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Abstract

The new MPEG-4 standard provides a suite of functionalities under one standard: streaming multimedia content,
good compression, and user interactivity. This paper provides an introduction to the use and internal mechanisms of
these functions. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

MPEG-4 is a digital bit stream format and asso-
ciated protocols for representing multimedia con-
tent consisting of natural and synthetic audio,
visual, and object data. It is the third (and not
fourth) in a series of MPEG speci"cations that have
a history of wide acceptance and use in the market-
place. Like its predecessors, it is ambitious in its
scope. It provides coding/compression capability
for a rich set of functionalities, including the manip-
ulation of audio and video data, as well as the
synthesis of audio, two- and three-dimensional
graphics, sophisticated scripting, interactivity, face
and body animation, and texture and geometric
coding. It allows data to be streamed and provides

for interaction between the content server and the
browser. It can be used in a broadcast scenario, or
in one-on-one interaction both in `pusha and
`pulla modes. In short, it is extremely #exible and
attempts to provide a basis for a wide variety of
uses.

All this functionality does not come cheap. The
resulting speci"cation is voluminous, to put it
kindly. This paper consists of a tutorial of one
portion of the MPEG-4 tool set } the Binary
Format for Scenes, BIFS. BIFS is the compressed
format in which scenes are de"ned and modi"ed. It
is encapsulated on a streaming mechanism that we
will not discuss in detail, and it is transported using
a protocol that we will almost completely ignore.
Even with these omissions, this paper can serve as
only a brief introduction to the capabilities and
intricacies of BIFS.

While an MPEG-4 BIFS scene has, for the most
part, a structure inherited from the Virtual Reality
Modeling Language (VRML 2.0 [4]), its explicit
bit stream representation is completely di!erent.
Moreover, MPEG-4 adds several distinguishing
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mechanisms to VRML: data streaming, scene up-
dates and compression.

MPEG-4 uses a client}server model. An
MPEG-4 client (or player, or browser) contacts
an MPEG-4 server, asks for content, receives
the content, and renders the content. This `con-
tenta can consist of video data, audio data,
still images, synthetic 2D or 3D data, or all of
the above. The way all these di!erent data is to
be combined at the receiver for display on the
user's screen or playback in the user's speakers
is determined by the scene description. The con-
tent, as well as the scene description, is typically
streamed, which means that the client gets little
bits of data and renders them as needed. For
example, a video can be played as it arrives
from the server. This is a notable contrast with
VRML where a scene is "rst completely transferred
from the server to the client and only then
rendered, leading to long latency. MPEG-4's
streaming capability, thus, allows faster rendering
of content.

Once a scene is in place, the server can further
modify it by using MPEG-4's scene update
mechanism, called BIFS-Command. This powerful
mechanism can be used to do many things: for
example, an avatar can be manipulated by the
server within a 3D scene, a video channel can be
switched from the server side, news headlines can
be updated on a virtual reality marquis, etc.
This mechanism can also be used to progressively
transmit large scenes, thus reducing bandwidth
requirements.

Finally, by combining the updating and stream-
ing mechanisms, BIFS allows scene components to
be animated. BIFS animation (or BIFS-Anim) con-
sists of an arithmetic coder that sends a stream of
di!erential steps to almost any scene component.
This functionality is not di!erent from what can be
achieved with scene updates, but it has a better
coding e$ciency when the equivalent BIFS com-
mands would be numerous.

The next section contains background informa-
tion on how BIFS "ts into the rest of the MPEG-4
universe as well as on BIFS's ancestor, VRML. The
sections that follow describe how BIFS encodes
various scene components and how BIFS can be
used e!ectively.

2. How BIFS 5ts into MPEG-4

An MPEG-4 system can be conceptually decom-
posed into several components, as shown in Fig. 1.
Starting at the bottom of the "gure, we can identify
the following layers:

f Deliver (or transport) layer: The delivery layer is
media unaware and delivery aware. MPEG-4
does not de"ne any speci"c deliver layer. Rather,
MPEG-4 media can be transported on existing
transport layers such as RTP, TCP, MPEG-2
Transport Streams, H-323 or ATM.

f Sync or elementary stream layer: This component
of the system is in charge of the synchronization
and bu!ering of compressed media. The sync
layer deals with elementary streams. Elementary
streams are a key notion in MPEG-4. A complete
MPEG-4 presentation transports each me-
dium/object in a di!erent elementary stream.
Elementary streams are composed of access units
(e.g., a video object frame), packetized into Sync
Layer (SL) packets. Some media may be trans-
ported in several elementary streams, for instance
if scalability is involved. This layer is media-
unaware and delivery-unaware, and talks to the
Deliver layer through something called the
DMIF application interface (DAI) [7]. The DAI
is only a non-normative conceptual abstraction
of the deliver layer and, in addition to the usual
session set up and stream control functions, also
enables setting the quality of service require-
ments for each stream. The DAI is network inde-
pendent.

f Media or Compression layer: This is the compon-
ent of the system performing the decoding of the
media: audio, video, etc. Media are extracted
from the Sync Layer through the elementary
stream interface. Note that BIFS itself also has to
go through the compression layer and then be
decoded. Another special MPEG-4 medium type
is the Object Descriptor (OD). An OD is a struc-
ture similar to a URL, containing pointers to
elementary streams. Typically, however, these
pointers are not to remote hosts, but to elemen-
tary streams that have already been received by
the client. ODs also contain additional informa-
tion such as Quality of Service parameters. This
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Fig. 1. The architecture of a typical MPEG-4 terminal. BIFS is the scene description information.

layer is media aware, but delivery unaware. The
BIFS content is delivered in an elementary
stream and is shown in the "gure as the `scene
description information.a

MPEG-4 is a large and complex standard
because it addresses a huge problem space: the

creation and e$cient delivery of compelling inter-
active audiovisual content across a variety of net-
works. MPEG-4, however, de"nes pro"les in order
to best match speci"c application areas with sub-
sets of its speci"cations. The same approach has
been used very e!ectively with MPEG-2. Not all
applications need the entire set of MPEG-4 tools,

J. Signe% s et al. / Signal Processing: Image Communication 15 (2000) 321}345 323



and it would be a burden to force terminals to fully
implement features that they do not require.
MPEG-4 thus de"nes a limited number of subsets
of Visual, Audio and Systems tools, to which speci-
"c applications can conform. Within each pro"le,
levels may be de"ned to match the varying com-
plexity of di!erent terminals.

Within the context of this toolkit approach,
BIFS can also be seen as a separate tool. While full
MPEG-4 implementations would get the max-
imum bene"t from the standard in terms of features
and capabilities, it is certainly possible for a given
application to comply with certain Scene Graph
pro"les and levels without using other parts of
the MPEG-4 speci"cation. The details of the Scene
Graph pro"les are beyond the scope of this article,
but in broad terms they consist of an audio pro-
"le, a simple 2D pro"le, a complete 2D pro"le, and
a complete pro"le.

3. BIFS scene description features

The BIFS scene model is very similar to VRML.
(In fact, BIFS version 2 will be a super set of VRML
and can be used as an e!ective tool for compressing
VRML scenes.) Where VRML is a bit short on
functionality, for example, two-dimensional con-
tent, MPEG-4 extends it in a VRML-esque way.
But whereas VRML is concerned only with scene
description, MPEG-4 is concerned also with com-
pact representation and optimized delivery of
multimedia content. This section contains a terse
introduction to VRML concepts and their exten-
sion in BIFS. The reader who wishes to understand
the intricacies of MPEG-4 and BIFS is urged to
review VRML concepts (see, for example, [4]).

