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Model-Based Segmentation and Tracking
of Head-and-Shoulder Video Objects for

Real Time Multimedia Services
Huitao Luo, Member, IEEE,and Alexandros Eleftheriadis, Member, IEEE

Abstract—A statistical model-based video segmentation al-
gorithm is presented for head-and-shoulder type video. This
algorithm uses domain knowledge by abstracting the head-and-
shoulder object with a blob-based statistical region model and a
shape model. The object segmentation problem is then converted
into a model detection and tracking problem. At the system level, a
hierarchical structure is designed and spatial and temporal filters
are used to improve segmentation quality. This algorithm runs in
real time over a QCIF size video, and segments it into background,
head and shoulder three video objects on average Pentium PC
platforms. Due to its real time feature, this algorithm is appro-
priate for real time multimedia services such as videophone and
web chat. Simulation results are offered to compare MPEG-4
performance with H.263 on segmented video objects with respects
to compression efficiency, bit rate adaptation and functionality.

Index Terms—Low bit rate coding, MPEG-4, statistical mod-
eling, video object segmentation.

I. INTRODUCTION

OBJECT segmentation from image and video is a recent
popular topic in multimedia research because of common

interests in better object-based functionalities. MPEG-4 offers a
general framework for object-based system but leaves the seg-
mentation design as an open issue. In the literature, large num-
bers of segmentation algorithms, both fully automatic and semi-
automatic, have been published. Among them, activities on au-
tomatic segmentation have mainly focused on motion detec-
tion [1]–[6], motion segmentation [7]–[10], or joint motion and
(chromatic) region segmentation [11], [12]. The basic assump-
tion is that theobject can be described as either themoving
region or the region that moves withconsistent parameters.
In contrast, typical semi-automatic algorithms utilize certain
user interactions to specify object on one or several anchoring
frames, and tracking algorithms are then designed to track the
object in the temporal direction. For example, Chalom and Bove
[13] used multiple features to model pixels and to track objects.
Marcoteguiet al. [14], and Zhong and Chang [15] proposed to
segment the initial object into regions and then track each of
them across frames; Malassiotis and Strintzis [16], and Toklu
and Tekalp [17] used active mesh to represent and track objects;
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while Gu [18], Fu [19], and Luo [20] proposed to track object
boundaries based on neighboring color and motion information.

From an application point of view, the available segmentation
algorithms can also be classified into those for online applica-
tions and those for offline applications, as proposed by Correia
and Pereira [21]. Though many multimedia applications are
online and real-time (to name a few of them: video surveillance,
videophone, web chat, human computer interface, etc.), most
reported algorithms are useful only for offline applications.
Among the algorithms we reviewed so far, most of the semi-au-
tomatic algorithms and motion segmentation algorithms are
not good for offline applications because of slow speed and/or
requirements on user interaction. Motion detection based algo-
rithms are more appropriate for online applications because of
their “moving foreground” and “static background” assumption,
which lead to less intensive computation requirements. How-
ever, at the same time, this assumption limits the generality of
the algorithms, i.e., when the tracked object stops moving, these
algorithms fail. In other words, these algorithms are valid only if
the assumption or the domain knowledge is valid.

We propose a real-time algorithm to segment head-and-
shoulder type video sequences. The motivation stems from
popular presence of head-and-shoulder type video signal
in real-time services such as videophone and web chatting,
etc., which form the application domain of our work. By
focusing to this specific application domain, the segmentation
algorithm could be designed to exploit domain knowledge
and realize real-time performance with less computation
complexity. In our work, statistical models are used to model
the domain knowledge. We assume that in a typical setup of a
head-and-shoulder video, the foreground object is one person
in a head-and-shoulder pattern and the background is relatively
static. Our algorithm aims to segments the input video into
three video objects (VO)s: a background, a head/face and a
shoulder. The domain knowledge is modeled from two aspects.
One is a blob modeling of each VO region’s color and spatial
distribution, and the other is shape modeling. With the concept
of statistical model, the segmentation and tracking problem is
turned into model parameter fitting and updating. In addition,
fast spatial and temporal filters are designed to generate video
objects with refined boundaries, and a hierarchical structure
is used at the system level to coordinate the processing. We
implemented the algorithm and had it run in real time over a
Pentium PC with off-the-shelf cameras. Within its application
domain, this algorithm performed much better than motion
detection algorithms we tested.
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In principle, this work is related to the widely used “chroma-
key” technique and human body tracking work of “Pfinder”
[22]. It is different from chroma-key in its modeling of fore-
ground and background. Because of its statistical models,
our system has more stable performance than chroma-key
over inexpensive consumer CCD cameras. In addition, the
model updating and tracking mechanism enables our system
to tolerate moderate background changes that generally fail a
typical chroma-key system. Our system is similar to “Pfinder”
in the utilization of blob model as a means to track a region
with respect to its chromatic and spatial distributions. However,
our contributions are in anchoring blob tracking with results
from shape tracking. This way, more stable tracking results
can be realized over longer time. Moreover, our system is
more concentrated on generating accurate object support, while
“Pfinder” emphasizes more on tracking and understanding the
semantic meaning of human motions.

