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Complexity Distortion Theory
Daby M. Sow, Member, IEEE,and Alexandros Eleftheriadis, Senior Member, IEEE

Abstract—Complexity distortion theory (CDT) is a mathemat-
ical framework providing a unifying perspective on media rep-
resentation. The key component of this theory is the substitution
of the decoder in Shannon’s classical communication model with
a universal Turing machine. Using this model, the mathematical
framework for examining the efficiency of coding schemes is the
algorithmic or Kolmogorov complexity. CDT extends this frame-
work to include distortion by defining the complexity distortion
function. We show that despite their different natures, CDT and
rate distortion theory (RDT) predict asymptotically the same re-
sults, under stationary and ergodic assumptions. This closes the
circle of representation models, from probabilistic models of infor-
mation proposed by Shannon in information and rate distortion
theories, to deterministic algorithmic models, proposed by Kol-
mogorov in Kolmogorov complexity theory and its extension to
lossy source coding, CDT.

Index Terms—Kolmogorov complexity, Markov types, rate dis-
tortion function, universal coding.

I. INTRODUCTION

CURRENT methodologies for media representation have
their roots in systems designed and conceived several

decades ago. The theoretical foundation for addressing such
representation problems was established in 1948, when Shan-
non introduced information and rate distortion theories. These
theories ignore the meaning of the message considered “irrele-
vant” [13]. They are based on the measure theoretical concept
of probability that was proposed by Kolmogorov in 1929.

In this setting, source observations are produced by a source
, in a probability space , with

source alphabet , -algebra , and probability measure. Fo-
cusing on source coding, let be the reproduction alphabet
with -algebra . and denote, respectively, theth-fold
Cartesian product of and .

The main goal in lossy universal compression is to represent
efficiently a source observation ,
with a reproduction sequence without assuming the
knowledge of at both ends of the communication system.

In general, efficiency is measured in terms of distortion and
rate. To simplify the discussion, we assume that distortion is
measured with a family of single-letter distortion measures

(1)

where .
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To formalize the notion of rate, a variable length codeis
defined as

1) an encoding function , where
is the set of all binary sequences;

2) a decoding function .

Let be the length function that associates to each
string its length, being the set of natural numbers. The rate
of the code is defined as the expectation of the length of

divided by . Let the expected value of a random vari-
able with respect to a measure be defined by

, then the rate of the code is

(2)

For a fixed distortion level , is called -semifaithful or
-admissible if for all .
One of the many important contributions that Shannon made

to this field is the definition of the rate distortion function (RDF)
. He proved that it is a lower bound for rates of-admis-

sible codes

(3)

He also proved the existence of codes achieving this lower
bound.1 These proofs revolve around the probabilistic concept
of typicality [2].

In practice, stationary and ergodic assumptions are made on
the source probability measure to design coding algorithms
with performances close to the theoretical limits defined by
Shannon. Stationarity assumes that the statistics of the source
do not change with time and ergodicity justifies the approxi-
mation of the source distribution from time averages obtained
from a single infinite source observation.

Unfortunately, in many practical situations, models are not
inherently probabilistic [17] and source observations are finite.
For example, in image representation, source observations
usually contain a significant amount of spatial regularities that
escape all probabilistic models. Furthermore, the finiteness of
the observed data (e.g., an image) does not allow us to fit
probabilistic models for the representation simply because there
is not enough physical evidence to estimate probabilities from
time averages. In these situations, the stationary and ergodic
assumptions are difficult to justify and it becomes difficult to
attach a physical meaning to the measure theoretical concept
of probability [6].

Interestingly, Kolmogorov introduced in [8] the notion of
Kolmogorov complexity to measure the amount of randomness
in individual objects. He found the need to measure it from

1See [1] for precise definitions and statements.

0018-9448/03$17.00 © 2003 IEEE



SOW AND ELEFTHERIADIS: COMPLEXITY DISTORTION THEORY 605

lengths of descriptions of objects on a universal Turing machine
(UTM). The Kolmogorov complexity of a sequence
is defined as the length of the shortest program written for a
UTM, that halts and outputs . There exist many variants
of the Kolmogorov complexity in the literature. Throughout
this paper, we will use the prefix Kolmogorov complexity
introduced by Levin and Gacs. We denote it by .