3.1. Scene structure

An MPEG-4 scene is constructed as a direct
acyclic graph of nodes. The following types of nodes
exist:

f Grouping nodes construct the scene structure;
f Children nodes are the children of grouping nodes

that represent the multimedia objects in the
scene.

f Bindable children nodes are a speci"c type of
children nodes that represent the node types for
which only one instance of the node type can be
active at a time in the scene (a typical example of
that is the Viewpoint for a 3D scene. A 3D scene
may contain multiple viewpoints or `camerasa,
but only one can be active at a time).

f Interpolator nodes are another subtype of chil-
dren nodes that represent interpolation data to
perform key frame animation. These nodes gen-
erate a sequence of values as a function of time or
other input parameters.

f Sensor nodes sense the user and environment
changes for authoring interactive scenes.

These nodes are summarized in Section 3.9.

3.2. Nodes and xelds

BIFS and VRML scenes are both composed of
a collection of nodes arranged in a hierarchical tree.
Each node represents, groups or transforms an
object in the scene and consists of a list of "elds
that de"ne the particular behavior of the node. For
example, a Sphere node has a radius "eld that
speci"es the size of the sphere. MPEG-4 has rough-
ly 100 nodes with 20 basic "eld types for represent-
ing the basic "eld data types: boolean, integer,
#oating point, two- and three-dimensional vectors,
time, normal vectors, rotations, colors, URLs,
strings, images, and other more arcane data types
such as scripts. Table 1 shows the list of the more
common MPEG-4 types.

The node "elds are labeled as being of type xeld,
eventIn, eventOut or exposedField. The xeld label is
used for values that are set only when instantiating
the node. Fields that can receive incoming events
have the eventIn label, whereas "elds that emit
events are labeled as eventOut. Finally, some "elds
may set values but also receive or emit events, in
which case they are labeled as exposedField. An
additional important feature of the node and "eld
structure is that node "elds receive default values.
When instantiated, the default values are assumed
if not speci"ed explicitly in the bit stream.

Node "elds sometimes represent one value, as in
the radius of the Sphere node, or many values, as
in a list of vertices that de"ne a polygon. Thus, each
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Table 1
Common MPEG-4 "eld types

Basic data type Example Single-"eld type Multiple-"eld type

Floating point value 1.0 SFFloat MFFloat
Integer value 1 SFInt32 MFInt32
Time value (64-bit #oat) 0.1 SFTime MFTime
Boolean value TRUE SFBool None
Color (rgb triplet) 1 0 0 (represents red) SFColor MFColor
3-Vector 0.5 1 0 SFVec3f MFVec3f
2-Vector 0.25 SFVec2f MFVec2f
Rotation (direction#angle) 0 0 1 3.1415 SFRotation MFRotation
Image See VRML spec SFImage None
String values `Hello Worlda SFString MFString
Nodes Sphere M2N SFNode MFNode

Fig. 2. A Shape node with two "elds, appearance and geometry,
containing other nodes.

basic data type can be represented as a single-value
type, denoted by type names that begin with an `Sa,
or as a multiple-value type, denoted by type names
that begin with an `Ma. For example, the #oating
point radius of the Sphere node has type SFFloat,
whereas the collection of points with three-dimen-
sions in a Coordinate node that can be used to
de"ne a polygon has the type MFVec3f. Nodes are
de"ned using a semantic declaration that contains
the node name, followed by a list of the node's
"elds. The list speci"es each "eld's label, type, name
and default value. For example, the Viewpoint
node has the following semantic declaration.

Viewpoint M
EventIn SFBool setdbind
ExposedField SFFloat FieldOfView 0.785398
ExposedField SFBool Jump TRUE
ExposedField SFRotation Orientation 0, 0, 1, 0
ExposedField SFVec3f Position 0, 0, 10
Field SFString Description @@@@
EventOut SFTime BindTime
EventOut SFBool IsBound

N

Many nodes have "elds that hold other nodes } this
is what gives the scene its tree structure. Whereas
VRML has only two node types, SFNode and
MFNode, MPEG-4 has a rigidly typed collection
of nodes that speci"es exactly which nodes can be
contained within which other nodes. A node may
have more than one type, however, when it can be
contained as a child node in di!erent contexts.

For example, the Shape node is used to include
a geometric shape in the scene. It has a geometry
"eld that holds any node with type SFGeomet-
ryNode, of which there are 18, and an appearance
"eld that holds nodes of type SFAppearanceNode,
of which there is only one. An example is shown
in Fig. 2. In this example, the geometry "eld holds
a Cube node which is of size 1 in each direction; the
appearance "eld of Shape node holds an Appear-
ance node, which in turn holds a Material node
that de"nes the color associated with the Cube (in
this case red).

The example in Fig. 2 gives a textual description
of a portion of a scene that is based on VRML.
MPEG-4, however, only speci"es a binary descrip-
tion of a scene. The translation from a textual
to a binary description is almost direct. As an
example, consider the simple scene portion in
Fig. 3, and the following explanation of its BIFS
representation.

J. Signe% s et al. / Signal Processing: Image Communication 15 (2000) 321}345 325



Fig. 3. A simple VRML scene consisting of a red cube centered
at (1, 0, 0).

The BIFS representation of the scene in Fig. 3
would consist of the following:

1. a header that contains some global information
about the encoding;

2. a binary value representing the Transform node;
3. a bit specifying that the "elds of the Transform

node will be speci"ed by their index, rather than
in an exhaustive list;

4. the index for the `translationa "eld;
5. a binary encoding of the SFVec3f value 1 0 0

(since there is no quantization de"ned here, this
encoding consists of three 32-bit values; during
decoding, the decoder knows the type of the "eld
it is reading and thus knows how many bits to
read and how to interpret them);

6. the index of the children "eld of the Transform
node;

7. the binary representation of the Shape node,
which is:
7.1. a binary value for the Shape node;
7.2. a bit specifying that all of the "elds of the

Shape node and their values will be listed
sequentially rather than by index/value
pairs;

7.3. a binary representation for the Cube node
which is:
7.3.1. a binary value for the Cube node;
7.3.2. a bit specifying that the "elds of the

Cube will be speci"ed by index;
7.3.3. the index of the `sizea "eld;
7.3.4. a binary encoding of the SFVec3f

value 1 1 1;

7.3.5. a bit specifying that no more "elds for
the Cube node will be sent;

7.4. a binary value for the Appearance node,
followed by its encoding, omitted here;

8. a bit terminating the list of "elds for the Trans-
form node.

VRML and BIFS both have a mechanism for
reusing nodes. For example, once a wheel is de"ned
as a collection of geometric nodes collected inside
a Group node, it is possible to reuse the wheel
elsewhere in the scene, rather than copying it ex-
plicitly wherever it is to appear. In VRML, this is
done using the DEF and USE keywords. A node is
given a DEF name, and it is inserted into the scene
graph wherever the same name appears after a USE
statement. In BIFS, a bit is used to determine if the
node has an ID, and when this bit is set, it is
followed by a certain number of bits that hold an
integer ID value. The number of bits used in the
scene to specify IDs is given in a header that is sent
at the beginning of the scene (in fact, contained in
the decoder con"guration information within the
Object Descriptor through which the BIFS stream
was accessed).

3.3. ROUTEs and dynamical behavior

The event model of BIFS uses the VRML con-
cept of ROUTEs to propagate events between
scene elements. ROUTEs are connections that as-
sign the value of one "eld to another "eld. As is
the case with nodes, ROUTEs can be assigned
a `namea in order to be able to identify speci"c
ROUTEs for modi"cation or deletion.

