that an alternative approach in
which the output buffer occupancy is reduced by selectively
discarding very small audio segments (receiver drops) suffers
from very rapid deterioration of speech quality due to temporal
non-linearities.

The silence detector that we have employed is triggered
by the difference between successive samples of audio. We
opted here for simplicity, and minimal processing overhead.
Silence detection is always performed on a frame-by-frame
basis, and is applied from the beginning of the frame until a
non-silent part is reached. To avoid erroneous decisions, an
initial segment of a frame is classified as silence only if it
is at least one third of the frame’s total length. For the same
purpose, the first silent part detected after a non-silent one



8

is never classified as silence. Although more sophisticated
designs could have been used, this simple design suffices to
illustrate the effectiveness of the approach. Note that frame
headers are always transmitted, even if the entire frame was
classified as silence; also, the size of the initial segment of
the frame that was classified as silence is transmitted in the
frame’s header.

In order to demonstrate the effectiveness of the technique,
the end-to-end delay was estimated with and without the use of
silence detection. The estimates (which are also used to trigger
the restart protocol) are based on per-frame measurements of
the abovementioned three principal components of the end-to-
end delay (i.e. acquisition time, transmission delay, and output
queueing), averaged over a window of size 10. The acquisition
time is simply given by the ratio of the length of the frame (in-
cluding silence, if any) to the audio sampling rate. The output
queueing time can similarly be computed by the ratio of the
current output buffer occupancy to the audio sampling rate.
The estimation of the transmission delay is more involved, as
timing information from a single host has to be used in order
to avoid clock synchronization problems. For this purpose,
transmission delay is estimated as half the round-trip delay.
The latter is obtained by sending a special packet with no data,
that is being immediately transmitted back to the sender. The
round-trip delay is then the difference between the time this
packet was sent, and the time it was received. A new estimate
is obtained between successive audio frame acquisitions. Due
to the very small frame header size the added overhead is quite
small. Moreover, the whole process is completely transparent
to the application as it only involves the registration of the
appropriate modules to the Xphone scheduler during initial-
ization. The accuracy of this transmission delay estimate is
restricted by a number of factors; in all cases however where
it is used (performance evaluation and restart triggering) an
error of few tens of milliseconds is not significant.

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14

x104

No silence detection

Silence detectionE
st

im
at

ed
 E

nd
-T

o-
E

nd
 D

el
ay

 (
m

se
c)

Time (milliseconds

Fig. 10. Estimated end-to-end delay with and without silence detec-
tion

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14

x104Time (milliseconds

E
st

im
at

ed
 T

ra
ns

m
is

si
on

 D
el

ay
 (

m
se

c)

_: Silence detection ..: No Silence detection

Fig. 11. Estimated transmission delay with and without silence de-
tection

Figure 10 compares the estimated end-to-end delay with
and without silence detection, over two 2-minute sessions. A
speech activity factor of 50 % was maintained. To demon-
strate that the two experiments were carried out under similar
conditions(i.e. network load), the estimated transmission time
for both cases is shown in Fig. 11. As can be seen, the end-
to-end delay with the use of silence detection has effectively
been kept around 300 milliseconds, whereas with no silence
detection it reached 600 milliseconds.

5 Audio/Video Synchronization

Synchronization is an essential part of any multimedia system,
regardless of local or distributed (across a network) operation.
Synchronization can be intra-medium (or rate synchroniza-
tion) where it pertains to maintaining the natural rate of the
source (e.g. 64 Kbit/sec audio), or inter-media where it guar-
antees that the explicit (user specified) or implicit (as in audio
and video) time relationships between different media types
are enforced. On the basis of different timing scales between
the synchronization requirements of different media types,
one can also distinguish between fine-grain and coarse-grain
synchronization. The latter refers to cases where the misad-
justment tolerances are larger than those posed by video and
audio (which are in the order of tens of milliseconds). An
example of this case is the display of a still image and its
associated text.

The most difficult task is the fine-grain, inter-media syn-
chronization between video and audio, as the tolerances pre-
scribed by human perception criteria are very tight. Here we
describe the algorithms that we have developed to attack this
problem. The results we obtained were very good, as judged
by subjective evaluation. An objective evaluation of synchro-
nization requires a sophisticated setup that allows the real-
time playback of test video and audio material, their real-time
digital acquisition at the other end of the system, and the



Fig. 12. Audio output buffer occupancy

samples/sec). In Fig. 12 we depict the audio buffer occupancy
evolution until the time of thej-th video frame’s arrivaltrvj .

