
Signal Processing: Image Communication 17 (2002) 559–572

An interactive authoring system for video object segmentation
and annotation

Huitao Luoa,*, Alexandros Eleftheriadisb

aHewlett-Packard Labs, 1501 Page Mill Road, MS 1203, Palo Alto, CA 94304, USA
bDepartment of Electrical Engineering, Columbia University, New York, NY 10027, USA

Received 4 February 2002; accepted 15 April 2002

Abstract

An interactive authoring system is proposed for semi-automatic video object (VO) segmentation and annotation.

This system features a new contour interpolation algorithm, which enables the user to define the contour of a VO on

multiple frames while the computer interpolates the missing contours of this object on every frame automatically.

Typical active contour (snake) model is adapted and the contour interpolation problem is decomposed into a two-

directional contour tracking problem and a merging problem. In addition, new user interaction models are designed for

the user to interact with the computer. Experiments indicate that this system offers a good balance between algorithm

complexity and user interaction efficiency. r 2002 Elsevier Science B.V. All rights reserved.

Keywords: Snake; DP; Graph search; Interactive Rubberband; Authoring tool; MPEG-4

1. Introduction

To segment and track semantically meaningful
video objects (VOs) through a video sequence is
currently an interesting topic. The need of VOs
arises from two major multimedia applications.
One of them is extended video annotation on
acquired traditional video sequences. At the
editing stage, VOs are specified and annotated
with hyperlinks. When the user clicks on the object
in any frame that it appears, the annotated data
pops up. This is similar to the hyperlink mechan-
ism in HTML. Because video is becoming rapidly

a popular media form, VO annotation is also
becoming a very important topic in multimedia
authoring research. Actually, several authoring
systems are already available that support VO
annotation, such as IBM’s HotVideo [10] and
HyperVideo from Veon [17]. In addition, VO
annotation is also an important technique for
interactive TV, in which hot links are embedded
along with video information [2]. The other
application associated with VOs is the new object
oriented video representation technique, which is
specified within the framework of MPEG-4 and
upcoming MPEG-7 standards. In the terminology
of MPEG-4, VOs can be segmented from tradi-
tional video sequences. Each VO is compressed
and decompressed individually. The composition
of multiple video objects is coordinated by MPEG-
4 systems. Though these two applications are

*Corresponding author. Tel.: +1-650-857-2631; fax: +1-

650-857-2951.

E-mail addresses: huitao@exch.hpl.hp.com, luoht@ee.co-

lumbia.edu (H. Luo), eleft@ee.columbia.edu (A. Eleftheriadis).

0923-5965/02/$ - see front matter r 2002 Elsevier Science B.V. All rights reserved.

PII: S 0 9 2 3 - 5 9 6 5 (0 2) 0 0 0 3 6 - X

different, they have the common problem at the
authoring stage, that is, how to specify VOs from
large amount of video data in both spatial and
temporal domains.
Segmenting objects from image and/or video

data has been under intensive research. Numerous
algorithms are available in the literature. However,
it is becoming widely accepted recently that fully
automatic segmentation is difficult. Instead, a
semi-automatic approach is a more feasible solu-
tion. Several papers have been published according
to this idea, for example [3,6,18,9], etc. These
papers all sidestepped full automation and de-
signed tracking algorithms to work along with user
interaction. Nevertheless, though their contribu-
tions to the ‘‘tracking’’ (algorithm) part of the
problem are different, their user interaction
models are all very simple, i.e., the user defines a
VO in the first frame, and then lets the computer
track the VO temporally. This model cannot meet
the requirements of interactive authoring tools.
For example, a common problem is that no quality
criteria are proposed for the computer to detect
the loss of tracking and thus ask for additional
user input. Instead, the user has to observe the
tracking course from time to time and offer new
input when he or she finds it necessary.
In this paper, we propose a new ‘‘interpolation’’

approach for semi-automatic VO segmentation,
and discuss an authoring tool prototype design
based on this approach. Our focus is to design the
algorithm and the user interaction models at the
same time, which helps to solve the efficiency
problem in interactive authoring systems. In our
system, the user defines a video object by specify-
ing its contour on multiple anchor frames rather
than only on the first frame. The computer then
uses input information from multiple anchor
frames to ‘‘interpolate’’ the VO contours on every
frame. Compared with pure tracking approaches,
the interpolation approach offers more ‘‘interac-
tion points’’ between the algorithm and the user.
From the algorithm’s point of view, the algorithm
makes use of user input more efficiently, because
each user input contour contributes to VO
definitions on those frames before as well as after
it, while in the tracking case, a user input only
influences the frames after it. From the user’s point

of view, the new approach makes the system
performance more predictable because the user
can define a VO on frames where large occlusion
or motion occurs and most tracking algorithms are
likely to fail. In addition, it is more controllable in
that with two or more input VO contours, the
possible interpolated contours can be effectively
limited to certain search regions.
More specifically, the problem can be defined as

follows. Given two input contours Cb and Ce of a
VO on frame b and frame e; try to find the object
contours Ci on frames i; i ¼ b þ 1; b þ 2;y;
e � 1: We call it a ‘‘contour interpolation’’
problem. As a comparison, we express the ‘‘con-
tour tracking’’ problem as: given an input contour
Cb; try to find the object contour Ci on frame
i; i ¼ b þ 1; b þ 2;y; e: It is natural to consider
an interpolation problem as two tracking pro-
blems, i.e., to maximize the use of input informa-
tion on two frames, we can track the input contour
from Cb to Ce also well as from Ce to Cb: In this
sense, all the available VO tracking algorithms can
be used. However, how to merge the results from
these two-directional tracking and produce a final
best result is an open problem.
To maximize the use of user input on two

frames, we use active contour models (snakes) [11]
in our interpolation algorithm. In a snake model, a
planar curve is parameterized with nodes and local
energy functions defined for each node. The final
shape and position of the curve is determined by
the global minimization of the snake’s energy. In
our work, a traditional snake model is extended in
the following ways. First, we use nodes to
represent snakes and we design a ‘‘contour
matching’’ algorithm to match the node represen-
tations of two user input contours. Based on
contour matching, contour temporal smoothness
and shape similarity criteria are defined. Later
discussion will show that these criteria are essential
for merging multiple tracking results. Second, we
extend the two-dimensional snake model to a
three-dimensional model in which new energy
terms that reflect spatial temporal constraints are
included. Third, a ‘‘parametric neighborhood
template’’ is designed to improve the robustness
against background edge noises during the active
contour tracking course.

