
*Corresponding author.
E-mail addresses: luoht@ee.columbia.edu (H. Luo), eleft@ee.

columbia.edu (A. Eleftheriadis), jacklk@watson.ibm.com (J.
Kouloheris).

Signal Processing: Image Communication 16 (2000) 333}352

Statistical model-based video segmentation and its
application to very low bit-rate video coding

Huitao Luo!,*, Alexandros Eleftheriadis!, Jack Kouloheris"

!Department of Electrical Engineering, Columbia University, MC4712, 1312 S.W. Mudd, 500 West 12th Str., 10027 NY, USA
"IBM T.J.Watson Research Center, NY, USA

Received 12 February 1998

Abstract

This paper presents a statistical model-based video segmentation algorithm for typical videophone and videoconfer-
ence applications. This algorithm makes use of online information to build and track statistical models for both the
background and foreground on the #y. The segmentation algorithm is then rendered as a MAP problem. A hierarchical
system structure is designed and spatial and temporal "lters are used to improve the segmentation quality. The algorithm
is implemented on a PC and runs in real time. In addition, two possible applications are discussed: generating video
objects for the upcoming MPEG-4 standard and introducing subjective factors into the rate control of DCT-based
coding algorithms. We focus on the second application by proposing a rate-distortion (R-D)-based optimal rate control
algorithm for H.263. In this rate control algorithm, which we refer to as region-based rate control algorithm, previous
segmentation results are used as subjective knowledge. A distortion model is created to integrate both subjective and
objective factors and an R-D criterion is used to obtain the optimal bit allocation. With the proposed algorithm,
an H.263 compatible encoder is implemented and it produces better perceptual quality in our experiments than standard
H.263. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In very low bit-rate video coding, many research
e!orts have recently been directed to utilizing the
results from computer vision, especially segmenta-
tion. On one hand, computer vision techniques
enable e$cient use of the available bits in terms of
subjective visual quality. Such techniques include
topics like `region-based codinga [12], `model-

assisted codinga [5] and `model-based codinga [2].
On the other hand, the development of multimedia
brings about additional requirements on video cod-
ing, i.e., not only lower bit-rate, but also better
functionality. The upcoming MPEG-4 standard
also creates a major research problem: how to
create video objects (VO)s e$ciently?

General-purpose image segmentation has long
been a di$cult problem. The fundamental di$culty
is that there is no necessary correspondence be-
tween low-level features such as color and edges
and high-level object or region de"nition. Video
segmentation is in some sense easier because it can
make use of inter-frame motion information. Still
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there is no inherent association between moving
regions and video object regions. When a moving
object stops its motion, highly motion-dependent
algorithms like [1,3,10] fail. Recently, there has
been active research on morphological segmenta-
tion algorithms for region-based video coding
[12,15]. However, their results produce only low-
level regions without any semantic meaning and
therefore, are still not satisfactory for MPEG-4 VO
generation.

We propose a simple but interesting and e!ective
online video segmentation algorithm, which uses
an inexpensive videoconference quality camera and
runs on Pentium PC platforms in real time. The key
design issue in this work is to limit the application
domain in the algorithm development and use
some domain-speci"c knowledge to guide the seg-
mentation. More speci"cally, in our case we assume
that the algorithm only works on `head-and-shoul-
dersa type videoconference images, in which the
background is relatively stable and does not move
rapidly (this is the most common case in video-
phone communication). Because of these limita-
tions, the inherent di$culty of segmentation can be
overcome in some degree.