The structure of this paper is as follows. First in Section II,
we discuss blob-based region modeling and Kalman filters for
blob tracking. Section III covers shape modeling. Section IV
discusses a hierarchical system structure. Segmentation experi-
ments are presented in Section V. In Section VI, we discuss the
application of segmentation to real time videophone services.
The paper is concluded in Section VII.

II. BLOB BASED REGION MODELING AND TRACKING

The basic nature of the algorithm is an online one. First, we
assume a background scene that contains no foreground, which
enables the creation of a background model. When the fore-
ground enters, another model is then created for the foreground.

A. Foreground Model

In our work, the foreground is considered a “head-and-
shoulder,” which is modeled with two connected “blob”s. Here
the definition of blob is similar to that in [22], i.e., each blob has
a spatial and chromatic Gaussian distribution,
and a support map that indicates whether a pixel is a member
of the blob. In this model, each pixel is represented by a
feature vector . The feature vectors of the pixels
belonging to blob have a Gaussian distribution with mean
vector and covariance matrix . Because of their different
semantics, the spatial and chromatic distributions are assumed
independent, i.e., the matrix is assumed block-diagonal.

For convenience of discussion, some definitions related to
blob modeling are defined as follows. First, the support map

for blob , is defined as

if pixel is in blob ,
otherwise.

(1)

Based on , blob ’s containing rectangle is de-
fined as the minimal rectangle that covers the blob pixels. For
segmentation purposes we also define a cumulative support map

for each image as

if ,
otherwise.

(2)

Fig. 1. (Left) Blob representation; (middle) support map with containing
rectangles; (right) foreground map.

Note the blob labeling as defined in (1) is exclusive, i.e., each
pixel belongs to only one blob. In addition, we define the entire
set of the support maps of foreground blobs as the foreground
map

,
.

(3)

The relation between these concepts can be better illustrated in
Fig. 1, where the left image illustrates two blobs, the middle
image shows a support map with containing rectangles, and the
right image is a foreground map.

The rationale behind blob modeling is that it represents
an image region that has chromatic and spatial similarity.
By the definition of a blob and its associated support map,
low-level, pixel oriented segmentation problem are associated
with a high-level, semantically meaningful blob tracking. This
way, high-level a priori knowledge can be used to guide pixel
segmentation.

B. Background Model

The background is modeled as a texture map varying over
time. In videophone applications, we assume the camera is static
and there are no fast background changes. In this context, there
are still several sources that may introduce temporal color varia-
tions in background pixels and thus influence an accurate mod-
eling. These include the thermal noise of the sensor, the AGC
(automatic gain control) function of the camera, the shading ef-
fect from foreground motions, etc.

Given all these factors, each background pixel is modeled as
a Gaussian distribution in a normalized chromatic vector space

, where and (
is a small constant). We denote the mean vector and covariance
matrix as and respectively. In the segmentation loop, the
model parameter is created and updated in two steps. First,
a frame level global shifting factor is estimated as

(4)

After that, the mean vector for each pixel is then updated by
considering both local and global factors:

(5)

(6)

Note in (4)– (6), and are the observed fea-
ture vector and model parameters for the current background
pixel at the spatial position and temporal position (in
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succeeding references, or may be used when
and/or information are not important). is a weighting

factor with . defined in (4) is mainly used
to model chromatic changes introduced by camera AGC, which
generally influences every pixels in the frame. Accordingly, (5)
and (6) carry out global and local updating for each pixel model
respectively. According to our experiments, covariance matrix

is relatively stable in tracking. Therefore is only updated
when large shift occurs in (5).

Unlike the foreground model, each background pixel is mod-
eled individually. To express in a uniform way, the feature vec-
tors of the background model can also be put into the vector
space by implicitly including the spatial coordi-
nate of each pixel . This approach can accommodate a va-
riety of complex backgrounds without limiting them to a struc-
ture. At the same time, this model is better than chroma-key
because it accommodates temporal changes.