ROUTEs combined with interpolators can cause
animation in a scene. For example, the value of an
interpolator is ROUTEd to the rotation "eld in
a Transform node, causing the nodes in the Trans-
form node's children "eld to be rotated as the
values in the corresponding "eld in the interpolator
node change with time.

Recall that the labels Field, ExposedField,
EventIn, EventOut correspond, respectively, to pri-
vate "elds that cannot be ROUTEd at all, "elds
that can be both input and output in a ROUTE,
"elds that can only accept input from a ROUTE,
and "elds that can only serve as output for
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Fig. 5. A textual representation of a BIFS update that replaces the node with ID `MyHeadlinea by a new node with the same ID by with
di!erent text content.

Fig. 4. A VRML scene portion in which a Text node is moved
across the screen using a ROUTE. A TimeSensor node generates
successive values that are ROUTEd to the key "eld of a Posi-
tionInterpolator, which converts these input values to interpo-
lated SFVec3f values in the keyValue "eld. This "eld is then
ROUTEd to the translation "eld of Transform node, causing the
children in the Transform node to be repositioned.

a ROUTE. The VRML ROUTE syntax has the
form

ROUTESOutNodeIDT.outFieldName TO

SInNodeIDT.inFieldName

This syntax means that values from the "eld with
name `outFieldNamea in the node with DEF ID
SOutNodeIDT will be mapped to the "eld with
name `inFieldNamea in the node with DEF ID

SInNodeIDT. In MPEG-4, the same data is sent to
specify a ROUTE, except that the IDs are integer
values and the "elds are indexed numerically also,
rather than referenced by name.

Fig. 4 shows a VRML scene in which a Text node
is moved across the screen repeatedly. This might
be part of a scene in which news headlines are
scrolled across the bottom of a larger scene. While
the ROUTE mechanism has no problem in causing
the text to scroll nicely across the screen, the scene
is otherwise static. If the news needs to be updated,
it is not possible to change it from the server side.
However, the BIFS update mechanism allows pre-
cisely this. With BIFS update, it is possible to send
commands to insert, delete or replace nodes or "eld
values in the scene. The speci"c syntax of BIFS
update is discussed below, but we can think of it
textually, as shown in Fig. 5. After this command
is sent to the MPEG-4 client, the scene would look
almost identical, except with the recent news head-
line replacing the previous "eld in the Text node.
(In fact, it is not necessary to send a whole new text
node. The same e!ect can be achieved by replacing
only the string "eld of the text node.)

3.4. Streaming scene description updates:
BIFS-Command

MPEG-4 is designed to be used in broadcast
applications and in interactive and one-on-one
communication applications. To "t this require-
ment, an important concept developed within
MPEG-4 BIFS is that the application itself can be
seen as a temporal stream. This means that the
presentation, or the scene itself, has a temporal
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dimension. On the web, the model used for multi-
media presentations is that a scene description
(for instance an HTML page or a VRML scene) is
downloaded once, and then played locally. In the
MPEG-4 model, a BIFS presentation, which de-
scribes the scene itself, is delivered over time. The
basic model is that an initial scene is loaded and
can then receive further updates. In fact, the initial
scene loading itself is considered an update. The
concept of a scene in MPEG-4, therefore, encapsu-
lates the elementary stream(s) that convey it over
time.

The mechanism with which BIFS information
is provided to the receiver over time comprises the
BIFS-Command protocol (also known as BIFS-Up-
date), and the elementary stream that carries it is
thus called BIFS-Command stream. BIFS-Com-
mand conveys commands for the replacement of
a scene, addition or deletion of nodes, modi"cation
of "elds, etc. For example, a `ReplaceScenea com-
mand becomes the entry (or random access)
point for a BIFS stream, exactly in the same way
as an Intra frame serves as a random access point
for video. A BIFS-Command stream can be read
from the Web as any other scene, potentially con-
taining only one `ReplaceScenea command, but it
can also be broadcast as a `pusha stream, or even
exchanged in a communications or collaborative
application.

BIFS commands come in four main functional-
ities: scene replacement, node/"eld/route insertion,
node/value/route deletion, and node/"eld/value/
route replacement. The commands enable the fol-
lowing operations:

f Replacing the entire current scene with a new one.
When a BIFS Replace Scene command is re-
ceived, the whole context is reset, and a new scene
graph corresponding to the new BIFS scene is
constructed.

f Insertion command: This command comes in
three subtypes:

fC Node insertion: Nodes can be inserted into the
children "eld of grouping nodes. This com-
mand allows the insertion of a node at the
beginning, end, or indexed position in the
list of children nodes of an already existing
node.

fC Indexed xeld insertion: With this update com-
mand, a generic "eld is inserted into a speci"ed
position in a multiple value "eld.

fC ROUTE insertion: This can be used to enable
user interaction or other dynamic functionality
in the scene by linking event source and sink
"elds in the scene.

f Deletion command: This command also comes in
three subtypes, analogous to the insertion com-
mand:

fC Node deletion: Simply deletes the identi"ed
node. Note that it is possible to delete a node
that does not have an ID (i.e., it has not been
DEF-ed) by using the IndexedValue deletion
command (see below).

fC IndexedValue deletion: This command allows
the deletion of a speci"ed entry in a multiple
value "eld.

fC ROUTE deletion: Simply deletes a ROUTE.
f Replacement command: This command also

comes in the standard three #avors, plus one
more for replacing single value "eld values:

fC Node replacement: Replaces an existing node
in the scene with a new one.

fC Field replacement: Changes the value of a "eld
within a node. This command can be used, for
example, to change a color, a position, the
vertices of a mesh, or to switch an object on
and o!.

fC IndexedValue replacement: This command is
very similar to the "eld replacement com-
mand, except that the "eld referred to is a mul-
tiple valued one, and hence the command also
includes indexing information in order to
identify the particular value that should be
replaced.

fC ROUTE replacement: Replaces an existing
ROUTE with a new one.

3.5. Animation using interpolators

VRML scenes can display a wide range of
complicated dynamical behavior. One way this is
achieved is by the use of interpolator nodes that
convert an increasing sequence of time events into
a sequence of interpolated positions. Fig. 6 shows
a scene in which a ball bounces along the steps
repeatedly. The ball position is encoded by using
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Fig. 6. An animated scene in which a ball bounces on the steps.
The animation is generated using interpolators that modify the
position of the ball in time. (Scene composed by Diganta Saha.)

Fig. 7. A portion of the scene (writen in VRML) shown in Fig. 6 containing the PositionInterpolator node that causes the ball to move
around the stairs. By ROUTing the Ball-Mover output values to the translation of the Ball-Tform-Move node, the ball is animated in
the scene.

the position interpolator shown in Fig. 7. The posi-
tion interpolator interpolates each ROUTEd time
value into a position using the values in its key and
keyValue "elds. When the motion is complicated,
these "elds must contain many #oating point num-
bers and thus require a lot of memory.

While this is one way of introducing animation
into the scene, it su!ers from several drawbacks.
First, the animation is "xed } it is part of the scene
and cannot be modi"ed. Second, the whole scene
has to be downloaded, including the lengthy inter-
polator "elds, before it can be rendered. MPEG-4
combines streaming and updates to create an
animation functionality that overcomes these
drawbacks.