H. Luo, A. Eleftheriadis / Signal Processing: Image Communication 17 (2002) 559–572560

The algorithm design in this work is directly
influenced by Geiger et al.’s work [8], in which the
idea of contour matching was first proposed. In
our work, we further develop their contour-
matching algorithm by introducing different local
motion models. Based on contour-matching re-
sults, the interpolation problem is then modeled as
a bi-directional snake tracking problem and a
merging problem. In addition, similar work on
spatial/temporal active snake model can be found
in [12,7,4], etc. In Lin and Chang’s work [12],
efforts were made to combine the active contour
model with motion estimation. Quality criteria
were also suggested to evaluate the quality of
contour tracking. However, their experimental
results were not good because no node neighbor-
hood information was used. Chiueh et al. [4] used
similar snake technique to track VO contours for
annotation. Fu et al. [7] tried to solve the occlusion
problem in active contour tracking by segmenting
the contours into multiple segments. They used
neighborhood information for motion estimation
and got better results than [12]. We will later show
in this paper that their work can be included in
ours as a specific case of our parametric template.
The user interface model in this work is related

to the work in [15]. In their system, the user selects
key points and the computer grows the corre-
sponding contour segment that links the key
points. The current key point is moved by the
user until the contour segment grown by the
computer is desirable. This process involves both
the computer’s searching as well as the user’s
decision. It is an efficient model for user/machine
interaction. In our system, an improved active
searching mechanism (Interactive Rubberband) is
designed for the user to define the initial VO
contours on anchor frames. In addition, an
iterative interpolation mechanism is designed for
the user to offer error feedback to the interpola-
tion algorithm.
This paper is organized as follows. In Section 2,

we introduce the contour representation and
contour-matching algorithm. In Section 3, we
discuss in detail our contour interpolation algo-
rithm based on contour matching. In Section 4 we
summarize the user interaction models employed
in the system. Experimental results are presented

in Section 5, and we present concluding remarks in
Section 6.

2. Contour representation and matching

2.1. Contour representation

In this work, a contour can be represented by
a vector array fvs;kg ðs ¼ 0; 1;y;NÞ; where k is
the temporal location and s is the spatial index of
contour pixels. The spatial location of each
contour pixel is denoted by vector vs ¼ ðxs; ysÞ:
In addition, for concise representation and easy
matching, a contour can also be represented with
subsampled nodes fvSkðiÞ;kg; where Sk : i/j;
iA½0; 1;y;Ns	; jA½0; 1;y;N	 (Ns and N are the
number of nodes and pixels, respectively) is the
subsampling function related to temporal position
k: For example, a uniform subsampling function is
defined as SkðiÞ ¼ i
 unit; where unit is the uni-
form subsampling length. In this paper, we name
fvs;kg pixel representation and fvSkðiÞ;kg node

representation. Note that the node representation
is actually a first-order polynomial approximation
of the pixel representation.

2.2. Contour matching

The purpose of contour matching is to find the
correspondence between two contours Cb; Ce;
which are the contours of the same VO at the
different temporal locations (b and e). This is
essential for interpolating the object contours
between them. In the pixel representation, the
length of Cb and Ce are not necessarily the same
and a pixel-by-pixel correspondence cannot be
created. Therefore, we use subsampled node
representation for contour interpolation study,
and a contour-matching algorithm is employed to
find the correspondence between the two sub-
sampled contours.
Mathematically, the matching process can be

defined as follows. Given two input contours:
Cb ¼ fvs;bg; Ce ¼ fvs;eg in the pixel representation,
and a subsampled node representation for the first
contour fvSbðiÞ;bg; find the corresponding node
representation for the second contour fvSeðiÞ;eg:

H. Luo, A. Eleftheriadis / Signal Processing: Image Communication 17 (2002) 559–572 561

Here the matching of the nodes of two contours
can be expressed with the mapping function fm :
vSbðiÞ;b/vSeðiÞ;e; iA½0; 1;y;Ns	: Generally, we fix
the node representation of the first contour Cb by
uniform subsampling (other subsample algorithms
are also possible, see [16] for a detailed discussion),
and the matching process is reduced to finding the
corresponding subsample function SeðiÞ for the
second contour.
In order to find the mapping function fm; we

define a local energy term for each matched node
pair. The final matching result is determined by the
global minimization of the matching energy of the
two contours. This is similar to the matching
approach in [8]. In this work, we assume the
motion of the considered VO is nonrigid globally,
but rigid locally, and the shape of its two contours
is similar locally everywhere. This assumption is
true in general if the motion of the VO is not too
fast in relation to the temporal distance between
the two frames on which the contours Cb and Ce

are defined. A number of rigid motion models, i.e.,
translation and affine, are possible for local
matching energy definition.

Translation motion model. If we denote the
motion vector between two matched nodes as
MVi ¼ vSbðiÞ;b � vSeðiÞ;e; then the matching energy
term is defined as

Ei ¼ mjjMVi �MVi�1jj þ ZðSeðiÞ � Seði � 1ÞÞ2;

where the first term is the smoothness evaluation
of the motion vectors of two neighboring nodes,
the second term is an elastic constraint on the
distance of two neighboring nodes, and m; Z are
two weighting factors.