C. Region Classification

Given the foreground and background models,maximum a
posteriori probability(MAP) principle is used to classify pixels
into different regions. We have two foreground classes (shoulder
andhead, ) and one background class . To
compensate the shading effect, we choose to use feature vector

instead of for foreground
blobs as well (the major modeling principle remains the same).
So the log likelihood is expressed as

(7)

where , and represents the event that the pixel
belongs to class. Based on Bayes principle, each pixel is la-
beled in the support map as

(8)

where is estimated from typical videophone pic-
tures.

To convert the classified pixels into meaningful regions, two
steps come next. First the foreground pixels are processed with
morphological filters (close operation with 3 3 structuring
element) to create a simple connected foreground map .
Second the support map is obtained by blob growing,
i.e., each blob is grown out within the foreground map from
their blob center to create a simple connected support map. This
is illustrated in Fig. 2.

D. Blob Tracking Procedure

We discuss the basic tracking procedure in two loops: model
initialization loop and tracking loop.

1) Initialization Loop: Initialization loop is to detect
head-and-shoulder type foreground and to create the fore-
ground and background models. Its logic steps are illustrated in
Fig. 3. At the beginning, the background only scene is captured
and a background model is created. When a foreground enters,
the system detects model deviation and tries to analyze the

Fig. 2. Blob region growing illustration. Each blob’s support maps (x; y) is
grown out from their blob centers on top of the foreground mapf(x; y).

Fig. 3. Flowchart of the initialization loop.

Fig. 4. Flowchart of the basic tracking loop procedure.

size, speed and shape of the possible foreground and judge the
likelihood of being a head-and-shoulder foreground. When a
valid foreground is detected, a foreground model is created and
the system enters the tracking loop.

2) Tracking Loop: The flowchart of tracking loop is shown
in Fig. 4. The major steps of region segmentation are pixel clas-
sification, foreground morphological filtering and blob region
growing. Unlike low-level pixel classification, blob tracking is
carried out at the model-level with semantic meanings. Though
in this work, the concern of segmentation is to get an accurate
support map for each blob rather than to track the semantic in-
formation of blob motion, good modeling and tracking of blobs
are still important because the tracked blobs carry the statis-
tical model parameters, which are important for support map
segmentation.

Each blob is tracked independently using Kalman filter. The
observation vector for blob includes the blob’s center
and blob’s statistical width and height :

(9)

where and are defined as and ,
and obtained from the feature vector covariance matrix. The
dynamic model is a discrete Newtonian physical model of rigid
body motion, which has the form

(10)

where is the state vector, is the state transition matrix and
is the noise term. The state vectorand noise vector each
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contain four variables for the position of observation vector,
four for the velocity and four for the acceleration, i.e.,

and (11)

In other words, both and contain 12 variables. From New-
tonian physics, we have

(12)

where is a 12 12 unit matrix.
In practice, the Kalman filter is used to predict the model pa-

rameters of each blob in the next frame, which is the start point
of region classification discussed in Section II-C. In return, the
result of region classification in current frame is used to update
the blob model parameters , and background
model parameters . It also serves the observation input
that drives the Kalman filter for the next prediction. Sometimes
when the foreground moves too fast for the filter to follow or
just moves out of the scene, the system cannot find appropriate
support maps at the predicted positions of the current frame.
In these cases, as indicated in Fig. 4, the system automatically
changes its status back to the initialization loop.

III. SHAPE MODELING AND RECOGNITION

In the previous sections, a blob based region modeling and
tracking approach were discussed. Blobs incorporate domain
knowledge quite naturally into the segmentation problem. How-
ever, this approach is mainly based on the chromatic cues, which
is dependent on the camera’s quality and the color contrast be-
tween the foreground and background. For real time tracking
purposes, it is also likely that errors get accumulated during the
course. In order to stabilize the blob tracking process, the system
should be adjusted from time to time. In our work, shape cues
are used to meet the requirement.

A basic intuition to support this idea is that people can some-
times identify the head region and the shoulder region only
based on the object silhouette. However, because the foreground
is always in motion and its silhouette keeps changing, it is not
in every case that we can analyze the silhouette successfully
for segmentation purpose. For example, in Fig. 5 we have two
foreground shapes to be analyzed. In the left image, the shape
feature is strong and the head region and shoulder region can
be easily separated based on the foreground shape information,
while in the right image, the shape feature is not so obvious.
Therefore, shape analysis only works as an adjustment or aux-
iliary approach to previous region based approach.