This work is originally motivated by the human-
body tracking work of `P"ndera [17]. We use
a similar statistical model to represent the back-
ground and foreground. However, we adapt their
idea of `blob trackinga to video object segmentation.
Unlike traditional computer vision approaches, the
segmentation research in this work is carried out in
the context of video coding. Accordingly, we em-
phasize real-time performance of the algorithm and
try to evaluate the segmentation quality in the
sense of video object coding. To meet these require-
ments, we introduce a hierarchical structure at the
system level to integrate statistical models with
spatial and temporal "lters. With this design, video
segmentation can be carried out in real time on
average Pentium PCs with reasonable quality. This
result makes it possible for us to combine the com-
puter vision research with video coding research,
and develop advanced video encoders that have the
intelligence of high-level computer vision on low-
end computers.

In the MPEG-4 framework, creating video ob-
jects is a straightforward application of our video

segmentation algorithm. Even in traditional tech-
niques like H.263, we also "nd application for our
segmentation algorithm. From the segmentation
result, we have a subjective idea of the input image
before we actually encode it, i.e., we know which
region is head and which are shoulders and back-
ground. Therefore, we can allocate more bits to the
head region macroblocks (MBs) and less to those
background MBs. This way we can use the bits
more e$ciently than a uniform MB encoding
scheme that a standard H.263 encoder uses. There
have been several similar papers [5,6,8] published
under the name of model-assisted coding. Since our
segmentation is improved, we can design better
spatial and temporal adaptation in our bit-rate
control algorithm. In addition, we design an integ-
rated distortion model that includes both subjec-
tive and objective factors and try to optimize the
rate control in the rate-distortion (R-D) sense.

This paper is organized as follows. In Section 2,
we discuss blob-based statistical modeling of fore-
ground and background, and the basic procedure
of region classi"cation and Kalman "ltering for
blob tracking. In Section 3, some system level
implementation issues are discussed. A hierarchical
system structure is developed based on the intro-
duced statistical model to facilitate real-time
performance. Related boundary relaxation and re-
"nements are also discussed in this section. Section 4
describes the application of the segmentation re-
sults to an improved H.263 compatible encoder
design. Region-based spatial and temporal quantiz-
ation scalability is discussed, and experimental re-
sults are presented in comparison with Telenor's
implementation of standard H.263. Finally, in
Section 5 we conclude the paper.

2. Blob-based statistical region modeling and
tracking

2.1. Motivation and context

This work is motivated by the widely used
`chroma-keya technique and human body tracking
work of `P"ndera [17]. In addition, it is also re-
lated to the foreground/background segmentation
work in [10]. The basic nature of the algorithm is
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Fig. 1. Left: blob representation; middle: support map with containing rectangles; right: foreground map.

an online one. First, assume a background scene
that contains no foreground, which enables the
creation of a background model. Then, when the
foreground enters, another model is created for
the foreground. As discussed in the introduction,
the purpose of modeling is to "nd proper repres-
entation of domain knowledge that helps in seg-
mentation and tracking. Here we "nd it necessary
to reiterate the context of our modeling algorithm.
That is, the background of a videophone is not
changing rapidly as compared with foreground
motion and the foreground contains only one
head-and-shoulders pattern.

2.2. Foreground model

In videophone cases, the foreground is `head-
and-shouldersa. We model it with two connected
`blobsa. Here the de"nition of `bloba is similar to
that in [17], i.e., each blob has a spatial (x, y) and
chromatic (>,;,<) Gaussian distribution and
a support map which indicates whether a pixel is
a member of a blob. In this model, each pixel is
represented by a feature vector (x, y,>,;,<) and
the feature vectors of the pixels belonging to the
blob k have a Gaussian distribution with mean
vector m

k
and covariance matrix C

k
. Because of

their di!erent semantics, the spatial and chromatic
distributions are assumed to be independent.
That is, the matrix C

k
is assumed to be block-

diagonal.

In addition, for the clarity of succeeding dis-
cussion, we introduce some de"nitions related to
the blob model as follows. First, the support map
s
k
(x, y) for blob k is de"ned as

s
k
(x, y)"G

1 if pixel (x, y) belongs to blob k,

k"1, 2, 3,2,

0 otherwise.