Affine motion model. In contrast to the trans-
lation model, the affine model needs three
motion vectors to define. Here we denote
the affine mapping function as Ai ¼
AffineiðMVi�1;MVi;MViþ1Þ: Under this function,
the local contour segment fvs;bg; sA½Sbði �
1Þ;Sbði þ 1ÞÞ is mapped to a pixel set fv0eðsÞg on
frame e; while its corresponding contour segment
on frame e is denoted as pixel set fvSeðsÞ;eg;
sA½Seði � 1Þ;Seði þ 1ÞÞ: Then the matching energy
term is defined as

Ei ¼ mDðfv0eðsÞg; fvSeðsÞ;egÞ þ ZðSeðiÞ � Seði � 1ÞÞ2;

where the operator Dð
Þ is the distance measure of
two sets, which we define as

DðA;BÞ

¼
X
viAB

min
vjAA

jjvi � vj jj þ
X
vjAA

min
viAB

jjvj � vi jj

2
4

3
5=2: ð1Þ

In practice, (1) can be implemented in an iterative
manner for each pixel as follows. We define
dðvi;AÞ ¼ minvjAA jjvi � vj jj; and denote dnðvi;AÞ
as the value of dðvi;AÞ in the nth iteration. At
the initialization stage

d0ðvi;AÞ ¼
0 if viAA;

þN otherwise:

(

The iteration is then defined as

dnþ1ðvi;AÞ ¼ min
vjANðviÞ

ðdnðvj ;AÞ þ jjvi � vj jjÞ;

where NðviÞ is the 8-neighborhood set of pixel vi:
With the definition of local matching energy

terms, the matching problem is converted to an
energy minimization problem. This can be easily
solved by DP algorithm [1], which we do not
discuss in detail here. In practice, the affine model
is more complex than the translation model, but
the quality is better, especially when the subsample
distance between neighboring nodes is big. In
Fig. 1, we show a result of contour matching under
the translation model. Fig. 1(a) is the 50th,
Fig. 1(b) is the 70th frame of the Carphone
sequence. The green lines are the contours and
the red lines link the matched node pairs.

Fig. 1. Results of contour matching for the Carphone se-

quence: (a) is the 50th and (b) is the 70th frame of the Carphone

sequence. The green lines are the user specified contours and the

red lines link the matched node pairs.

H. Luo, A. Eleftheriadis / Signal Processing: Image Communication 17 (2002) 559–572562

3. Contour interpolation algorithm

3.1. Localized energy minimization model

The essence of Kass et al.’s snake model [11] is
to define a local energy term for each contour
node, and the shape of the contour is determined
by minimizing the total snake energy globally.
When we go from a two-dimensional spatial snake
to three-dimensional spatial/temporal snake, it is
possible to extend the local energy terms from 2D
to 3D as well. In this work, we study the extended
local energy terms as intraframe energy terms and
interframe energy terms, respectively. From now
on, because no subsample issue will be involved,
snakes are assumed to be in the node representa-
tion. The node representation notation fvSkðiÞ;kg is
simplified to fvi;kg whenever possible.

Intraframe energy. As usual, the intraframe
energy terms include two parts, a gradient term
and a smoothness term,

Eintra;i ¼ ZedgeEgradient;i þ ZsmoothEsmooth;i; ð2Þ

where the first gradient term is defined as

Egradient;i ¼
Z SðiÞ

s¼Sði�1Þ

255

ð10þ jjXðcðvsÞÞjjÞ
ds;

in which 255 and 10 are two empirical values. cðvÞ
is the color vector of node v; and the second
smoothness term is defined as

Esmooth;i ¼
2jjvSði�1Þ þ vSðiþ1Þ � 2vSðiÞjj

jjvSði�1Þ � vSðiÞjj þ jjvSðiÞ � vSðiþ1Þjj

� 	2

;

which is designed to eliminate the influence of the
node distance on the contour smoothness measure.

Interframe energy. In available papers [12,7] on
temporal active contour tracking, interframe en-
ergy terms generally employed include optical
flow, motion smoothness, interframe color, etc.
A basic problem in these approaches is that most
of their node energy definitions are based only on
image features at the node’s position rather than
on its neighborhood. This makes the color and
especially motion information generally not accu-
rate. Ideally, the contour nodes’ neighborhood
should be observed in order to track them from
frame to frame. However, a problem here is,
different from typical point tracking problems,

contour nodes are most likely located on the
boundary of a moving object, so their neighbor-
hood is not constant. In order to capture the
consistency through the tracking course, we
introduce a concept of parametric neighborhood

template. A parametric template T is defined as a
data structure including two arrays: a vector array
fdv0; dv1;y; dvng and a weighting array
fw0;w1;y;wng; in which a vector dvi represents
the position of the ith pixel in the neighborhood
and wi represents its contribution weight to
template measurements. For each contour node
vi;k; a parametric template Ti;k is defined and kept
updated frame by frame through the tracking
course.
With the definition of parametric template Ti;k;

the color of two temporally neighboring contour
nodes vi;k; vi;k�1 can be compared as