To solve this problem, ashape recognitionmodule is added
into the shape analysis procedure. We define those shapes with
strong shape features ascanonical head-and-shoulder shape.
Those shapes outside this category are namednoncanonical
shape. If a foreground shape belongs to the canonical category,
we are sure that we can locate the head region and shoulder re-
gion with a high reliability only based on shape information,
then the head blob and shoulder blob are located with shape
cues. Otherwise the blobs are tracked with chromatic cues as

Fig. 5. Comparison of the limits of shape analysis for blob tracking.

discussed in Section II. This way, we can get the most out of the
domain knowledge to stabilize the tracking algorithm.

A. Shape Modeling

Though a quantitative definition of canonical or noncanonical
category is hard to give and may depend on specific algorithm
of shape analysis, inclusiveness is not the requirement of this
work. Rather, because the purpose of shape analysis is to stabi-
lize the region-based blob tracking, we can define the canonical
shape category as a limited size. That is, only those with strong
shape features are included such that if a shape is accepted as a
canonical one, then the segmentation output based on the shape
analysis is highly reliable. In this sense, we model the canonical
shape category as a high dimensional Gaussian distribution and
create the model by statistical learning.

1) Fast Vectorization:First, a vectorization algorithm is
used to convert a shape into a feature vector. A fast algorithm
is designed to fit in with real time applications. It is illustrated
in Fig. 6(a): the foreground region is divided uniformly into
stripes in the vertical direction and the horizontal center and
the width of each stripe are measured to form adimension
feature vector .

Suppose the input of the algorithm is a segmented foreground
picture with each background pixel and fore-
ground pixel . The origin of the image coordinates
is at the lower left corner of the image. Then the detailed algo-
rithm can be expressed with the following pseudocode.

(1) ;
(2) ;
(3) ;
(4) for
(5) ;
(6) ;
(7) ;
(8) }
(9) ;
(10) for
(11) ;
(12) ;
(13) ;
(14) }
(15) ;
(16) ;
(17) for
(18) ;
(19) ;
(20) }.
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(a)

(b)

Fig. 6. (a) Stripe based shape vectorization illustration. (b) Illustration of
shape-assisted blob region location.

In above pseudocode, (1)–(2) find the width (unit) of sam-
pling stripes, (3)–(8) actually do the sampling, (9)–(14) convert
the sampled position data ( and ) into width and
center data, and, finally in (15)–(20), the sampled data is further
normalized with respect to size (dividing by unit) and position
( being measured with respect to center0, which is ob-
tained by averaging the sampled data), producing the feature
vector , which represents only the shape information.

This algorithm is actually a controlled polygon approxima-
tion of the original shape. The Euclidean distance of vectoris
a good indication of the shape difference because of the polygon
approximation nature. Though the shape vector is not rotational
invariant, for most real time videophone applications it is not
necessary to recognize rotational invariant shapes1 . The accu-
racy of the approximation depends on the choice ofand the
complexity of foreground shape. According to our observation,

is big enough for most videophone applications in
QCIF size.

2) Gaussian Modeling:With above vectorization algo-
rithm, the canonical shape category is modeled as a
dimension unimodal Gaussian distribution characterized by a

1By not rotational invariant we mean that canonical shapes are only modeled
at the upright position as compared with positions such as upside down, because
we assume people generally sit upright before camera. However, common shape
changes at this position, i.e., slightly rotated head, are to be accommodated by
our model.

mean vector and a covariance matrix. The likelihood of a
shape vector is given by

(13)

A sufficient statistic for characterizing the likelihood is the Ma-
halanobis distance:

(14)

In practice, the mean and covariance are obtained through
a set of training shapes.

B. Eigen-Analysis and Classification

In (13) and (14), the covariance matrix is by . In
order to reduce the computation complexity, the matrix is de-
composed via an eigenvector transform:

(15)

where is the eigenvector matrix and is the corresponding
diagonal matrix of eigenvalues. With eigenvector transform, the
likelihood equation becomes:

(16)

where is the new vector under the orthogonal trans-
form. Similarly, the Mahalanobis distance is converted to

(17)

In principle, eigenvectors correspond to the principal axes of
the subvector space and the eigenvalues are the corresponding
principal variance. Although in above orthogonal transform, all
of the eigenvectors are necessary to represent the distribu-
tion exactly, only a small number of them are
generally needed to encode the samples within the subspace
with tolerable errors. These vectors are often called principle
components and the approach called principle component anal-
ysis (PCA). With PCA, for each vector, only the first pro-
jections of are necessary for the computation of likelihood in
(16) or Mahalanobis distance in (17). The computation is sig-
nificantly reduced.