In this paper, we follow Kolmogorov’s approach to measure
information. We put computational constraints on the decoding
function by replacing the decoder in Shannon’s communi-
cation system with a UTM. We investigate the effect of these
constraints on the limits of compression. Since its introduction,
Kolmogorov complexity has grown substantially. It has concen-
trated, however, on data compression, i.e., lossless representa-
tion. We extend it to include distortion for lossy representations.
This step allows the application of the complexity framework to
audio-visual information representation, where the introduction
of (ideally nonperceptible) distortion is a key step for allowing
nontrivial compression.

The structure of the paper is as follows. In Section II, we in-
troduce the main entity in complexity distortion theory (CDT),
namely, the complexity distortion function (CDF) and state the
conditions for the equivalence between the CDF and the RDF.
General equivalences have been proposed in the lossless and
lossy cases in [9], [11], [19], and [20]. In this paper, we sim-
plify these results significantly and extend them with pragmatic
considerations for the coding of finite objects. A formal proof
of the equivalence is proposed in Section III. We end this paper
with important remarks on CDT in Section IV.

II. COMPLEXITY DISTORTION THEORY (CDT)

A key component of Kolmogorov complexity theory is the in-
troduction of a computational model at the decoding end of the
communication system. In contrast, RDT makes no assumption
on the structure of the decoding function . Assuming that

is computable,2 it can be implemented by a Turing machine
(TM). By replacing the decoder in Shannon’s communication
system with a UTM, we can emulate any decoding function by
programming the UTM. If we allow distortion in the representa-
tion, it is very natural to measure the coding performances with
an extension of the Kolmogorov complexity to the semifaithful
case and introduce a new mathematical entity, the CDF.

To define the CDF, we contrast it with the RDF and consider
the following standard construction sometimes used to intro-
duce the RDF. Fix . The set

is called a -ball with center or simply a -ball if
is understood. Remark that sinceand could differ, some

-balls could be empty. To avoid this, we define as a
real number equal to the infimum amount of distortion that can
be obtained using any coding/decoding scheme, . Obvi-
ously, if , . But in practice it is more common
to have . From now on, we always assume that such a
real number exists and that . If , and if

, the code is noiseless or faithful. Let be a union

2See [3] for a precise definition of computable or recursive functions.

of -balls covering . is called a -cover of .
Let denote the minimum number of-balls needed
to cover . By definition, the operational RDF is given
by

(4)

where

(5)

is a measure of the ratio between the number of bits
needed to index the minimum number of balls required to cover

, being a subset of of measure greater than . The
intuition behind this statement is that each element ofcan be
represented “ -semifaithfully” by the index of the -ball con-
taining the element. Gray, Neuhoff, and Ornstein have shown in
[5] that this definition of the operational RDF is equivalent to
the definition of the RDF [1]. From now on, we drop the sub-
script on it and represent it with .

The CDF is introduced in a similar manner. In a-ball cen-
tered around this time, let be the sequence in
with the smallest Kolmogorov complexity. If we have many
sequences inside the ball with small complexity, we pick the
closest one to , according to . If we still have more than
one candidate, we list them in a lexicographic order and arbi-
trarily pick the sequence with the smallest index in the list

(6)

Definition 1: The CDF is defined as

(7)

There are two striking differences between the RDF and the
CDF.

1) The CDF is a deterministic quantity that does not depend
on probabilities. In contrast, the RDF relies on the prob-
ability measure associated to the source.

2) The CDF describes the best element inside a-ball and
does not ignore the information content. The RDF does
not describe the content of any elements of a-ball. It
simply indexes one of these balls following the general
information-theoretic principle that the actual meaning
of messages is irrelevant to the communication problem
[13].

Despite these fundamental differences between the RDF and
the CDF, these two lossy measures of information are equiva-
lent for a very wide class of information sources. In the lossless
setting, Zvonkin and Levin were the first one to propose equiva-
lences between Kolmogorov complexity and the entropy in [21].
The following theorem is formulated without a proof in [21].