(1)

Based on s
k
(x, y), blob k's containing rectangle

rect
k

is de"ned as the rectangle with the following
coordinates:

rect
k
"rectangle[(x

t
, y

t
), (x

t
, y

b
),(x

b
, y

t
), (x

b
, y

b
)], (2)

where

G
x
t
"sup

sk (x,y)/1
(x)

x
b
"inf

sk (x,y)/1
(x)

and G
y
t
"sup

sk (x,y)/1
(y)

y
b
"inf

sk (x,y)/1
(y).

(3)

For segmentation purposes we also de"ne a cumu-
lative support map s(x,y) for each image as

s(x, y)"G
k if s

k
(x, y)"1, k"1, 2, 3,2,

0 otherwise.
(4)

In addition, we de"ne the foreground map f (x, y) as
the entire set of the support maps of foreground
blobs

f (x, y)"G
1 s(x, y)O0,

0 s(x, y)"0.
(5)
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Fig. 2. Illustration of the AGC e!ects. When there is no fore-
ground in the scene, the histogram of the visible background
pixels' inter-frame luminance (>) variance distribution is ap-
proximately a narrow Gaussian peak centered at zero. This is
mainly caused by the thermal noise of the CCD camera.

Fig. 3. Illustration of the AGC e!ects. When some foreground
enters into the scene, the histogram of the visible background
pixels' inter-frame luminance (>) variance distribution can be
interpreted as including two components: a uniform shifting part
(corresponding to the highest peak in the right side) and a region
adaptive part.

This relation can be demonstrated in Fig. 1. In
Fig. 1, the left image illustrates two blobs, the
middle image shows a support map containing
rectangles and the right image is a foreground
map.

The rationale behind blob modeling is that it
represents an image region that has chromatic and
spatial similarity. By the de"nition of a blob and its
associated support map, low-level, pixel-oriented
segmentation is associated with high-level, semanti-
cally meaningful blob tracking. In this way, high-
level a priori knowledge can be used to guide
low-level pixel segmentation.

2.3. Background model

The background is modeled as a texture map
that varies over time. In common videophone ap-
plications, we assume the camera is static and there
are no fast and major background changes. In this
context, there are still several sources that may
introduce temporal color variations in the back-
ground pixels and thus in#uence an accurate
modeling. They are enumerated as follows.
1. The thermal noise of the camera sensor. This is

mainly in#uenced by the quality of the camera.
Two factors: noise stability and magnitude are
related to our modeling work. In general, we
tend to model it with a Gaussian distribution.

2. The gradual change of background for some
reason. For example, a foreground human may
move some items in the background or there
may be changes in illumination, etc.

3. The automatic gain control (AGC) e!ect of the
camera. This is quite obvious and disturbing
when the foreground moves into or out of the
scene or closer or farther away from the camera
and changes the exposure of the camera. In these
cases, the AGC mechanism introduces notice-
able luminance variation in the background
pixels even though the background itself does
not change at all. Figs. 2 and 3 show our test
results using Intel's Proshare videoconference
camera, which does not have an AGC switcher.
Fig. 2 is the histogram of the inter-frame vari-
ation of the luminance > for background pixels
when there is no foreground in the scene.
Fig. 3 is the inter-frame > variation of the same

background pixels (not occluded by foreground)
when a person enters the scene 3 meter away
from the camera. We can see that the shift can be
decomposed into two parts: a uniform shift and
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a pixel-dependent shift. According to our experi-
ments, this e!ect is less important for those
cameras with an AGC switch that can disable
the AGC function. We have tested Sony's SSC
S20 CCD camera with AGC function turned o!
and found that the foreground-induced back-
ground color shift can be ignored in most cases.

4. The shading e!ect brought about by the fore-
ground motions. This factor can be compen-
sated in part by introducing the normalized
chromatic vector (;H";/>,<H"</>).