In practice, the thresholding of the Mahalanobis distance (17)
is used in our work and it is approximated with two thresholding
inequalities:

(18)

(19)

A shape is determined as in the canonical shape category
only if its feature vector meets above two inequalities. Here

is the Mahalanobis distance and is the energy of the
feature vector’s projection on the complementary space of the
subspace spanned by these firsteigenvectors. In other words,
we require that the projection inside the subspace is close to the
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Fig. 7. Canonical shape category’s eigen-shape illustration.

center, and the projection energy outside the subspace is small.
This thresholding by projection may incur some error in the
mathematical sense, but is justified by computation benefits.

In the training process, about 200 pictures of canonical shape
category2 were used. The result of eigen-analysis shows that
the first six eigenvectors cover 92% of total energy. This is the
thresholding we used for our experiment. The shapes corre-
sponding to the first four eigenvectors that obtained from our
training set are shown in Fig. 7. They are ordered from left to
right, top to bottom. In each figure, three shapes are overlaid
corresponding to three vectors: , where
is a weighting factor and is the -th eigenvector. Readers can
observe the distribution of shape changing along the first several
principal eigenvectors and have a general sense of the canonical
shape category’s shape distribution discussed in this work.

C. Shape Assisted Blob Tracking

If a foreground shape is a canonical shape, by definition its
shape features is used to segment the foreground into head re-
gion and shoulder regions, or in other words, to segment the
foreground map into a support map of head blob
and shoulder blob. Acontaining rectanglebased algorithm is
designed to segment a foreground map into two blobs
by setting a vertical threshold

if
otherwise

(20)

and
if ,
otherwise.

(21)

If we use operator and respectively to
represent the size of support mapand size of its corresponding

2Training samples are chosen by human observation, but their statistical
model is created by computer. This is the process of machine learning. In our
experiment, training samples were obtained from several persons. For wider
application domain, more training samples should be obtained or users may
train the machine with each person’s own training samples.

Fig. 8. Flowchart of the hierarchical tracking system.

containing rectangle at the thresholding, then the final seg-
mentation thresholding is chosen as

(22)

This algorithm is illustrated in Fig. 6(b). Note the coordinate
system and the horizontal thresholding line that segments the
foreground into head and shoulder regions. The purpose of this
algorithm is to approximate the foreground map using two con-
taining rectangles and choose the segmentation that minimizes
the approximation error.

IV. HIERARCHICAL SYSTEM DESIGN

Though the region and shape statistical models reduce much
analysis complexity, in practice, we find that to update the
blob model parameters frame by frame still involves expensive
computation. In addition, to make segmentation quality stable
against noise, further filtering is necessary. A hierarchical struc-
ture is designed at the system level to solve these problems.

A. Hierarchical Architecture

In the new hierarchical design, the tracking loop of Fig. 4
is updated with Fig. 8, i.e., an input image is first subsampled
by in both horizontal and vertical directions. Model analysis
(both region based blob model and shape model) and tracking
are carried out in the obtained lower resolution image. The pro-
cessing result is then up-sampled and further refined in the orig-
inal resolution to produce the final output.

The benefits of this structure come from two aspects. First,
because the statistical models are tracked and updated in
the lower resolution image, the computation complexity is
reduced by . Second, when the segmentation result in the
lower resolution image is mapped back to the full resolution
image, only the boundary blocks3 are further processed by the
spatial and temporal filters that are designed to suppress noise
and improve the boundary quality. All the interior blocks are
skipped. One drawback, however, is that two versions of the
background model are to be maintained, one in the lower and
the other in the full resolution (for foreground model we can
maintain just one set of model parameters and convert them

3One pixel in lower resolution image is mapped into oneM byM block in
full resolution image.
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between different image resolutions). But compared with the
benefits, this is not a big problem.

B. Processing on Subsampled Image

In Fig. 8, most function modules for lower resolution image
processing were discussed in previous sections. The shape mod-
ules work as anchors for the region based tracking modules.
They run in loop to find canonical shapes and locate the position
of each blob. If the shape-based approach fails, the region-based
blob analysis maintains its tracking with blob region growing
module and information from the Kalman filter. At this stage, if
system still can not find the expected blobs at the predicted po-
sitions, it changes its status back to the initialization loop. Un-
like previous system defined by Fig. 4, the new system is more
resistant to noise because of the shape analysis modules in the
tracking loop.