Theorem 1: For a stationary ergodic source , with
a probability measure

-a.s. (8)

where denotes the entropy rate of the source.
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We extend this result to the lossy case.

Theorem 2: For a stationary ergodic source , with
a probability measure

-a.s. (9)

In both of these theorems, the ergodic decomposition of
stationary processes allows us to drop the ergodicity assumption
if we allow the introduction of an expectation term on the
Kolmogorov complexity or on the CDF.

The importance of these results cannot be overstated. It
clearly shows that despite introducing a mechanical structure
at the decoding end of Shannon’s communication system, we
do not lose much in terms of performance.

III. PROOF OFEQUIVALENCE

In this section, we prove Theorem 2. Since Theorem 1 is a
restriction of Theorem 2 to the lossless case where
, we do not prove it.

Proof: To prove Theorem 2, we proceed in two steps. In
the first step, we construct a code with rate equal to the RDF.
This code can be decoded by a UTM. We then invoke source
coding results in the second step, to show that no code, de-
codable by a UTM or not, can have a rate below the RDF. To
accomplish the first step, we prove the following lemma.

Lemma 1:

-a.s. (10)

Proof: We use the concept of Markov types as proposed
by Shields in [14] to design universal codes that can be decoded
by a UTM. Let . Following [14], the Markov -type
is defined by sliding a window of length along and
counting frequencies. These frequencies are then used to define
empirical transition probabilities. Let be an infinite periodic
sequence defined by

(11)

For each integer and for each , define

(12)

where the notation denotes the cardinal of the set. The
periodicity of implies that

(13)

and

(14)

The Markov -type of is the Markov measure with state
space , stationary probabilities and transition proba-
bilities defined by

(15)

The type class is defined as the set of all sequences of
length with Markov type equal to the Markov type of .

To encode efficiently, recall that a -cover of a set
is a collection of -balls covering . The sequence

can be represented by the following two-part code proposed in
[14].

1) The index of the Markov -type of is transmitted.

2) Choose a -cover with the least cardinal
among all -covers of . The second part of the
code is an address of an element of that con-
tains .

The first part of the code requires only a number of bits
to represent the index of the Markov-type of , If

[14], denoting the greatest integer .

The second part of the code requires at most
bits. It is shown in [14] that the rate of this two-part code con-
verges almost surely to the RDF of the source and we have the
fol- lowing result:

a.s. (16)

being the encoding function corresponding to the code con-
struction presented above. See [14] for a proof of this result. This
code is prefix free [14] and is a valid program for a prefix-free
TM. Its decoding operations are clearly computable. To see this,
note that the first part of the representation encodes the type
class . With this description of , the decoder can
generate all sequences belonging to . A program com-
puting this Markov-type class requires shift, addition, and di-
vision operations which are all Turing computable. Since the
composition of computable functions is also computable (see
[3, Theorem 2.1, p. 36 ]), there is a TM able to decode this part
of the representation. From the second part of the description,
the machine has to index the-ball that contains the sequence

. The final representation of is obtained by identifying
the right reproduction sequence associated with the indexed

-ball. Consequently, using (16) and Definition 1 of the CDF,
we have

-a.s. (17)

proving Lemma 1.

In the second part of the proof of Theorem 2, we prove the
following lemma.

Lemma 2:

-a.s. (18)

Proof: Recall [7, Theorem 2]. This theorem states that for
any semifaithful code with encoding function

-a.s. (19)

Note that in (19), there is no computational restriction on
the decoding process and the decoding function. Any
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-admissible encoding function that representsat a rate
equal to will verify (19). Hence, we conclude that

-a.s. (20)

we have proved Lemma 2.

From Lemma 1 and Lemma 2, Theorem 2 follows.

We end this section with two important remarks on the proof.

Remark 1: Any universal coding scheme could have been
used to prove Lemma 1. We used the code construction pro-
posed in [14] because it highlights the separation between the
model and the data. The model is represented by the first part of
the code, the index of the Markov-type. This model is clearly
probabilistic. The data part of the representation is the index of
the -ball that contains the source sequence. In the represen-
tation of , the size of the model is asymptotically negligible
when compared to the size of the data. In practice, when objects
are finite, the size of the model could be a significant part of the
code.