Diffcðvi;k; vi;k�1;Ti;kÞ

¼
X

dvjATi;k

wj jjcðvi;k þ dvjÞ � cðvi;k�1 þ dvjÞjj; ð3Þ

where cðvÞ is the color vector of node v: In
addition, we define the motion vector at node vs;k

as

MVðvi;k;Ti;kÞ

¼
X

dvjATi;k

wjMVðpÞðvi;k þ dvjÞ
X

dvjATi;k

,
wj ; ð4Þ

where MVðpÞðvi;kÞ is the estimated motion vector at
vi;k: If we do not consider occlusion, a simple way
to determine the weights of template T is to set wj

for those neighboring pixels inside the contour as 1
and for those outside the contour as 0. This can be
illustrated in Fig. 2. For the occlusion case as was
discussed in [7], we can easily switch the weights by
setting inside weights to 0 and outside weights to 1.
In general cases, both the size and the weights of
the parametric template can be adjusted flexibly to
get the best results of the contour node tracking.
Based on parametric template, the interframe

energy terms for each contour node are enumer-
ated as follows:

1. Color similarity: Ecolor;i;k ¼ Diffcðvi;k; vi�1;k;
Ti;kÞ; where function Diffcð Þ is defined in (3).

H. Luo, A. Eleftheriadis / Signal Processing: Image Communication 17 (2002) 559–572 563

2. Optical flow: Eoptical;i;k ¼ MVðvi;k�1;Ti;k�1Þ �
MVi;k�1; where the first term MVðvi;k�1;Ti;k�1Þ
is defined in (4) and we assume forward motion
estimation is used. The second term is
MVi;k�1 ¼ ðvi;k � vi;k�1Þ:

3. Motion smoothness: Emotion;i;k ¼ jjMVi�1;k þ
MViþ1;k � 2MVi;k jj: This is a smoothness mea-
sure for motion vectors on the spatially
neighboring nodes. It is minimized if the local
motion is in the translation form.

4. Shape stiffness: Eshape;i;k ¼ jjangleðvi�1;k�1;
vi;k�1; viþ1;k�1Þ � angleðvi�1;k; vi;k; viþ1;kÞjj; where
angleðvi�1; vi; viþ1Þ is the angle based on the
three spatially neighboring nodes. This term
measures the local shape similarity. It is
minimized if the local motion is rigid.

5. Temporal smoothness: Etemporal;i;k ¼ jjvi;k�1 þ
vi;kþ1 � 2vi;k jj: This is the smoothness measure
for the three temporally neighboring nodes.

The interframe energy Einter is then the weighted
sum of above terms.

Search algorithm for minimization. With the
definition of local energy terms, the contour
interpolation problem can be expressed as an
energy minimization problem as follows. Given
two contours fvi;bg; fvi;eg; ðboe; i ¼ 0; 1;y;NsÞ;
find the contour nodes fvs;kg ðk ¼ b þ 1;y; e �
1; s ¼ 0; 1;y;NsÞ that minimize the global energyP

s;kðEinter;s;k þ Eintra;s;kÞ:
Though it is natural to extend the local energy

terms from 2D to 3D, the increase in computa-
tional complexity is an important problem. In the

2D case, each node vi’s local energy is defined in
relation to two neighbors, i.e., Eintra ¼
f ðvi�1; vi; viþ1Þ; while in the 3D case, the local
energy terms for each node vs;k is defined in
relation to eight neighbors! This change is
illustrated in Fig. 3. If each node has a search
region of size n; the local search complexity then
increases from n3 to n9; which makes global
minimization algorithm difficult to design. Though
powerful algorithms such as simulated annealing

should still be able to solve this minimization
problem, the slow speed of convergence makes it
inappropriate for an interactive segmentation tool.
In this work, a sub-optimal solution is obtained

by converting the contour interpolation problem
into two tracking problems: a forward tracking
from Cb to Ce and a backward tracking from Ce to
Cb: They are also referred to as bi-directional
tracking in this paper. When converted to a
tracking problem, the neighborhood definition of
the current pixel ði; kÞ cannot include nodes in a
neighboring frame that has not been processed.
Therefore, we shift the neighborhood definition in
Fig. 3 by one frame. For example in the forward
tracking model, if the current node is ði; kÞ in
Fig. 3, then its eight nodes are ði þ 1; pÞ; ði; pÞ; ði �
1; pÞ; p ¼ k � 2; k � 1; k (not including ði; kÞ).
Among them, six are already fixed and only two
variable nodes ði þ 1; kÞ and ði � 1; kÞ will influence
its local energy. This is the same as the case with

Weight=0

Weight=1

Fig. 2. Illustration of parametric template concept. During the

tracking course, both the size and weights of the template can

be adapted.

(i+1,k-1)

(i,k-1)

(i-1,k-1) (i-1,k)

(i+1,k)

(i,k)

(i+1,k+1)

(i-1,k+1)

(i,k+1)

Fig. 3. Spatial temporal neighborhood of a contour node for

the local energy definition. In the figure, i is the spatial index

and k is the temporal index.

H. Luo, A. Eleftheriadis / Signal Processing: Image Communication 17 (2002) 559–572564

the intraframe energy Eintra;s: Therefore, it is easy
to design a search algorithm with DP. After the bi-
directional tracking, another search process is used
to find the optimal contours out of the previous
tracking results.

3.2. Bi-directional tracking

In the tracking model, each node vi;k’s total
node energy can be written as

Etotal;i;k ¼ fEðvi�1;k; vi;k; viþ1;kÞ ð5Þ

because the other six neighboring nodes viþp;k�2;
viþp;k�1; p ¼ ð�1; 0; 1Þ; in the previous frames are
all fixed. This energy expression is similar to those
used for 2D active contour models, except that the
detailed expression of fE is different. Therefore, we
use the DP algorithm similar to that used in [1].