C. Refining Processing on Full Resolution Image

In the full resolution layer, a boundary-refining module and
a joint spatial and temporal (S/T) filtering module are designed
to improve the boundary quality. In the three VOs we are going
to get: background, head, and shoulder, head plus shoulder
together is the foreground, only the boundary between the
foreground and background are considered. If a head VO or a
shoulder VO is required individually, the boundary between
them is approximated with their containing rectangles.

In the hierarchical structure, each low-resolution-image pixel
maps to a block in the full resolution image. Both
boundary-refining module and S/T filtering module process
only the boundary block pixels.

Boundary refining module processes image in one frame to
improve the spatial smoothness of final boundary. It includes
three steps. First, pixels in the boundary blocks are classified
based on the foreground model and background model in the
full resolution layer. Second, morphological filters are used to
connect the segmentation results in each boundary block with
interior block regions, so as to produce a simple connected fore-
ground map. After that, a relaxation procedure is carried out to
improve the smoothness of the foreground boundary, which can
be formulated as a statistical decision problem as follows.

Let represents the events
. For each boundary pixel, its MAP classification equation

is

(23)

The first term in the right side can be obtained from (7). The
second term works as asmoothness measure, which
represents a priori knowledge. Because smoothness is a spatial
feature, we define thesmoothness measureof a boundary lo-
cally for each of its boundary pixel as [2] does. A priori density

is modeled by a Markov random field considering a 33
neighborhood:

(24)

where is a normalizing factor and the energy termis defined
as

(25)

In (25), and are the homogeneity measure of the
neighborhood if current boundary pixel is labeled as. They
are obtained as follows. Each current boundary pixel constitutes
eightpixel-pairs with its eight neighboring pixels. If both pixels
in a pixel-pair have the same label, this pixel-pair is ahomo-
geneous pair, otherwise it is anheterogeneous pair. is the
number of those heterogeneous pairs that are in vertical or hori-
zontal positions and is the number of those in diagonal posi-
tions. and are two weighting factors that represent the dis-
tance factor of those pixel-pairs in different positions in relation
to the boundary pixel under consideration. We have .

After spatial boundary refining, a seven-point three-dimen-
sional (3-D) spatial–temporal median filter is used on the fore-
ground map:

(26)

The purpose of this median filter is to suppress the temporal high
frequency noise on the boundary, which will be quite annoying
when the segmented VOs are played back with an MPEG-4
player. Notice that this filter introduces delaying time of one
frame. For real time applications, higher order median filter is
not desirable.

V. SEGMENTATION EXPERIMENTS

The algorithm is implemented on PC platforms with a variety
of video capture hardware, including Intel’s Proshare videocon-
ference Kit, Intel’s Create & Share Camera Pack and Sony’s
CCD SSC-S20 camera with Intel’s Brooktree capture card. The
segmentation performance is 15 fps (frames per second) on a
Pentium-200 for QCIF (176 144) size input videos.

Due to the online feature of the algorithm, we could not use
standard sequences in the test (because standard sequences such
as Akiyo do not have the online information we are using to ini-
tialize the system). Instead, several testing sequences are cap-
tured for testing purpose. One of them, in QCIF size, YUV
format, 800 frames in length and 10 fps is available on the web-
site4 for this paper. This video sequence contains one person
in his head-and-shoulder pattern as foreground with moderate
motion.

Fig. 9 shows the segmentation result on one frame (the 500th
frame) of the testing video sequence. Fig. 9(a) is the original
input frame, (b) is the segmented foreground VO and (c) is the
segmented head VO. Note that the boundary between the head
VO and shoulder VO is approximated with their containing rec-
tangle boundaries. In addition, though our segmentation algo-
rithm is able to segment the input frame into three regions: back-
ground, head and shoulder; some time it is also possible to com-
bine the foreground part (head and shoulder) as one VO, which
is also semantically meaningful.

4http://www.ctr.colulmbia.edu/~luoht/research/rvSeg
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(a)

(b)

(c)

Fig. 9. Segmentation result example on one frame (frame 530) of the testing
sequence. (a) Original input frame. (b) Segmented foreground VO. (c) Seg-
mented head VO.

To quantify the role of the shape-based adjustment module
in the overall tracking system, a group of experimental data
is used to compare the tracking performance with and without
shape-based adjustment. The video data used is the mentioned
800-frame sequence. The accuracy of head region tracking is
measured by comparing the tracked support map with a ground-
truth support map, which is generated with a semi-automatic
video segmentation tool [20] that we developed in our labora-
tory. The error rate is defined as

-

where - represent the size of the mis-
classified and the ground-truth head region, respectively. Fig. 11

Fig. 10. Comparison of boundary relaxation and 3-D filter effects.