Given all these factors, we model each pixel in the
background as a Gaussian distribution in the vec-
tor space (;H,<H) with mean vector m

0
and

covariance matrix C
0
. In the segmentation loop,

the background model is created and updated as
follows. First, the uniform shifting vector di4

t
is

estimated and compensated:

di4
t
"

+
f(x,y)/1

(y(
t
(x, y)!y(

(t~1)
(x, y))

+
(x,y)|I

f (x, y)
, (6)

m
0,t

(x, y)"di4
t
#m

0, t~1
(x, y), (x, y)3I, (7)

where y(
t
(x, y) and m

0,t
(x, y) are the feature vector

and model parameters for the current background
pixel at the spatial position (x, y) and temporal
position t (in succeeding references, y(

t
, m

0,t
or y( , m

0
may be used when (x, y) and/or t information are
not important), and vector di4

t
is a frame level

uniform shifting factor. As indicated in Eq. (6), di4
t

is obtained by averaging the temporal feature vec-
tor di!erence over those background pixels that are
not occluded by the foreground ( f (x, y)"0). How-
ever, the compensation in Eq. (7) updates every
pixel within the background model, including
those pixels occluded by the foreground as well
(in Eqs. (6) and (7) I refers to the pixel set in one
frame). This accounts for the uniform shifting e!ect
of the above-mentioned third factor and is useful to
model those background pixels that are uncovered
by the foreground in motion.

In addition, each visible background pixel has its
statistical parameters updated as

m
0,t

"a * y(
t
#(1!a) * m

0,t~1
, 0)a)1. (8)

This compensates for the above-mentioned second,
third and fourth factors.

Note that unlike the foreground model, each
pixel of background is modeled individually. Or to
be expressed in a uniform way, the feature vectors
for the background model can also be put in the
vector space (x, y,;H,<H) by implicitly including
the spatial coordinate of each pixel (x, y). This ap-
proach can accommodate a variety of complex
backgrounds without limiting them to "t to a struc-
ture like head-and-shoulders foreground.

2.4. Region classixcation

With the available statistical models for fore-
ground and background, it is straightforward to
classify pixels into di!erent regions by their statist-
ical likelihood. In our work, the maximum a poste-
riori probability (MAP) principle is used for the
classi"cation. We have two foreground classes
(shoulder and head, k"1, 2) and one background
class (k"0). To compensate for the shading e!ect,
we choose to use feature vector y("(x, y,;H,<H)
instead of (x, y,>,;,<) for foreground blobs as
well (the major modeling principle remains the
same). The logarithm likelihood that a feature vec-
tor y( belongs to blob k can be expressed as

ln( p( y( DX
k
))"!(y(!m

k
)TC~1

k
(y(!m

k
)

!ln(det(C
k
)), k"0, 1, 2, (9)

where X
k
represents the event that the pixel belongs

to class k. Based on MAP, each pixel is labeled in
the support map as

s(x, y)"argmax
k

(ln(p(X
k
D y( )))

"argmax
k

[ln(p(y( DX
k
))#ln(p(X

k
))], (10)

where ln(p(X
k
))) is estimated based on typical video-

phone pictures.
We use two steps to convert the classi"ed pixels

into meaningful regions. First, the foreground
pixels are processed with morphological "lters to
create a simple connected foreground map f (x, y).
Second, the support map s(x, y) is obtained by blob
growing, i.e., each blob is grown out within the
support of the foreground map from their blob
centers to create a simple connected support map.
This is illustrated in Fig. 4.
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Fig. 4. Blob region growing illustration. Each blob's support
map is grown out from their blob centers on top of the fore-
ground map.

Fig. 6. Flowchart for basic tracking loop procedure.

Fig. 5. Flowchart for initialization loop.

2.5. Blob tracking

In previous sections we outlined the basic idea
of the statistical model. To apply it to the video
segmentation problem, blob models should be
updated and tracked from frame to frame. Some
initialization and controlling mechanisms are

necessary. In this section, we discuss the basic
tracking procedure in two loops: the model initia-
lization loop and the model tracking loop.