The first task of the algorithm is to position itself in the
playback time-line. To that end, it must find the acquisition
time-stamp of the currently played (or last played, if the output
buffer is empty) audio frame, which may not be the most
recently received. For this purpose, a finite history of received
audio frames is kept, and the audio output buffer occupancy
is queried (O(trvj )). This audio frame history is scanned until
an audio framek is found which satisfies:

lX

i=k

L(ai) � O(trvj ) �
lX

i=k+1

L(ai) � (3)

whereL(ai) denotes the length of thei-th audio frame in
samples, andl is the most recent audio frame received.

We assume now that silence detection is not used, and
distinguish between two different cases: 1)O(trvj ) = 0, and 2)
O(trvj) �= 0. The first case implies that the audio output buffer
is in “starved” state (with the corresponding consequences in
the end-to-end delay), and that the last audio frame has already
been played out. The synchronization algorithm then decides
to drop or queue the video frame, depending on iftaak is greater
or less thantavj respectively (note that the audio time-stamp
refers to the end of the audio frame). In the second case, the
decision has three branches, i.e. drop, playback or queue. The
criteria are:

1. if tavj � taak�1
then drop,

2. if taak�1
� tavj � taak then play back, and

3. if taak � tavj then queue.

When no information is available for thek�1-th audio frame,
then the estimatetaak �L(ak)�ra is used instead oftaak�1

. Due
to time-stamp inaccuracy, incorrect decisions may be made if
this estimate was used all the time. Clearly, as the end-to-end
delay increases, both the video and audio output queues will
increase in occupancy. Whenever the synchronization decision



10

is initiated, it processes all video frames currently resident in
the video output queue until it is either empty, or a frame that
has to be queued up (wait) is found.

When silence detection is used, the audio frame headers of
completely silent frames are still transmitted to the receiver;
for frames which part of them is silence, its length is conveyed
in the frame header. In this case, an audio buffer occupancy
of zero does not always designate starvation, since it may
correspond to a silent part. Moreover, this silent part may
belong to an audio frame that has not yet arrived and hence it
is not possible to accurately decide if the situation is normal or
abnormal. For this purpose, the three-part decision described
above is employed in all cases, except when the audio buffer
occupancy is zero and the last audio frame received was not
entirely silence (note that when occupancy is zero, the last
audio frame received is always the reference one). When this
happens and the video acquisition time-stamp satisfiestaak�1

�

tavj � taak (criterion 2), then the video frame is dropped. In the
case where a video frame is queued up but the followingaudio
frame is silence then this algorithm will cause a slight delay
in the video frame’s playback; since this however corresponds
to silence, there is no synchronization problem.

We should note that with the above bounded synchro-
nization scheme, long-term intra-medium synchronization for
video is maintained, although its short-term, local accuracy is
traded-off with audio/video inter-media synchronization. This
tradeoff is more heavily pronounced with a high video/audio
interleave factor, which in turn depends on the video acquisi-
tion hardware and the audio input buffering. In our system this
factor is typically 1:1 or 2:1. For much higher values – or if
the video encoding/decoding processes are highly assymetric
in terms of delay – an extra control step would be required
for intra-medium synchronization of video packets during the
time their associated audio packet was played back. For normal
video frame rates (up to 30 frames per second) and a config-
urable audio input buffer it is always possible to enforce a low
interleave factor, and hence avoid any such complication.

6 Concluding Remarks

We have presented the architecture and the algorithms used
in the Xphone multimedia communication system. This sys-
tem assumes the use of a best-effort operating system and
network, and provides for synchronized video/audio play-
back with bounded and minimized end-to-end delay, as well
as source bit-rate adaptation to the network load. The major
points of the paper can be summarized as follows:

� intra-application scheduling is essential for the transpar-
ent support of continuous, multimedia data flow and for
achieving seamless integration with interactive windowing
environments,

� modeling of the source bit-rate can be very effectively
used to maximize video quality according to the available
network bandwidth, and also to adapt to changing video
display window sizes,

� silence detection together with a restart mechanism is a
very efficient mechanism for reducing and bounding the
end-to-end delay, and

� adequate video/audio synchronization is possible, even
with no real-time support.

Using the above techniques, the current system’s implemen-
tation was shown to achieve a frame rate of 8 frames/sec for a
frame size of 320�240, an average bit-rate of 1 Mbit/sec (full-
duplex) and an average end-to-end delay of 250-300 msec.

Further improvements can be achieved by a number of
ways. For example, the end-to-end delay can be further mini-
mized by reducing the audio acquisition buffer size, by apply-
ing a more sophisticated silence detection algorithm, and by
coding the companded audio signal. Quality can also be im-
proved by applying echo cancellation techniques; the current
levels of end-to-end delay can generate undesirable echo phe-
nomena, the severity of which depends heavily on the quality
of the audio equipment used (for example it can be completely
eliminated with the use of a high-quality lavalier microphone).
The video source rate bit-rate control algorithm can also be
improved by providing a mechanism that will enable adaptive
calibration of the bit-rate model been used.