Fig. 11. Illustration of the function of the shape-based adjustment module.

illustrates the result of this experiment (only the results for 100
frames, from frame 500 to 599 are included). In Fig. 11, the
horizontal axis is the frame number and the vertical axis is the
head region tracking error rate. The “o” curve represents the
error rate of the tracking algorithm without shape-based ad-
justments and the “” curve represents that of the algorithm
with shape-based adjustments. For better observation, we also
overlay a bar graph on the bottom of the figure that represents
the detection of canonical shapes. On this bar graph, each bar
along the horizontal axis means a detected canonical shape at
the frame position. It can be seen that canonical shapes are de-
tected on about 25% of the 100 frames. Due to this detection re-
sult, the tracking result using shape information is better than the
result of the algorithm without it. This relation is especially ob-
vious on frames from 550 to 600, where blob tracking errors get
accumulated because of the large motion of head-and-shoulder
foreground and the similar color of head and shoulder regions.
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However, with canonical shape based adjustments, the tracking
is much more reliable5 .

In Fig. 10, we compare the effect of boundary relaxation
and 3-D spatial/temporal median filter. The first row from left
to right are three consecutive original frames. The second row
are their segmented results without relaxation and filtering. The
third row are the final results with both relaxing and filtering. We
can see that in the second row, some noise on the boundary is
produced because parts of the background color are very similar
to that of the foreground model. However, with boundary relax-
ation and 3-D filter, the boundaries in the third row are much
smoother, both spatially and temporally.

VI. A PPLICATION DISCUSSION

With a real time object segmentation algorithm, real time
multimedia services such as videophone and web-based video
chatting can be improved in a number of ways by introducing
MPEG-4 framework [23], [24]. In this section, we attempt to
make comparison better MPEG-4 and H.263 using experimental
data. For simulation purpose, we used MoMuSys MPEG-4 im-
plementation version 7 [25] and Telenor’s H.263 implementa-
tion version 2.0 [26], both are freely available on the web.

First, we study the compression gain from VO segmentation
results. Because of the online feature of our segmentation algo-
rithm, no standard video sequence could be used. Instead, we
use the testing sequence described in Section V. Among the 800
frames, the 100 frames from 600 to 699 are chosen for this sim-
ulation.

The setup of MPEG-4 encoding and decoding is illustrated in
Fig. 12. The input video is first segmented and the foreground
map is obtained. With the segmented foreground map, two
VOs: one background and one foreground are further cre-
ated. Among them, each background frame is obtained as

if ,
otherwise.

(27)

That is, a background pixel in the current frame is repeated with
its value in the previous frame if it is occluded, or else it takes
its current value. Both VOs are encoded and decoded separately,
and then composed to create the final output. For both VOs,
MPEG-4 encoder uses the baseline mode,6 VM4 rate control.
The inter-VO rate control is realized by controlling the average
quantizer of background VO to make it approximately equal
to that of H.263 encoder. H.263 encoder also uses its baseline
mode. Frame by frame average peak SNR of all the 100 frames
are used as quality measure (when some frames are skipped
by the encoder, the previous reconstructed frame is repeated
to compute SNR at the decoder side). In the experiment, both
MPEG-4 and H.263 used 10 fps output frame rate, neither of
them skipped frames. In order to better evaluate the decoding

5In order to give the readers better sense of the accuracy and reliability per-
formance of our algorithm, we put frame-by-frame segmentation results of all
the 800 frames on our web as well.

6H.263 quantization table, no alpha threshold, no advanced prediction mode,
and no shape effects mode.

Fig. 12. Illustration of MPEG-4 encoder and decoder setup.

TABLE I
COMPARISON OFCOMPRESSIONEFFICIENCY OFMPEG-4AND H.263

quality, region-based peak SNR is introduced as quality mea-
sure. For blob ’s support region, its SNR is defined as

(28)

where and are original and decoded pixel’s
scalar value, is the blob support map defined in (1), and

is the size of blob ’s support map.
Table I compares the coding performance of MPEG-4 and

H.263. Rate is in kilo bit per second. SNR, SNR-b, SNR-h and
SNR-s refer to the component peak SNR of the entire frame,
background region, head region and shoulder region, respec-
tively. We can see that in the baseline setup and at the same
bit rate, MPEG-4 achieves 0.16–0.42 dB gain in the frame level
SNR compared with H.263. This is mainly because in an object-
based coding approach, an encoder processes the foreground
and background separately. It does not have to spend extra bits
on coding the uncovered background while only spends mod-
erate bits on shape coding. However, in a frame-based approach,
uncovered background can not be handled by motion compen-
sation and is expensive to encode.