3.6. Streaming animations: BIFS-Anim

In the previous section, we described how it is
possible to trigger a key frame animation by
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Fig. 8. A sample Script node that can access the "elds of
a Transform node with DEF SomeNode (because a reference to
it is included in the Script node). The Script node also has
a de"ned "eld called pos whose value is copied into the Trans-
form node's translation "eld.

downloading interpolator data in the scene along
with an appropriate TimeSensor. This can be used,
for example, to modify the "elds of a Transform
node in order to move its children around. An
alternative method is to use BIFS-Command to
update the "elds of a Transform node. These
methods are well suited for small animations. How-
ever, when the source of animation is a live one, or
when better compression is sought, MPEG-4 pro-
vides an alternative way to stream animation to the
scene with the BIFS-Anim tool. BIFS-Anim enables
optimal compression of the animation of all para-
meters of a scene: 2D and 3D positions, rotations,
normals, colors, scalar values, etc.

The BIFS-Anim framework works as follows:

f The BIFS scene is loaded with objects that have
been DEF'ed, i.e., assigned a unique node ID.

f An Animation mask is loaded, containing the list
of nodes and "elds to be animated. When mul-
tiple "elds are animated, it is possible to select the
"eld to be animated.

f The animation stream itself is streamed, contain-
ing animation frames in time-stamped access
units.

The "eld values in the stream can consist of
initial values (Intra-frames), used to set or reset the
"eld values, and di!erence values (Predictive-
frames), used to successively modify the previous
"eld value. The Intra- and Predictive-frames are
further arithmetically coded to give a highly com-
pressed representation of the animation values.

3.7. Programmability

MPEG-4 Systems supports scripting in the same
way that VRML does. However, whereas VRML
allows both inlined JavaScript (recently standard-
ized as ECMAScript) as well as URLs pointing to
externally available Java class "les, MPEG-4 cur-
rently only allows JavaScript to be used. Scripts in
MPEG-4 have three primary uses:

f Scripts can manipulate the scene directly, for
example by routing output values of the script to
other parts of the scene.

f Scripts can store state information in local vari-
ables. For example, if the last mouse click posi-

tion is needed, it can be routed to a script that
will hold the value until it is required (perhaps by
another script).

f Scripts can do type conversion. For example, if
only the red component of a color is needed for
some operation, a script can extract this value
and convert it from a component of an SFColor
to an SFFloat.

A script has user-de"nable "elds (with the stan-
dard MPEG-4 types and label) that are used for
routing values into and out of the script, as well as
for storing state information. Scripts can access the
"elds of any other DEFd node in the scene, as long
as a reference to the node is passed to the Script
node. Fig. 8 shows a sample script node.

MPEG-4 is currently (as of this writing) de"ning
a Java layer, called MPEG-J, in order to provide
additional programmatic control of the terminal to
application developers. The model enhances the
External Application Interface (EAI) used in
VRML, and is expected to be included in Version 2
of MPEG-4. In addition to controlling the scene,
an MPEG-J program can access and assess system
resources, and act on the network and decoder
interfaces. The full details of MPEG-J and
MPEG-4's scripting capabilities are beyond the
scope of this chapter.

3.8. Name space rules

As mentioned earlier, nodes and ROUTEs in
BIFS can receive unique identi"ers or IDs. In

330 J. Signe% s et al. / Signal Processing: Image Communication 15 (2000) 321}345



1The Inline node allows an MPEG-4 scene to be included (or
`inlineda) within another scene.

MPEG-4 terminals, the following scoping rules
apply for the ID name spaces:

f A BIFS-Command stream shares the name space
across the whole stream.

f An Inlined BIFS-Command stream (i.e., a BIFS-
Command stream accessed through an Inline
node1) opens a new name space.

f Multiple BIFS-Command streams referenced by
the same Object Descriptor structure share the
same name space.

The last rule allows building multiple streams of
content sharing the same name space. The Object
Descriptor hence gathers streams that share the
same name space. By grouping streams under the
same Object Descriptor, the content creators can
signal their intention to allow the pieces of content
to share the name space. Obviously, the implication
is that the nodes receive a unique identi"er across
all BIFS-Command elementary streams sharing
the same Object Descriptor. This functionality is
very useful for building large content packages.

3.9. Summary of MPEG-4 Version 1 BIFS
capabilities

The BIFS Node are grouped in semantic catego-
ries (Table 2).

3.10. MPEG-4 Version 2 BIFS Extensions

In this section, we list some of the features that
are expected to be o!ered by MPEG-4 Version 2.

3.10.1. Server interaction
One of the key features of Version 2 MPEG-4

BIFS is enabling the transmission of data from the
terminal presentation back to the server. This may
be useful in particular for many applications such
as stream control, initiating transactions, etc. To
provide this functionality, MPEG-4 Version 2 will
add a ServerCommand node that enables the inter-
active triggering of messages back to the server.

The content of the command is completely applica-
tion-dependent and is carried back to the server
using a normative syntax.

3.10.2. Enhanced sound
In Version 1, MPEG-4 provides the ability to

considerably enhance the basic VRML 2.0 sound
model. In Version 2, MPEG-4 will go further and
provide new sound features:

1. Enhanced physical sound rendering model, so
that more natural sound source and sound envi-
ronment modeling is made possible in BIFS.
The functionality of the new sound source in-
cludes modeling of air absorption and more
natural distance dependent attenuation, as well
as sound source directivity modeling. In Version
2, BIFS also takes into account the response of
the environment, so that the sound can be ren-
dered to correspond to the visual parts of the
scene. For example, polygons representing walls
cause sound to be attenuated.

2. An enhanced sound-rendering model, based on
geometry-independent perceptual parameters.
These perceptual parameters provide high level
interfaces to control the `aural aspecta of the
sound rendering. Parameters such as the source
presence, heaviness, envelope, brilliance and
warmth can be controlled.

3.10.3. Scene extensions: prototypes
The BIFS Version 2 speci"cation will provide

ways to encode PROTO and EXTERNPROTO.
These scene constructs enable the de"nition of new
interfaces to user-constructed scene components.
For example, a button PROTO can be constructed
which accepts a string label as an input parameter.
The body of the PROTO consists of a scene por-
tion that draws a button (using, say, a Box node)
and renders the string parameter on the button.
The EXTERNPROTO is similar to the PROTO,
except that its de"nition is not part of the scene.
Instead, its de"nition is referenced using a URL.
This enables the construction and use of on-line
libraries of PROTOs.

Additionally, by assigning an InterfaceCoding
Table to the PROTO or EXTERNPROTO nodes,
BIFS Version 2 allows the addition of parameters
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Table 2
Summary of BIFS Version 1 capabilities

Type of nodes Function BIFS Nodes

Grouping Nodes Grouping nodes have a "eld that contains a list of children nodes. Each
grouping node de"nes a coordinate space for its children. This coordinate
space is relative to the coordinate space of the node of which the group
node is a child. Such a node is called a parent node. This means that
transformations accumulate down the scene graph hierarchy. Grouping
nodes are ordered in four sub categories: nodes usable for both 2D and
3D grouping, 2D speci"c nodes, 3D speci"c nodes and Audio speci"c
nodes.