Limited search region versus searching complex-

ity. According to [1], the local energy expression in
(5) is a second order expression in the sense that it
includes two neighboring nodes as variables. In
this case, a two-element vector ðviþ1; viÞ is used as
the status index for DP. The DP search is then
carried out as follows:

Siðviþ1; viÞ ¼ min
vi�1

½Si�1ðvi; vi�1Þ þ fEðvi�1; vi; viþ1Þ	:

Note that the frame index k is omitted in the above
expression because no temporal information is
involved.1 If the search size for each node is n and
the total number of nodes in each contour is m; the
complexity of DP is Oðmn3Þ: Obviously, the search
size n is an important factor in the overall
complexity and should be limited as much as
possible.
Two clues are used to limit the search size in our

work. First at the global level, a search stripe can
be created for each matched node pair. This is
illustrated in Fig. 4. For ease of discussion, the
temporal orbit of the matched node is projected
into one frame. On this frame, a search stripe is
defined. Note that the definition of a search stripe
is different based on different spatial location of
the matched node pairs. In Fig. 4, two basic type
of search stripe definitions are depicted. The

orientation of width and height are defined
differently as well based on the different orienta-
tions of the matched node pairs. In practice, both
the width and height of the global search stripe can
be determined by the user in an interactive way,
according to the motion of VO. That is, if the
motion is more like a pure translation, the height
of the stripe S

ðGÞ
height may be reduced, otherwise it is

increased. The bottom line is that the global search
region should be at least big enough to cover the
temporal orbit of the node’s motion. In addition,
in the case of large search stripes that exceed a
certain threshold, the global search stripe is further
re-sampled spatially to reduce the overall search
complexity. The two axes ‘‘x’’ and ‘‘y’’ used for
resampling are marked in Fig. 4. Note that the
parallelogram definition of search region is more
efficient than a rectangular one in the computa-
tional sense, while without much performance
degradation.
Once the global stripes are defined for node

pairs, the tracking of nodes is constrained within
their stripes on every frame. In addition, at the
local level, the local search region is further
determined frame by frame by the forward motion
vector at the current frame. In our work, the
determination of S

ðLÞ
height and S

ðLÞ
width is based on

S
ðGÞ
height and S

ðGÞ
width; and the local search is carried out

on top of the re-sampled grids created for the
global search stripe, i.e. the re-sampled grids along
the x- and y-axis.
In above two clues, the global stripe limits the

possible location of the local search region. Note
that in the pure interpolation case, both the width
and height of the global search stripe is zero.
Therefore, the global search stripe is actually a
generalization of interpolation.

Closed contour problem. Until now, the dis-
cussed contours Ci are all by default open. In
practice when contours are constrained to be
closed, the minimization search used for tracking
purpose can be approximated with two-pass open
contour searching. That is, for a closed contour
Ci; i ¼ 0; 1; 2;y; n; and C0 ¼ Cn; its minimization
status can be found as follows. First break the
closed contour at node C0; use previous algorithm
to process open contour Ci; i ¼ 0; 1; 2;y; n � 1;
which produces a temporary contour C0

i : Second,

1Note the temporal information is implicitly used in the

energy term fEðvi�1; vi ; viþ1Þ:

H. Luo, A. Eleftheriadis / Signal Processing: Image Communication 17 (2002) 559–572 565

close C0
i by setting C0

n ¼ C0
0 and then break it half

way at node C0
ðn=2Þ; this produces an open contour

C00
i : C00

i is further processed with the open contour
algorithm and the final result is obtained.

3.3. Merging of multiple results

Though the bi-directional tracking approach
reduces the search complexity, its limitation is that
it only makes use of user input in one frame (either
Cb or Ce) at a time. Due to the error accumulation,
the tracked contour Ck always degrades when k

approaches e; if tracked from Cb to Ce; and vice
versa. Actually we have observed that if the
object’s motion involves self-occlusion and/or
uncovering, sometimes it is very difficult for the
active contour model to track its contour in one
direction, but easy to do it in the other direction.
Fig. 5 shows such an example. In Fig. 5(a) and (b)
are the user defined VO on the 118th and the
132nd frame of the Carphone sequence. From
frame 118 to frame 132, the man’s left ear is
uncovered because of the rotation of his head. If
the object contour is tracked forward, i.e. from the
118th frame to the 132nd frame, the uncovered ear
was not included as part of the VO. This is

depicted in Fig. 5(c). On the other hand, if the
contour is tracked backward, i.e. from the 132nd
frame to the 118th frame, the motion is reversed

Temporal orbit

Search Height

Search width

Frame"e"Frame"b"

X axis

Y axis

Motion vector

Local search area

Global search stripe

Temporal orbit

Y axis

X axis

Frame "e"Frame "b"

Search height

Search width

(a) (b)

Fig. 4. Global and local search region limitation. The two grayed circles represent the matched node pair. The size of the global search

region is determined by ‘‘search height’’ and ‘‘search width’’, while the local search region is determined by motion estimation.

Fig. 5. Illustration of the necessity of bi-directional tracking

and result merging: (a) and (b) are the user defined VO on the

118th and the 132nd frame of the Carphone sequence; (c) is the

tracked object contour on the 125th frame by forward tracking;

(d) is the tracked object contour on the 125th frame by

backward tracking.

H. Luo, A. Eleftheriadis / Signal Processing: Image Communication 17 (2002) 559–572566

and the uncovering motion of left ear changes to
occlusion, which is easy for the active contour
algorithm to handle. The result of backward
tracking for frame 125 is shown in Fig. 5(d). Note
that the left ear is correctly included as part of the
video object.
Therefore, a good algorithm to merge the results

from the two tracking processes is important. In
this work, an efficient DP algorithm is designed for
the merging purpose. The problem can be defined
as follows. Given two set of contours fC

ð1Þ
k g; fC

ð2Þ
k g

ðk ¼ b; b þ 1;y; eÞ that are created by two con-
tour tracking processes (one from Cb to Ce and the
other from Ce to Cb), find a contour set Ck ðk ¼
b; b þ 1;y; e; Ck ¼ C