Table I also shows different SNR distributions over different
regions. In H.263, the background region always gets the best
SNR result while the foreground region quality is not as good,
because the foreground is always in motion and more difficult to
compress. In MPEG-4, we reduce the background quality a little
but the foreground quality is improved significantly. In Table I
SNR-h and SNR-s for MPEG-4 are generally 0.5 dB better than
those for H.263. Because the background is the biggest region in
the testing frame, this measure penalizes MPEG-4 in the frame
level SNR comparison. However, as the foreground is the focus
of attention, the subjective result is better. That is, MPEG-4’s
coding efficiency is more than 0.16–0.4 dB better as indicated
in Table I.

Second, we study the scalability gain from VO segmentation
results. In traditional encoder like H.263, quantization adapta-
tion is the only means to control the bit rate. With MPEG-4,con-
tent-based scalabilitycan be added to quantization-based scala-
bility. That is, we can choose to transmit part of the information
that is semantically more important. In the case of videophone
and web chatting, we can transmit only the head region (head
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Fig. 13. Comparison of MPEG-4 and H.263 encoder behavior at low
bandwidth. “�”: SNR for MPEG-4 encoder that encodes only the segmented
head VO; “�”: frame level SNR for H.263 encoder that encodes the same
video without segmentation, “+” head region SNR for H.263 encoder, ‘”�”:
shoulder region SNR for H.263 encoder.

VO) in order to reach lower bit rate. According to our observa-
tion, as long as the segmentation quality is good, this type of
scalability is acceptable to the end users.

Quantitative experiments are carried out on our 800-frame
testing video. Frames 500 to 599 are used to compare the low
bit rate behavior of MPEG-4 and H.263. In the comparison, we
use MPEG-4 to encode the head VO only (obtained by segmen-
tation with previous discussed online algorithm) and compare
the SNR performance with H.263 that worked on full frame pic-
tures. Both encoders use baseline mode with target frame rate set
at 10 fps. The result is illustrated in Fig. 13. The figure is setup
in a rate-distortion pattern, with -SNR used as distortion mea-
sure. For each encoder, different combinations of coding param-
eters are used to get sampling points. The sampling points are
used to approximate the R–D behavior of each encoder (Sam-
pling points are chosen that represent the best performance for
both encoders in the experiment. Curves are not strict convex
because different coding parameters and/or rate control options
are chosen for different points in order to reach low bit rates).
In the figure, it can be seen that using content-based scalability,
MPEG-4 encoder reaches much lower bit rate. If we set 26 dB
for the head region as theacceptable quality boundary, then for
H.263 the lower bandwidth boundary is about 15 kbps, while
for MPEG-4, the lower boundary is about 5 kbps. This is even
lower than a good quality audio channel.

This experiment indicates that this technique will be useful
in applications such as Internet video chatting, where no QoS is
guaranteed, and friendly bandwidth adaptation is critical for a
large scale fair sharing of available bandwidth resources. Fig. 14
illustrates the user interface of a web-based chatting software.
In Fig. 14(a), a full resolution QCIF size video is sent when the
network bandwidth is sufficient, while in Fig. 14(b), the video
is automatically downscaled to only the head object to fit to
a narrow bandwidth. Though the transmitted video is smaller,
the motion of face region is well conveyed with audio, which
maintains a good user feeling.

(a)

(b)

Fig. 14. User interface of a web-chat software that makes use of content-based
scalability.

In addition, this segmentation and tracking approach is a
possible solution to very-low-bit-rate coding. Though model-
based-coding techniques like [27] can reach a bit rate of several
hundred bits per second, it is too difficult to fit the model to
human faces. Instead, our work suggests that the segmented
head regions can be transmitted efficiently with MPEG-4.
Because the bit rate is close to that of one channel audio, it is
also likely to apply this technique tovideo email, in which head
region is segmented and sent at several kbits per second.

VII. CONCLUSION

In this paper, a model based video analysis algorithm is pro-
posed for videophone applications. Unlike other approaches,
this algorithm emphasizes a real time performance. Application
domain is limited and domain knowledge is abstracted and mod-
eled with both blob based statistical region model and shape
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model. With the assistance of model knowledge and a hier-
archical processing structure, a QCIF size head-and-shoulder
video can be segmented into background, head and shoulder
three regions. Experiments show that this algorithm runs in real
time on average PC platforms. We believe that this algorithm is
a useful tool for applying the new object based MPEG-4 stan-
dard to popular real time video service. Our simulation results
presented in the last part of this paper also support this opinion.
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