Group
Inline
OrderedGroup
Switch
Form
Layer2D
Layout
Transform2D
Anchor
Billboard
Collision
Layer3D
LOD
Transform
AudioBu!er
AudioDelay
AudioFX
AudioMix
AudioSwitch

Interpolator nodes Interpolator nodes perform linear interpolation for key frame animation.
They receive as an input a key and output a value interpolated according
to the key value and the reference points value. Interpolator nodes are
classi"ed in three categories. Nodes usable for both 2D and 3D interpola-
tion, 2D speci"c nodes, and 3D speci"c nodes

ColorInterpolator
ScalarInterpolator

PositionInterpolator2D
CoordinateInterpolator2D

CoordinateInterpolator
NormalInterpolator
OrientationInterpolator
PositionInterpolator

Sensor nodes Sensor nodes detect events in their environment and "re events. For
instance, a TouchSensor detects a click of a mouse, a ProximitySensor
detects that the user entered a region of the space. Sensor nodes are
classi"ed in three categories: nodes usable for both 2D and 3D sensors,
2D speci"c nodes, and 3D speci"c nodes. Interpolator, Sensor and
ROUTE statements enable the design of interactive scenes

Anchor
TimeSensor
TouchSensor
DiscSensor
PlaneSensor2D
ProximitySensor2D
Collision
CylinderSensor
PlaneSensor
ProximitySensor
SphereSensor
VisibilitySensor

Geometry nodes Geometry nodes represent a geometry object. Geometry nodes are classi-
"ed in three categories. Nodes usable for 2D speci"c scenes, and 3D
speci"c scenes. Note that all 2D geometry can also be used in 3D scenes

BitMap
Circle
Curve2D
IndexedFaceSet2D
IndexedLineSet2D
PointSet2D
Rectangle
Text
Box
Cone
Cylinder
ElevationGrid
Extrusion
IndexedFaceSet
IndexedLineSet
PointSet
Sphere

332 J. Signe% s et al. / Signal Processing: Image Communication 15 (2000) 321}345



Table 2 (Continued)

Type of nodes Function BIFS Nodes

Bindable children nodes These nodes represent features of the scene for which exactly one instance
of a node can be active at any instant. For example, in a 3D scene, exactly
one Viewpoint node is always active. For each node type, a stack of nodes
is stored. The active node is put on the top of the stack. Activating
a particular node can be triggered through events. 2D speci"c nodes are
listed followed by 3D speci"c nodes

Background2D

Background,
Fog
ListeningPoint
NavitationInfo,
Viewpoint

Children nodes Children nodes are direct children of grouping nodes. They can represent
a geometry (Shape), sound nodes, lighting parameters, interpolators,
sensors, grouping nodes. This category contains:

AnimationStream
Conditional
Face

f all grouping nodes,
f all sensor nodes,
f all interpolator nodes,
f all bindable children nodes,

QuantizationParameter
Script
Shape
TermCap

as well as the nodes listed to the right Valuator
Children nodes are classi"ed in three categories: nodes usable for both 2D
and 3D children, 2D speci"c nodes, and 3D speci"c nodes

WorldInfo

Sound2D

DirectionalLight
PointLight
Sound
SpotLight

Dynamic content related
nodes

These nodes enable the inclusion of media in the scene: Audio, Video,
Animation or update of scenes

Anchor
AnimationStream
AudioClip
AudioSource
Background
Background2D
ImageTexture
Inline
MovieTexture

FBA nodes FBA nodes are nodes related to face and body animation. They contain
one child node (Face), and the rest are attributes for the Face node

Face
FaceDefMesh
FaceDefTables
FaceDefTransform
FDP
FIT
Viseme

Miscellaneous attributes Attributes are features of the children nodes that are represented by
speci"c nodes, except FBA, media or geometry speci"c attributes. At-
tributes nodes are classi"ed in three categories. Nodes usable for both 2D
and 3D attributes, 2D speci"c nodes, and 3D speci"c nodes

Appearance
Color
FontStyle
PixelTexture

Coordinate2D
Material2D

Coordinate
Material
Normal
TextureCoordinate
TextureTransform

Top Nodes Top nodes are the nodes that can be put at the top of an MPEG-4 scene Group
Layer2D
Layer3D
OrderedGroup
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2H-Anim is a VRML working group that has de"ned a set of
face and body animation speci"cations.

for controlling these new interfaces with BIFS-
Anim and BIFS-Command. This way, it is possible
to control these interfaces using a stream. It is also
possible to assign quantization parameters to the
prototype "elds, in order to allow e$cient com-
pression.

3.10.4. Body animation
Whereas Version 1 allows only the animation of

facial models, Version 2 will add body animation
capability. The body will be de"ned in the scene by
H-Anim2 compliant de"nitions, and will use a spe-
ci"c, optimized encoding algorithm. Furthermore,
as for the facial animation, the animation stream
will be integrated in the BIFS-Anim framework.

3.10.5. MPEG-J
MPEG-J is a set of Application Programming

Interfaces that allow Java code to communicate
with an MPEG-4 player engine. By combining
MPEG-4 media with safe executable code, content
creators may embed complex control and data
processing mechanisms with their media data to
intelligently manage the operation of the audio-
visual session.

MPEG-J de"nes the following interfaces:

f Scene graph API (similar to the VRML EAI),
that enables scene control.

f Network API, to control the up- or down-load-
ing of content.

f Decoder API, to control media decoders.
f Devices API, to control various input devices.
f System capability APIs, in order to be able to

assess the status of the system in terms of
memory, CPU load, etc.

When downloading an MPEG-J script (or
`MPEGleta), the MPEG-J system can use the
interfaces to the system or other application-speci-
"c Java APIs to re#ect the changes to the scene
through the Scene Graph API. For instance, the
MPEGlet can query systems capabilities in real
time and re#ect necessary changes on the scene

graph. Another typical example may include data
coming from the external application (typically
a GUI, a data base interface, etc.) and modifying
the scene graph.

3.11. Example of a scene and corresponding
scene graph

In this section we show a complete example of
a complex 2D/3D scene and its corresponding
scene graph. The example illustrates some of the 2D
and 3D mixing capabilities of MPEG-4 through
the concept of Layers as well as the corresponding
scene graph. Layers can be used to determine a re-
gion of the screen in which a scene is drawn.

In the example, shown in Figs. 9 and 10, a 2D
scene and 3D scene are displayed simultaneously.
The 3D scene is displayed with two di!erent view-
points, using 3Dlayer-1 and 3Dlayer-2. The 2D
scene is overlaid on top of the 3D scenes. The 2D
scene is also displayed as a map in the 3D scene (in
3Dobj-3). This scene could represent a 3D scene
seen from 2 di!erent viewpoints and a 2D map of
the world displayed both facing the viewer and in
the 3D scene.

4. BIFS compression and streaming

4.1. The BIFS format design goals

The binary format for MPEG-4 scene descrip-
tion attempts to balance several considerations.
Compression is, of course, the ultimate goal, but
compression con#icts with extensibility, ease of
parsing, and a simple speci"cation. The BIFS pro-
tocol is a compromise between these goals.

For compression, BIFS uses a compact repres-
entation for the scene components. For example,
when a scene parameter is speci"ed, the minimal
number of bits needed to distinguish that para-
meter from others is used. This scheme is used for
specifying the scene contents also. For example,
there are 18 di!erent components that are used to
specify the geometry of a scene: Spheres, Cones,
Polygons, etc. These are indexed and speci"ed
using 5 bits. While this is not as e$cient as possible,
it makes parsing and speci"cation simpler.
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Fig. 9. An example of a combined 2D/3D scene.

The actual parameter values associated with the
scene parameters have a di!erent quantization
scheme, that is actually part of the scene and thus
under the control of the scene author. By default,
scene parameter values are not quantized at all;
they are stored in their native format (e.g., 32 bits
for #oats and integers, 1 bit for Booleans, etc.). The
scene parameters are classi"ed into di!erent cat-
egories, and the values in each category can be
linearly quantized using quantization parameters
(maximum and minimum values, along with the

number of quantization bits) that are speci"ed
locally in the scene. The categories consist of para-
meters that should have similar values, e.g., scaling
values, 3D coordinate values, etc. This scheme bal-
ances the utility of having local quantization con-
trol with the cost of specifying the quantization
parameters.

BIFS uses a di!erent quantization scheme in the
case of animation. Animation allows scene para-
meter values to be modi"ed as a function of time.
The scene author speci"es which node parameters
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Fig. 10. The scene graph corresponding to the description in Fig. 9.