ð1Þ
k or Ck ¼ C

ð2Þ
k Þ that meets

certain merit criteria as the final output of contour
interpolation. In the terminology of DP, we can
say that the target is to find an optimal path from
Cb to Ce that maximize the merit criteria.
In this work, the merit criteria for each

candidate contour include two terms: a temporal
smoothness energy term ET; and a shape merit
energy term ES; i.e.,

EmergeðCkÞ ¼ ZTETðCkÞ þ ZSESðCkÞ: ð6Þ

The first term is defined in a localized form,

ETðCkÞ ¼
Xi¼Ns

i¼0

jjvi;k�1 þ vi;kþ1 � 2vi;kjj; ð7Þ

where Ns is the number of nodes in each contour.
Note that ETðCkÞ is different from previously
defined Etemporal in that ETðCkÞ is defined for each

contour while Etemporal is defined for each contour
node.
The second term of (6) is based on the shape

similarity comparison between two contour pairs:
ðCb;CkÞ and ðCk;CeÞ: If we denote the shape
similarity measure of two contours Ck and Cl as
shapeðCk;ClÞ; then the ES term can be written as

ESðCkÞ ¼ ½w1ðkÞ shapeðCb;CkÞ

þ w2ðkÞ shapeðCe;CkÞ	; ð8Þ

where w1ð
Þ and w2ð
Þ are two weighting functions.
They are designed as a linear function of frame
indices k; b and e: In addition, the shape similarity
measure used here can be defined based on two
interframe node energy terms Eshape and Emotion; as
discussed in Section 3.1. At the contour level, this
expression is defined as

shapeðCk;ClÞ ¼
Xi¼Ns

i¼0

Z1½ðvi;k� vi;lÞ � ðvi�1;k � vi�1;lÞ	

þ Z2½angleðvi�1;k; vi;k; viþ1;kÞ

� angleðvi�1;l ; vi;l ; viþ1;lÞ	:

In above (6)–(8), EmergeðCkÞ is actually defined in
relation to three contours: Ck�1; Ck and Ckþ1:
Therefore, it is easy to solve the minimization
problem with DP. Here Fig. 6 is used to illustrate
the DP based merging algorithm. In Fig. 6, each
circle represents a contour C

ðdÞ
k ; DP is used to find

an optimal path in the temporal direction that has
the best merit quality, i.e., in the sense of temporal
smoothness and shape similarity.

Contour created by tracking

User defined contour

Contour tracking path

DP merging path

Fig. 6. Illustration of DP approach for merging the bi-directional contour tracking. Each circle represents a contour C
ðdÞ
k ;DP is used to

find an optimal path in the temporal direction that has the best merit quality.

H. Luo, A. Eleftheriadis / Signal Processing: Image Communication 17 (2002) 559–572 567

4. User interaction model

In a typical semi-automatic system, the user’s
role includes two important functions. One is to
give the initial data for the computer to begin the
computation, the other is to correct the computer’s
errors. In our system, these two functions are
handled by Interactive Rubberband and Iterative

Interpolation, respectively.

4.1. Interactive Rubberband

In available image authoring systems, two types
of solutions are common for a user to specify an
object contour in an image (or a video frame). In
one of them (Type One), the user specifies every
point of the contour, while the computer does
nothing but record the positions of each mouse
click and links the positions with line segments.
Typical examples include the polyline drawing in
XFIG and free style drawing in PHOTOSHOP.
This type of solution gives the user full control of
the shape and position of the contour, but ignores
the computational power of the computer. Ob-
viously, it is tedious to input an accurate contour
point by point. On the other hand, in the other
type of solutions (Type Two), the image is
modeled as grids and the contour as paths linking
the grids. The user has only to select a starting
point and an ending point of a contour segment,
the computer finds the whole segment by searching
the minimal cost path that links the two points.
This can be done with either dynamic program-
ming or graph search algorithms such as Dijkstra’s
algorithm [5]. Publications belonging to this type
include [13–15], etc. Compared with Type One
solutions, Type Two approach relieves the user’s
labor by introducing computer searching during
the interaction. However, its problem is that the
user has less control on the contour. Sometime
when the gradient information within the image is
complex, an intended contour segment may be
attracted to an erroneous strong neighboring edge,
which is totally undesirable. In addition, the
‘‘Active-Scissors’’ approach defined in [15] re-
quires the computer to calculate the optimal path
to every pixel within the image every time a new
contour point position is chosen by the user. This

is not efficient if the size of image is big and real
time performance is hard to achieve.
To overcome the problems while retaining the

benefits of above two groups of solutions, we
design an Interactive Rubberband tool, which is a
hybrid of the two of them.
An Interactive Rubberband is in principle a

graph search based edge detection algorithm that
is similar to the aforementioned Type Two
solution. The difference is that it comes with an
adjustable containing rectangle that limits the
range of graph search. This is illustrated in
Fig. 7. The user moves the current moving point,
which, together with the fixed point, determines a
containing rectangle. Graph search is then carried
out within the rectangle and a contour segment is
grown to link these two points. Compared with the
Active-Scissors approach in [15], Interactive Rub-
berband is more efficient because it limits the
graph search range to the neighborhood of the
desirable contour segment. Moreover, the user can
control the result of graph search by adjusting the
width of the rectangle, e.g. if there is strong noisy
edges in the neighborhood, the user may get rid of
them by narrowing the containing rectangle. In the
extreme case, the width can be set to one, then the
Interactive Rubberband reduces to above type one
solution. In this sense, the Interactive Rubberband
is a generalization of the previous Types One and
Two solutions.

contour segment

Temporarily grown

Rubber width

Moving point

Fixed point

Fig. 7. Illustration of active rubberband. The containing

rectangle is determined by two points: a fixed point and a

moving point, and the rubberband width. The width of the

rubberband is adjustable by the user.