Finally, a considerable improvement in overall perfor-
mance can be attained by substituting the TCP layer with an
unreliable one that would, however, be able to recover in cases
of errors with no retransmissions. Although full reliability is
desirable for audio, packet losses can be tolerated for video.
As the three primary components of multimedia communica-
tion systems (codec, computer and network) have competing
requirements, techniques such as those described in this paper
will become essential for their smooth cooperation.

References

MPEG (1990) Coding of Moving Pictures and Associated Audio.
Committee Draft of Standard ISOI1I72: ISO/MPEG 90/176

CCITT (1990) Video Codec for Audio Visual Services atp � 64
kbits/s. Recommendation H.261, CDM XV-R 37-E

JPEG (1991) Digital Compression and Coding of Continuous-Tone
Still Images. ISO/IEC JTC1 Committee Draft 10918

Aguilar L, Garcia-Luna-Aceves J J, Moran D, Craighill E J, and
Brungardt R (1986) Architecture for a Multimedia Teleconfer-
encing System. In: Proceedings of the ACM SIGCOMM ’86
Symposium, pp 126–136

AhujaS R, EnsorJ R (1992) Coordination andControl of Multimedia
Conferencing. IEEE Communications Magazine 30(5):38–43

Ang P H, Ruetz P A, Auld D (1991) Video Compression Makes Big
Gains. IEEE Spectrum 28(10):16–19

Buchanan M C, Zellweger P T (1992) Scheduling Multimedia Doc-
uments Using Temporal Constraints. In: Proceedings of the 3rd
International Workshop on Network and Operating System Sup-
port for Digital Audio and Video, pp 223–235

Clark D D, Shenker S, Zhang L (1992) Supporting Real-Time Appli-
cations in an Integrated Services Packet Network. In: Proceed-
ings of the ACM SIGCOMM ’92 Conference, pp 14–26



11

Dannenberg R B, Neuendorffer T, Newcomer J M, Rubine D (1992)
Tactus: Toolkit-Level Support for SynchronizedInteractive Mul-
timedia. In: Proceedings of the 3rd International Workshop on
Network and Operating System Support for Digital Audio and
Video, pp 264–275

Habib I W, Saadawi T N (1992) Multimedia Traffic Characteris-
tics in Broadband Networks. IEEE Communications Magazine
30(7):48–54

Jamin S, Shenker S, Zhang L, Clark D D (1992) An Admission Con-
trol Algorithm for Predictive Real-Time Serive. In: Proceedings
of the 3rd International Workshop on Network and Operating
System Support for Digital Audio and Video, pp 308–315

Jeffay J, Stone D L, Smith F D (1994) Transport and Display Mech-
anisms for Multimedia Conferencing Across Packet-Switched
Networks. Computer Networks and ISDN Systems (to appear)

JeffayK, StoneD L, Talley T, Smith F D (1992)Adaptive, Best-Effort
Delivery of Digitao Audio and Video Across Packet-Switched
Networks. In:Proceedings of the 3rd International Workshop on
Network and Operating System Support for Digital Audio and
Video, pp 1–12

Kretz F, Colaitis F (1992) Standardizing Hypermedia Information
Objects. IEEE Communications Magazine 30(5):60–70

LeGall D (1991) MPEG: A Video Compression Standard for Multi-
media Applications. Communications of the ACM 34(4):46–58

Liou M (1991) Overview of thep�64 kbit/s Video Coding Standard.
Communications of the ACM 34(4):59–63

Little T D C, Ghafoor A (1990) Synchronization and Storage Mod-
els for Multimedia Objects. IEEE Journal on Selected Areas in
Communications 8(3):413–427

Nikolaou C (1990) An Architecture for Real-Time Multimedia Com-
munication Systems. IEEE Journal on Selected Areas in Com-
munications 8(3):391–400

Ramanathan S, Rangan P V (1992) Continuous Media Synchroniza-
tion in Distributed Multimedia Systems. In: Proceedings of the
3rd International Workshop on Network and Operating System
Support for Digital Audio and Video, pp 289–296

Vonderweidt G, Robinson J, Toulson C, Mastronardi J, Rubinov
E, Prasada B (1991) A Multipoint Communication Service for
Interactive Applications. IEEE TransactionsonCommunications
39(12):1875–1885

Wallace G K (1991) The JPEG Still Picture Compression Standard.
Communications of the ACM 34(4):30-44

Zhang H, Fisher T (1992) Preliminary Measurement of the RMTP/-
RTIP. In: Proceedings of the 3rd International Workshop on Net-
work and Operating System Support for Digital Audio andVideo,
pp 173–184