3Note that the NDT is not related to the MPEG-4 "eld types.
The "eld types are the atomic values in the scene } integer, #oats,
etc. A Node Data Type is a collection of nodes that can be
children of certain nodes.

should be animated by associating these para-
meters with a stream of input values. The stream
consists of a sequence of initial values (I-frames)
and successive di!erence values (P-frames) that are
arithmetically encoded. This scheme allows highly
e$cient encoding of animation values, which can
typically compose a large part of a scene. The follow-
ing sections discuss these notions in more detail.

4.2. BIFS compression

While the BIFS protocol is e$cient, it represents
a trade-o! between bit-stream e$ciency on the one
hand, and parsing complexity, (relatively) simple
speci"cation, and extensibility on the other. In fact,
a compressed scene can sometimes be further com-
pressed using existing data compression tools. This
is true because some types of data, e.g., Strings,
contain redundancy that is not eliminated using
BIFS coding (BIFS encodes strings as a collection
of characters).

The following sections discuss the components of
scene coding in MPEG-4.

4.2.1. Context dependency
BIFS takes advantage of context dependency in

order to compress the scene e$ciently at the node

and the "eld level. Whereas VRML treats all nodes
as being of type SFNode or MFNode, BIFS makes
use of the fact that only certain nodes can appear as
children of other nodes. This allows the binary
speci"cation of the children nodes to be more
e$cient.

BIFS introduces the concept of a Node Data
Type (NDT). There are some 30 di!erent NDTs,
and each node belongs to one or more of them. The
NDT table consists of a list of nodes for each
NDT.3 In each node data type, the node receives
a "xed-binary-length local ID value that corres-
ponds to its position in the NDT table. For
example, the Shape node can appear in both a 3D
context and a 2D context. It thus has both
the SF3DNode and SF2DNode node data type
(in fact, as with all nodes, it also has the global
SFWorldNode NDT). In a 3D context, the Shape
node can appear in the children "eld of a Trans-
form node } this "eld has the type MF3Dnode
and it accepts nodes of type SF3DNode. In a 2D
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context, the Shape node can appear in the children
"eld of a Transform2D node } this "eld has type
MF2DNode. The binary ID code for a Shape node
thus depends on the context in which it appears.
When it is an SF3DNode, it has a 6-bit binary ID
value of 100100 (decimal value 36), because it occu-
pies position number 36 in the list of 48 total
SF3DNodes. In the 2D case, its ID is represented
by 5-bits with value 10111. There are only 30 di!er-
ent SF2DNodes, requiring only 5 bits to specify
them all.

This node representation is quite e$cient. It does
not make sense to apply entropy-coding techniques
based on the probabilistic distribution of nodes in
scenes } such data does not currently exist. More-
over, as the ID value 0 is reserved as an escape
value for future extensions, and because a fractional
bit arises from the fact that the number nodes in
each category is not a power of 2, the coding would
be slightly sub-optimal regardless.

At the "eld level, BIFS introduces types that do
not exist in VRML. These exist only for coding
purposes and are cast into some of the basic "eld
types (see Section 3.2) at runtime:

f The SFURL type is used for representing URLs.
VRML uses a string to encode URLs, but BIFS
requires a "ner resolution and allows URLs to be
encoded either as strings or as references to
stream IDs (object descriptors).

f The SFScript type is used to encode scripts.
VRML uses URLs to hold scripts, which are
typically either externally accessible Java class
"les or in-lined JavaScript (or, more precisely,
ECMAScript). In BIFS, only JavaScript is sup-
ported and it is represented using a binary format.
The SFScript type allows either an MPEG-4
URL to be encoded (which allows full compatibil-
ity with VRML) or a binary script representation.

f The SFBu!er type is used to encode bu!ers in the
MPEG-4 Conditional node. This special "eld
holds a binary representation of a BIFS-Update
command that can be triggered using the
ROUTE mechanism.

4.2.2. The Node Coding Tables
Each node is associated with a Node Coding

Table (NCT). Each node's NCT holds information

related to how the "elds of the node are coded. The
NCT speci"es the type of values that each "eld can
hold. Thus, for example, the NCT for the Trans-
form2D node speci"es that its children "eld has
type MF2DNode and thus can hold a list of
SF2DNode nodes. The NCT also speci"es the
other "eld types that can occur, for example,
SFFloat, SFInt32, etc.

The NCT also speci"es an index for each "eld
according to one of four usage categories. These
categories are:

f DEF } used for de"ning "eld values when a node
is transmitted. This corresponds to the Field and
ExposedField modes, since these are the only
modes that have values that can be speci"ed.

f IN } used for data that can be modi"ed using
BIFS updates or ROUTEs. This corresponds to
the EventIn and ExposedField modes.

f OUT } is used for the EventOut and Exposed-
Field modes. That is, "elds that can be used as
input values for ROUTEs.

f DYN } is a subset of the IN category, used for
BIFS-Animation, discussed in Section 4.4.

By creating these four categories, a BIFS scene
always references "elds with the minimal number of
bits needed. For example, the IndexedFaceSet node
is used to hold a collection of polygons that form
a 3D object. It has 13 "elds that can be de"ned
when it is created, and thus each "eld requires 4 bits
when it is indexed. However, this node only has
four "elds that can output values to a ROUTE, so
that only two bits are needed to specify which "eld
is being used when this node is routed from. The
IndexedFaceSet node has 8 "elds that can accept
ROUTEd values or be updated using BIFS-Com-
mand, and thus these protocols need only 3 bits to
specify the modi"ed "eld. The Node Coding Table
for the Fog node is shown in Fig. 11.

The NCT also de"nes a quantization type for
each "eld that holds numerical values. This is the
topic of the next section.

4.2.3. Quantization of node xelds
Quantizing BIFS scenes is achieved using the

QuantizationParameter node. This node a!ects
the quantization of "eld values for all nodes
that appear hierarchically after or beneath it (i.e., its
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Fig. 11. The Node coding table for the Fog node. The table shows the node name, its three NDTs, and the binary representation of the
fog node for each of the NDTs. Following this is a listing of the node's "eld names, their type, and the binary ID for each of the four usage
categories. Some of the "elds also have a minimum and maximum value speci"ed, as well as a quantization and animation category
(discussed in the following sections).

4Partly the problem is that because MPEG-4 is new, there is
no signi"cant quantity of source data.

Fig. 12. A scene portion containing a QuantizationParameter
node.

siblings and children). Using a node to convey the
quantization parameters makes use of the already
existing BIFS framework to encode the parameters
e$ciently and takes advantage of speci"c reuse
mechanisms (VRML DEF/USE) in order to reuse
locally existing parameters. This mechanism also
allows content creators to "ne-tune the compres-
sion of their content when it has special redundant
characteristics.

Quantizing BIFS data e$ciently is complex be-
cause no clear statistics can be derived from
the source data.4 The problem is to "nd the best
trade o! between the declaration cost of the local
quantization parameters using the Quantization-
Parameter node and the gain brought by this
quantization. To overcome this di$culty, every nu-
merical "eld in each node is classi"ed into one of 14
quantization categories (see Table 2). The idea is
that each category, for example `Position 3Da, will
contain data in a similar range of values, and that
a minimal number of categories enable a minimal
number of parameters addressing the maximum
number of parameters. A value-range and number
of bits for a linear quantizer for each quantization
type is speci"ed in the QuantizationParameter
node. When a "eld is to be encoded, its quantiz-
ation type is looked up in the NCT for the "eld's
node. The values of the "eld are then coded using

the number of bits and value-range speci"ed for
that quantization type in the Quantization-
Parameter node.