H. Luo, A. Eleftheriadis / Signal Processing: Image Communication 17 (2002) 559–572568

4.2. Iterative Interpolation

Though in experiments the discussed interpola-
tion algorithm showed good performance, error is
inevitable in practice, especially when the two
anchor frames on which the user specifies object
contours Cb and Ce are far away in the temporal
direction. Iterative interpolation is found to be a
good solution to this problem.
In general, the reasons for errors in interpola-

tion are complex. However, in the interpolation
algorithm based on bi-directional tracking, a video
object contour can always be reliably tracked from
Cb to a certain Cðbþt1Þ; and from Ce to a Ce�t2 ;
where t1 > 0 and t2 > 0: If b þ t1 turns out equal to
e � t2; the problem is solved. Otherwise, we can
move the Cb to Cðbþt1Þ; and Ce to Ce�t2 ; and begin
the interpolation again. In this way, the interpola-
tion is done iteratively until the two contours Cb

and Ce converge. This process can be better
illustrated in Fig. 8. In Fig. 8, points Pð1Þ and
Pð2Þ are a matched node pair on contours Cb and
Ce: After the first round of interpolation, point
Pð1Þ is correctly tracked to Pð3Þ and Pð2Þ to Pð4Þ:
At this stage, the user changes the Cb to the
temporal position at Pð3Þ and Ce to the position at
Pð4Þ; sets the global search parameters accord-
ingly, and begins the interpolation again. As
depicted in the figure, the global search area in

the second round for point pair Pð3Þ–Pð4Þ is much
smaller than that of Pð1Þ–Pð2Þ: This is an
important factor that helps the iterative interpola-
tion process converge.
In Fig. 9, a practical example is given on the

Foreman sequence to show how the iterative

Search Area 1

Search Area 2 P(2)

P(4)

P(3)

P(1)

Fig. 8. Illustration of iterative interpolation. Point Pð1Þ and

Pð2Þ are a matched node pair on initial contours Cb and Ce:
After the first round of interpolation, point Pð1Þ is correctly

tracked to Pð3Þ and Pð2Þ to Pð4Þ: Their corresponding contours
are used as new Cb and Ce and the interpolation is done

iteratively until converges.

Fig. 9. An example of iterative interpolation on the Foreman

sequence. In the first round, the user specifies Cb at frame 50

and Ce at frame 100, the global search parameters are

height ¼ 15(pixels), width ¼ 4(pixels). (a)–(e) are results on

frames 80, 84, 87, 90, 94 at this round. In the second round,

previous contour result on frame 80 is used as Cb and contour

result on frame 94 is used as Ce; the global search parameters

are reduced to be height ¼ 4; width ¼ 4: The new interpolation

results on frame 84, 87, 90 are showed in (f)–(h), respectively.

H. Luo, A. Eleftheriadis / Signal Processing: Image Communication 17 (2002) 559–572 569

interpolation works. In the first interpolation
round, the user specifies Cb on frame 50 and Ce

on frame 100, the global searching parameters are

height¼15(pixels), width¼4(pixels). Figs. 9(a)–(e)
are results on frames 80, 84, 87, 90, 94 in this
round. Obviously, the tracking result is poor from
frame 80–94, mainly because a strong neighboring
edge has attracted the snake erroneously (due to
space limits, other frames are not included in the
figure). To overcome the error, the user moves Cb

to frame 80 and Ce to frame 94, and change the
global searching parameters to height ¼ 4;
width ¼ 4: Based on the contours on frame 80
and 94, the results after the new interpolation
round on frames 84, 87, 90 are shown in Figs.
9(f)–(h), respectively. Obviously, the second inter-
polation round improves the accuracy of
tracked contours if we compare the contours in
Figs. 9(b)–(d) with those in Figs. 9(f)–(h). It is
worth noticing that in the second round of
interpolation, the user does not have to tell the
computer laboriously what exactly a correct
contour is. Instead, the user just chooses new
anchor frames on which the tracked contours are
correct, and changes the global searching para-
meters accordingly (limits the global searching
area as much as possible). It is the computer’s
work to do the interpolation again based on new
user input information.

5. Experiments

The discussed VO annotation system is imple-
mented on PCs running Windows 95. Experiments

Fig. 10. Comparison of the effect of parametric template on

active contour tracking. The left column is the tracking result

without and the right column is the result with parametric

template. The first row is the beginning user input contour in

frame 0, the following two rows are the tracked results for the

43rd and 47th frames.

Fig. 11. Ilustration of tracking results merging. The user defined VO contours on frame 75 and 180. The first row is the result of

backward tracking from frame 180 to frame 75, and the second row is the interpolation results that merged bi-directional trackings.

The frame numbers, from left to right, are 170, 160, 150, 130 and 90.

H. Luo, A. Eleftheriadis / Signal Processing: Image Communication 17 (2002) 559–572570

are carried out over MPEG-4 testing video
sequences as well as sequences from a library used
by Columbia’s VideoQ2 system.
First, we compare the effect of parametric

template for active contour tracking on Carphone
sequence. In the experiment, single-direction for-
ward tracking is used. In Fig. 10, the left column is
the tracking result without and the right column is
the result with the parametric template. The first
row is the beginning user input contour in frame 0,
the following two rows are the tracked results for
the 43rd and 47th frames. Obviously, the para-
metric template improves the tracking robustness
in complex boundary conditions.
Fig. 11 shows the results of tracking result

merging on the Mother–Daughter sequence. The
user defines VO contours on frame 75 and 180.
The first row is the result of backward tracking
from frame 180 to frame 75, and the second row is
the interpolation results that merge bi-directional
trackings. The frame numbers, from left to right,
are 170, 160, 150, 130 and 90. We can see that
from frame 180 to 160, the merged results are
taken from backward tracking, while from 160 to
75, the merged results are taken from forward
tracking (which is not shown here due to the space
limit). That is, the merged interpolation results are
better than tracking results on either direction. To
achieve (approximately) the same segmentation
quality, traditional single-directional tracking
needs one or two additional user specified initi-
alization of object segmentation on the same
testing video.
Fig. 12 is a fully finished segmentation result on