2.5.1. Initialization loop
The purpose of the initialization loop is to detect
`head-and-shouldersa type foreground and create
the foreground and background models. Its logical
steps are illustrated in Fig. 5. At the beginning, only
the background scene is captured and a back-
ground model is created. When a foreground en-
ters, the system detects a model deviation and tries
to analyze the size, speed and shape of the possible
foreground and judge the likelihood of being
a head-and-shoulders foreground. When a valid
foreground is detected, a foreground model is cre-
ated and the system enters the tracking loop.

2.5.2. Tracking loop
The #owchart of the tracking loop is shown in

Fig. 6. As discussed in Section 2.4, the major steps
of region segmentation are pixel classi"cation, fore-
ground morphological "ltering and blob region
growing. In addition to these steps, blobs are
tracked with a Kalman "lter. Unlike low-level pixel
classi"cation, blob tracking is carried out at the
model-level with semantic meanings. Although in
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1One pixel in the lower resolution image is mapped into one
M by M block in full resolution image.

this work the major purpose of segmentation is to
get an accurate support map for each blob rather
than to track the semantic information of blob
motion, good modeling and tracking of blobs is still
important because the tracked blobs carry the stat-
istical model parameters, which are important for
support map segmentation.

In this work, each blob is tracked independently
with a Kalman "lter. The observation vector for
blob k includes the blob's center (x

k
, y

k
) and its

statistical width and height (w
k
, h

k
):

YK
k
"(x

k
, y

k
, w

k
, h

k
). (11)

Here w
k

and h
k

are the variance of x
k

and y
k
. They

can be obtained from the feature vector covariance
matrix C

k
, i.e., w

k
"2p

xk
and h

k
"2p

yk
. The dy-

namic model is a discrete Newtonian physical
model of rigid body motion, which has the form

XK (t#*t)"U(*t)XK (t)#m(t), (12)

where XK is the state vector, U is the state transition
matrix and m is the noise term. The 12D state vector
XK and noise vector m contain four variables for the
position of observation vector YK , four for the velo-
city and four for the acceleration, i.e.,

XK (t)"A
>K
<

AB and m(t)"A
m
YK

m
V

m
A
B . (13)

From Newtonian physics, we have

U(*t)"A
I I*t 0

0 I I(*t)2

0 0 I B . (14)

In practice, the Kalman "lter is used to predict
the model parameters of each blob in the next
frame, which is the starting point of region classi-
"cation discussed in Section 2.4. In return, the
result of region classi"cation in the current frame is
used to update the blob model parameters
m

k
, C

k
, k"1, 2, and the background model para-

meters m
0
, C

0
. In addition, it is also used as obser-

vation input to drive the Kalman "lter for the next
prediction.

Sometimes there are situations that the fore-
ground moves too fast for the "lter to follow or just

moves out of the scene, and the system cannot "nd
appropriate support maps at the predicted posi-
tions of the current frame. In these cases, as in-
dicated in Fig. 6, the system automatically changes
its status back to the initialization loop.

3. Hierarchical system design and implementation
discussion

In the previous section, we discussed the blob-
based statistical model and basic blob tracking
procedures. In practice, we found out that updating
the blob model parameters frame by frame in-
volved expensive computation. In addition, be-
cause of the statistical nature of this segmentation
algorithm, noise is inevitable and further "ltering
is always necessary to improve the segmentation
quality. In order to solve these problems while
limiting the overall computation complexity of the
algorithm, we introduce a hierarchical structure at
the system level.

3.1. Hierarchical architecture

With the new hierarchical design, the tracking
loop of Fig. 6 is updated into Fig. 7. As indicated in
Fig. 7, an input image is "rst subsampled by M in
both horizontal and vertical directions. Model
analysis and blob region tracking are carried out in
the resultant lower resolution image. The process-
ing result is then upsampled and further re"ned in
the original resolution to produce the "nal output.