Fig. 12 shows a scene portion in which a Quan-
tizationParameter node a!ects the quantization of
the node that follows it. In this example, the orig-
inal VRML text has unlimited precision, but,
because the keyValue "eld of the Position-
Interpolator node has `position3Da quantization
type in the NCT, the binary BIFS representation of
this "eld's values would use only 4 bits per number.
For example, the last coordinate of the last key-
Value would be stored using binary value 1111,
since it is the maximum value in the range speci"ed
in the QuantizationParameter node. The key
values would be encoded using 8 bits, because
this is the default behavior of the Quantization-
Parameter node for the quantization type of this
"eld. Since the QuantizationParameter node a!ects
all the nodes that follow it, if there were any other
nodes with "elds in the position3D category and
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Table 3
BIFS Quantization Categories

Category Usage

None NoQuantization
Position3D Used for 3D positions of objects
Position2D Used for 2D positions of objects
Color Used for colors and color intensities
TextureCoordinate Used for texture coordinates
Angle Used for angles
Scale Used for scales in transformations
Interpolator Keys Used for interpolator keys, MFFloat values
Normals Used for normal vectors
Rotations Used for SFRotations
ObjectSize 3D Used for 3D object sizes
ObjectSize 2D Used for 2D object sizes
Linear Quantization NCT holds max, min, and number of bits
Coord Quantization Used for lists of coordinates of points, color, and texture coordinate that are indexed. E.g. in

IndexedFaceSet

with values outside the range given in the Quan-
tizationParameter node, those values would be
clipped (Table 3).

The QuantizationParameter node has several
other features. It has a useE$cientFloat "eld that
holds a boolean value. When this value is true and
when #oating point values are not quantized in one
of the quantization categories described above,
they will be quantized using MPEG-4 speci"ed
`e$cientFloata coding that has less resolution than
standard #oating point representations and which
requires fewer bits per number, especially for
0 values. The details of this coding are beyond the
scope of this chapter, but the idea is that a small
number of bits is used to specify how many bits are
used for the exponent and mantissa of the #oating
point value. Values with small exponents and easily
speci"able mantissas can then be stored using
a smaller number of bits overall. However, the
coding is limited to a 15-bit mantissa and a 7-bit
exponent.

The QuantizationParameter node has another
boolean "eld, isLocal, that speci"es if the quantiz-
ation parameters provided in the node should ap-
ply only to the next node in the scene graph. This
design allows the declaration of quantization para-
meters to be factored and applied to the maximum
amount of data.

4.3. BIFS Command

The BIFS-Command protocol represents its four
top-level functionalities using 2 bits:

f Replace the whole scene with this new scene;
f Insertion command;
f Deletion command;
f Replacement command.

The insertion, deletion and replacement com-
mands can insert, delete and replace nodes, indexed
values of MF "elds, and ROUTEs. The replace-
ment command can also replace a "eld value,
bringing the total number of replacement com-
ments to four, which makes that command com-
pletely e$cient in its use of the 2 bits.

Fig. 13 shows a textual representation of a BIFS
update command that can be applied to the scene
in Fig. 4. After this command is sent to the
MPEG-4 client, the scene would look almost iden-
tical, except with the new recent news headline
replacing the previous "eld in the Text node.

The (simpli"ed) binary representation of this up-
date would consist of the following:

1. Two bits (with binary representation 10)
indicating that the update is a replacement com-
mand.

J. Signe% s et al. / Signal Processing: Image Communication 15 (2000) 321}345 339



Fig. 13. Textual representation of a scene update.

2. Two bits (with binary representation 00) specify-
ing that the update is replacing a Node (as op-
posed to an MFField element or a ROUTE).

3. A number of bits specifying the node ID of the
node that is to be replaced. The number of bits is
speci"ed in a header that is sent at the top of the
scene. In the example, the node ID is the string
`MyHeadlinea, and this must be mapped
uniquely to an integer in the BIFS representa-
tion.

4. A Binary representation of the Text Node that
contains the new node. The speci"cation of the
node type is made by sending an index into the
NDT table. In this case, the SFWorldNode
NDT which contains all of the MPEG-4 nodes
is used. We discuss this further.

The e!ect achieved in the example of Fig. 13 can
also be produced by just replacing the value of the
string "eld of the Text node. In this case the binary
representation of the replacement command would
consist of the following:

1. Two bits (with binary representation 10)
indicating that the update is a replacement com-
mand.

2. Two bits (with binary representation 01) specify-
ing that the update is replacing a "eld.

3. A number of bits specifying the node ID of the
node containing the "eld to be replaced.

4. Two bits (with binary representation 00) specify-
ing that the string "eld is to be replaced. There
are four replaceable (IN) "elds in the Text node,
and string is the "rst. Note that in order to know
this the decoder must "rst read the node id, look
up the node type of the node with this id, and use

the Node Coding Tables to determine how
many IN "elds this node has.

5. A Binary representation of string "eld. Since the
decoder knows which "eld is to be replaced, it
can look in the Node Coding Table to determine
the "eld type and hence know what type of data
to expect.

4.4. BIFS Animation

The BIFS Animation (or BIFS-Anim) protocol
uses an arithmetic coder applied to a sequence of
di!erence values that are computed from a se-
quence of animation parameter values. The binary
animation data consists of an Animation Mask
that contains a collection of Elementary Masks,
one for each node that is animated. This is followed
by a stream of Animation Frames that contain the
animation data. Only updatable nodes (i.e., nodes
with IDs) can be animated, because the Elementary
Masks use these IDs to specify which nodes are
animated. Each Elementary Mask also speci"es
which of the animated nodes' "elds are animated
and initial quantization parameters for the anima-
tion. Finally, when the animated "elds are multiple
value "elds, the Elementary Mask speci"es the indi-
ces of the elements that are to be animated.

Only "elds that have a DYN index de"ned
in the Node Coding Tables can be animated.
These dynamic "elds may be of the numerical
data types:

f SFInt32/MFInt32
f SFFloat/MFFloat
f SFRotation/MFRotation
f SFColor/MFColor
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Fig. 14. The four steps of the BIFS-Anim predictive decoding scheme: arithmetic decoding, inverse quantization, delay, compensation.

f SFVec2f/MFVec2f
f SFVec3f/MFVec3f

The Animation Frames specify the values of the
animated "elds. An Animation Frame can contain
new values for a subset of the animated "elds at
a speci"ed time. That is, all the "elds or a selection
of "elds can be modi"ed at each speci"ed time. The
"eld values can be sent in Intra (the absolute value
is sent) and Predictive modes (the di!erence be-
tween the current and previous values is sent).

In Intra-mode, the "eld values are quantized
(without any entropy coding) using the quantiz-
ation parameters de"ned for the animated "eld in
the associated Elementary Mask. In Predictive-
Mode, the di!erence with the previous sample is
computed and then entropy coded. Fig. 14 sum-
marizes the decoding steps.

The quantization is similar to the one used in the
BIFS compression of "eld values. In BIFS Anima-
tion, as for BIFS scene compression, the notion of
quantization category is used. The following ani-
mation categories are de"ned:

f Position 3D
f Positions 2D
f Color
f Angle
f Float
f BoundFloat
f Normals
f Rotation
f Size 3D
f Size 2D
f Integer

However, the animation categories correspond
more to data types rather than a semantic group-
ing, since quantization parameters are not shared

but declared individually for each "eld to be ani-
mated. Each category has a speci"c syntax for de-
claring its quantization parameters: Min and Max
values, number of bits, in Intra and Predictive
modes. Computing the di!erence of quantized
values is direct except for normalized vectors such
as rotations and normals. Rotations are coded us-
ing quaternions, and a speci"c prediction mecha-
nism enables coding of rotations and normals in
a predictive mode, just as with the other data types.
The entropy coding uses an adaptive arithmetic
encoder, which avoids the issue of unknown data
statistics.