the first 100 frames of the Foreman sequence.
Figs. 12(a)–(h) are the produced contours on
frame 10, 20, 30, 40, 60, 70, 80, 90. To finish the
segmentation, the user specified three initial
contours on frame 0, 50 and 100. An additional
iteration is involved in the interpolation between
frame 0 and frame 50, and frame 50 and frame
100, respectively.
In practice, the computational complexity of the

algorithm depends on the size of the searching area
and the complexity of the contours. In our
experiment, a 200-MHz Pentium is used, the

average speed of the interpolation algorithm is
about 0:01 s=node and/or 0:6 s=frame (tested on
several MPEG-4 sequences in QCIF size).

6. Concluding remarks

In this paper, an interactive authoring system is
designed for VO segmentation and annotation.

Fig. 12. Illustration of a full segmentation result on the

Foreman sequence. The frame numbers are 10, 20, 30, 40, 60,

70, 80, 90 for (a)–(h).

2http://www.ctr.columbia.edu/VideoQ.

H. Luo, A. Eleftheriadis / Signal Processing: Image Communication 17 (2002) 559–572 571

http://www.ctr.columbia.edu/VideoQ.

This system features a new contour interpolation
algorithm, which makes better use of user inputs
and has more stable performance than traditional
single-directional tracking algorithms. In addition,
efficient user interaction models are built for both
initial data input and machine error feedback. Our
experiments show that this prototype system
works efficiently both from the machine’s and
the user’s point of view, in that it balances the
user’s decision-making capability with the compu-
ter’s processing and searching power. For the
future work, we are looking to explore better ways
to model the object motion based on user
specification on multiple frames and improve the
segmentation performance.

References

[1] A.A. Amini, T.E. Weymouth, R.C. Jain, Using dynamic

programming for solving variational problems in vision,

IEEE Trans. Pattern Anal. Machine Intell. 12 (9) (1990)

867–885.

[2] V.M. Bove Jr., J. Dakss, E. Chalom, S. Agamanolis,

Hyperlinked television research at MIT media laboratory,

IBM System J. 39 (3–4) (2000) 470–478.

[3] E. Chalom, V.M. Bove Jr., Segmentation of an image

sequence using multi-dimensional image attributes, in:

Proceedings of the IEEE International Conference on

Image Processing, Lausanne, September 1996.

[4] T.C. Chiueh, T. Mitra, C.K. Yang, Zodiac: a history-based

interactive video authoring system, in: ACM International

Multimedia Conference, Bristol, England, September 1998.

[5] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to

Algorithms, MIT Press, Cambridge, MA, 1990, Chapter

25.2.

[6] P. Correia, F. Pereira, The role of analysis in content-

based video coding and indexing, Signal Processing 66

(1998) 125–142.

[7] Y. Fu, A.T. Erdem, A.M. Tekalp, Occlusion adaptive

motion snake, IEEE Trans. Image Process. 9 (12)

(December 2000) 2051–2060.

[8] D. Geiger, A. Gupta, L.A. Costa, J. Vlontzos, Dynamic

programming for detecting, tracking and matching de-

formable contours, IEEE Trans. Pattern Anal. Machine

Intell. 17 (3) (1995) 294–302.

[9] C. Gu, M.C. Lee, Semantic video object tracking using

region-based classification, in: Proceedings of the IEEE

International Conference Image Processing, Chicago,

October 1998.

[10] IBM HotVideo website, http://www.software.ibm.com/

net.media/hotvideo/index.html.

[11] M. Kass, A. Witkin, D. Terzopoulos, Snakes: Active

contour models, Int. J. Comput. Vision 1 (4) (1988)

321–331.

[12] Y.T. Lin, Y.L. Chang, Tracking deformable objects with

the active contour model, in: IEEE International Con-

ference On Multimedia Computing and Systems, Ottawa,

Canada, June 1997.

[13] A. Martelli, A heuristic search methods to edge and

contour detection, Commun. ACM 19 (2) (1976) 73–83.

[14] E. Mortensen, W. Barrett, Intelligent scissors for image

composition, in: Proceedings of ACM SIGGRAPH 95,

Los Angeles, CA, 1995, pp. 191–198.

[15] E.N. Mortensen, W.A. Barrett, Interactive segmentation

with intelligent scissors, Graphical Models Image Process.

60 (1998) 349–384.

[16] K. Sobottka, I. Pitas, Segmentation and tracking of faces

in color images, in: Proceedings of Second International

Conference on Automatic Face and Gesture Recognition,

Killington, Vermont, 1996, pp. 236–241.

[17] Veon website, http://www.veon.com/.

[18] D. Zhong, S.F. Chang, AMOS: an active system for

MPEG-4 video object segmentation, in: Proceedings of the

IEEE International Conference on Image Processing,

Chicago, October 1998.

H. Luo, A. Eleftheriadis / Signal Processing: Image Communication 17 (2002) 559–572572

http://www.software.ibm.com/net.media/hotvideo/index.html
http://www.software.ibm.com/net.media/hotvideo/index.html
http://www.veon.com/

	An interactive authoring system for video object segmentation and annotation
	Introduction
	Contour representation and matching
	Contour representation
	Contour matching

	Contour interpolation algorithm
	Localized energy minimization model
	Bi-directional tracking
	Merging of multiple results

	User interaction model
	Interactive Rubberband
	Iterative Interpolation

	Experiments
	Concluding remarks
	References