Remark 2: The simplicity of the proof of Theorem 2 is due
to the power of source coding theorems. In fact, while Lemma 1
is derived from a well-known universal coding scheme, Lemma
2 is a restriction of a theorem proved by Kieffer (in [7, Theorem
2]) to computable decoding functions. These well-known infor-
mation-theoretic results shield us from the complexity of this
equivalence.

IV. CONCLUDING REMARKS

In this paper, we have extended the notion of Kolmogorov
complexity to lossy descriptions of information by defining
the CDF. We have shown that this function is almost surely
equal to the RDF for infinite observations of stationary-ergodic
sources. Using types, we highlight the separation principle
between model and data. The model part can be identified as
the routine used to describe the source probability distribution.
The data part is essentially an index of a-ball containing the
source observation. We end this paper with three key points on
the scope of CDT.

First, restricting the decoding function to be computable
does not reduce the performances of the system. In fact the
Church–Turing thesis [10] guarantees that any coding technique
belongs to the set of computable functions, from traditional
entropy approaches to modern approaches like fractal and
model-based coding. These modern techniques do not rely on
statistical models of the source. The result is a unification of all
coding algorithms under the same mathematical framework.

The second point addresses the computability of the Kol-
mogorov complexity. The Kolmogorov complexity is not
computable. While there exists no TM able to compute
for any sequence , it is possible to approximate it, as
shown in [10]. Such approximations are obtained by adding
computational resource bounds on the decoding UTM [16].

Similarly, we are not aware of any systematic way to estimate
source distributions from finite observations [12]. Jeffrey [6]
takes this observation even further and asserts that the concept
of probability has no physical meaning. These observations
did not prevent the field of source coding to blossom with the
development of efficient coding algorithms. In statistics, the
minimum description length principle is often used to select
efficient models from general observations. This principle
by-passes the concept of probabilities considered artificial and
has been successfully applied to develop many practical sta-
tistical learning techniques. Similarly, we believe that it could
be beneficial to develop programmatic representations based
on Kolmogorov’s approach for the design of practical media
representation systems. In practice, programmatic representa-
tion techniques are already starting to gain momentum in audio
representation with the MPEG-4 Structured Audio standard
[4]. It is shown in [4] that such programmatic representations
of sound outperform today’s probabilistic audio representation
schemes.

The last point that we would like to emphasize is that
Shannon’s communication system does not bound the amount
of computational resources available at the decoding end.
In practice, the computational power of the decoding device
is always bounded. With arbitrary computational resource
bounds on the decoding UTM, the equivalence may not hold.
Putting such computational resource bounds on the decoder
transforms it into a finite-state machine (FSM). In fact, any real
computer has only a finite amount of computational power.
The key here is that a TM may have infinite tapes but at each
time of computation, only a finite amount of memory and
time has been used. The amount of computational resources is
unbounded but finite at any time. Indeed, as mentioned in [18],
“we can even go so far as to compute a finite bound on the
maximum amount of memory constructible out of the material
composing the known universe and be tempted to claim that,
for all practical purposes, FSMs serve as models of effective
procedures. Unfortunately, the finiteness of an FSM is not a
mathematically useful concept. The finiteness constraints can
often get in the way of a concise, understandable description
of an algorithm. We often, for example, write programs in
which we assume that all our intermediate results will fit in
their respective variables. Even though the assumption may not
always be strictly justified, by making it, we greatly reduce
the amount of detail we have to handle and this is certainly
desirable.”

From a pure compression point of view, the FSM model is
sufficient, under stationary and ergodic assumptions. In this
case, traditional compression algorithms (like Shannon–Fano,
Huffman, arithmetic, and Lempel–Ziv coding) yield asymp-
totically optimal representations. This fact is clearly shown in
[13], where encoders and decoders are modeled by transducers
which are FSMs with a finite amount of memory. But when
descriptions of content at higher semantic levels are desired,
the content and the clarity of the descriptions become important
factors that force us to extend the FSM model to the TM model
with infinite memory, as we commonly do with real computers
which are physically FSMs with a large but finite amount of
memory.
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