Fig. 15 contains an example of a 3D scene in
which a Transform (translation and rotation) and
some of the vertices of an IndexedFaceSet are con-
tinuously animated using a BIFS-Anim stream.

The object descriptor with id"15 will be parsed.
It contains the Animation Mask. The Animation
Mask is stored in a "eld of the ObjectDescriptor,
more precisely in the specificInfo "eld of the
general DecoderSpecificInfo "eld. The "eld will
contain the following information:

f 5 bits to specify the number of bits used to en-
code the Node ID;

f 5 bits to specify the number of bits used to en-
code the ROUTE ID;

f 1 bit to specify that the stream is an animation
stream (versus a BIFS-Command stream);

f The AnimationMask itself containing a loop of
Elementary Animation Mask (loop controlled by
a 1 bit #ag);

fC For each Elementary Animation Mask:
f C } A node ID (here corresponding to

TToAnimate and CToAnimate).
f C } } For each animated node, a DYN "eld

mask of "elds to be animated in the
node (the TToAnimate node in our
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Fig. 15. A sample scene with a transform and an IndexedFaceSet and coordinates to animate.

example would get a "eld mask of
&01001' since rotation and translation
are respectively the second and last
DYN "elds out of 5 DYN "elds for the
Transform node).

f C } } } For each "eld to animate (loop con-
trolled by the "eld Mask):

f C } } } } If it is a multiple "eld (like in the
case of the point "eld of the
Coordinate node), an optional
(controlled by a 1 bit #ag) list of
vertices to animate.

f C } } } } The quantization parameter for
the "eld, containing the bounds
and number of bits.

Finally, the BIFS-Anim elementary stream will
contain animation frames, containing:

f The AnimFrameHeader, containing some speci-
"c information to enable the choice of nodes
animated in the frame (the Transform or Coordi-
nate node animation could be switched o! at any
frame), a number of skipped frames, timing in-
formation, etc.

f The AnimationFrameData, with:
fC The I or P value of the Transform rotation;
fC The I or P value of the Transform translation;

fC The I or P value of the Coordinate node point
selected positions.

5. BIFS usage

The following sections list a few tricks and sug-
gestions for using the BIFS tools.

5.1. Scene compression

The main complication in using BIFS well is the
use of the QuantizationParameter node. This node
can reduce the size of a scene signi"cantly, even
when used naively. This is because the native en-
coding of #oating point and integer values typically
has considerably more resolution than is needed for
graphic scenes.

The most direct and namKve way to use a Quan-
tizationParameter node is to compute the max-
imum and minimum values for each of the
quantization types in the scene, decide on an ac-
ceptable error, and insert one Quantization-
Parameter node at the top of the scene graph with
the corresponding quantization parameter values.
Almost all scenes should at least use this technique,
since the cost of the QuantizationParameter node
is minimal. (The exceptions are very small scenes in
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Fig. 16. The BIFS Command protocol. Building the scene graph progressively, with InsertObject BIFS command. The motorcyclist is
added after the initial load and put o! screen for future use, by changing the value of the Switch around it (CV). The Replace Scene
command (RS) replaces the whole scene graph with the new scene.

which the cost of specifying the Quantization-
Parameter node is greater than the bits saved in the
scene.)

A more complicated technique for using the
QuantizationParameter node involves grouping
scene components that contain similar ranges of
values and inserting a QuantizationParameter
node at the top of each such grouping. For
example, a scene that consists of two houses separ-
ated by some distance could bene"t from a Quan-
tizationParameter node at the top of the grouping
nodes that hold each house. This technique essen-
tially breaks the scene into smaller scenes and
applies the namKve quantization approach to each
sub-scene. The process of breaking up a scene and
determining where to place Quantization-
Parameter nodes is something of an art, though it is
possible to automate this function.

Finally, when possible, the Quantization-
Parameter node can be DEFd and USEd, so that
the cost of specifying the quantization parameters is
very low. In the above example of a scene containing
two houses, if each house has about the same geo-
metry, the "rst can be quantized normally and the
second can be quantized using only a reference to the
QuantizationParameter node used on the "rst house.

Using QuantizationParameter nodes, typical
compression rates of 10 to 25 can be achieved over
a textual scene representation, depending also on
the content. In MPEG-4 Version 2, enhanced com-
pression will be achieved by adding optimized
multiple "eld (MF) and 3D mesh encoding. Com-
pression rates over 20 can be expected by combin-
ing all these tools.

5.2. BIFS command usage

The capability of BIFS-Command to modify
a scene can be used for real-time update of content,
for example in news headlines. It can also be
used to modify the user's experience, by inter-
actively changing the user's position or view
point, or by sending status or chat messages
between di!erent users on a server (or even directly
between users).

Fig. 16 shows an example of using BIFS-update
to progressively load a scene. In this example,
a large scene is broken into parts. The parts that are
viewable from the initial viewpoint are sent as part
of the initial scene graph, but the other parts are
sent using BIFS-Command at a later time: when
the bandwidth allows, when they are required
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Fig. 17. The BIFS-Anim protocol: animating the position and the viewpoint. As with video, intra (I) frames are used for random access
(tune-in) or error recovery. Predictive (P) frames are di!erentially encoded using a much smaller number of bits.

in the scene, etc. This mechanism can signi"cantly
reduce latency during initial scene loading.

5.3. BIFS animation usage

BIFS-Anim can be used to stream e$ciently
animations over low bit-rate networks, or to
`communicatea continuous changes in a scene (e.g.
a networked game). Typically, animating approx-
imately 80 parameters at 10 frame per second re-
sults in a bit-rate around 5 kbit/section. This means
an average approximate bandwidth of 0.06 kbit/s
per parameter (rotation or 3D translation). Fig. 17
illustrates the usage of BIFS-Anim for a 3D car-
toon. BIFS-Anim is much more e$cient than
BIFS-Command for changing always the same
"eld. As a comparison, changing one translation
with a BIFS-Command costs 4 bits for the Replace-
Field command, 10 bits for the Node ID, 3 bits for
the "eld ID and 96 bits for the translation value, for
a total of 113 bits, so roughly a kbit/s for 10 frames
per second. For the 80 parameters, this means
80 kbit/s for animating with BIFS-Command ver-
sus 5 kbit/s for animating with BIFS-Anim. The
gain comes from the fact that the NodeID and
"eldID needs not be speci"ed at each frame in the

case of BIS-Anim and from the speci"c quantiz-
ation, prediction and entropy encoding used.

6. Concluding remarks

MPEG-4 was designed to provide solutions to
a slew of applications. Its tool set can be broken up
into pro"les to best "t the needs of speci"c applica-
tions, such as broadcast applications, which can be
thought of as `TV mixed together with the interac-
tion and presentations of the World Wide Weba, to
interactive consultation and communication ap-
plications, which can be thought of as `the tele-
phone and TV cooked together with a dash of
interactivitya. (These days, everything is spiced with
interactivity.)

Within MPEG-4, BIFS provides both compres-
sion needed for e$cient transmission (and storage)
on the current infrastructure, and the functional-
ities demanded by today's media consumers (who
are becoming progressively more savvy). That
MPEG-4 "lls a technology space that is currently
empty is clear; it remains to be seen, however,
whether it will be accepted and widely used.

For further reading, see [1}3,5,6].
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