The bene"ts of this hierarchical structure come
from two aspects. First, because the statistical
model is tracked and updated in the lower resolu-
tion image, the computational complexity is
reduced by M2. Second, when the segmentation
result in the lower resolution image is mapped back
to the full resolution image, only the boundary
blocks1 are further processed by the following
"lters that are designed to suppress noise and
improve the boundary quality. All the interior
blocks may be skipped.
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Fig. 7. Flowchart for hierarchical tracking system.

One drawback of the hierarchical structure is
that we have to maintain two versions of the back-
ground model, one in the lower and one in the full
resolution (for the foreground model we can main-
tain just one set of model parameters and convert
them between di!erent image resolutions). Com-
pared with the bene"ts gained, this is not a big
problem.

3.2. Boundary rexnement

In an MPEG-4 context, we evaluate the segmen-
tation boundary quality requirements in two
aspects: spatial smoothness and temporal smooth-
ness. They are addressed in the boundary relax-
ation module and the joint spatial and temporal
median "lter module, respectively. In general, we
refer to these "lters as S/T "lters as shown in Fig. 7.
Note that in this work, we only try to re"ne the
foreground boundary. No e!orts are made to re"ne
the boundary between head-and-shoulder blob
regions. For that part, we use their containing
rectangle boundaries to get an approximation.

As the "rst step of boundary re"nement, pixels in
the boundary blocks are classi"ed based on the
foreground model and background model in the
full resolution layer. After that, morphological "lters
are used to connect the segmentation results in
each boundary block with interior block regions, so
as to produce a simple connected foreground map.

After that, a relaxation procedure is carried out
to improve the spatial smoothness of the fore-

ground boundary. For this purpose, we use a
boundary relaxation algorithm as introduced in
[1]. The relaxation process examines each bound-
ary pixel in foreground map f (x, y), and sees if it
should be #ipped so as to improve the boundary
smoothness. This can be converted to a statistical
decision problem as follows.

First let X
k
, k"0, 1, represent the events

f (x, y)"k, k"0, 1. For each boundary pixel, its
MAP classi"cation function is

ln(p(X
k
D y( ))"ln(p( y( DX

k
))#ln(p(X

k
)). (15)

As discussed before, the "rst term on the right side
can be obtained from Eq. (9). For the second term
ln(p(X

k
)), we de"ne it to be a smoothness measure,

which represents a priori knowledge, i.e., the more
smooth a boundary it makes so that f (x, y)"k,
the higher is ln(p(X

k
)). Because smoothness is a

spatial feature, we de"ne the smoothness measure of
a boundary locally for each of its boundary pixel in
its 3]3 neighborhood as [1] does. The a priori
density p(X

k
) is modeled by a Markov random "eld

considering a 3]3 neighborhood:

p(X
k
)"

1

Z
expM!E(X

k
)N, k"0, 1, (16)

where Z is a normalizing factor and the energy term
E is de"ned as

E(X
k
)"(n

B
(k)B#n

C
(k)C). (17)
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Fig. 8. Illustration of the 3]3 neighborhood used for boundary
smoothness measurement in the boundary relaxation procedure.
&X' is the current boundary pixel. Eight thick bars represent
eight pixel pairs. Inhomogeneous pixel pairs are numbered ac-
cording to their positions: n

B
is the number for those in the

vertical/horizontal positions and n
C

is the number for those in
the diagonal positions.

2For public evaluation purposes, we put all the related
experimental data of this paper on the web at
http://www.ctr.columbia.edu/&luoht/research /region-
based-h263.

In Eq. (17), n
B
(k) and n

C
(k) are the homogeneity

measure of the neighborhood if the current bound-
ary pixel is labeled as k. They are obtained as
follows. Each current boundary pixel constitutes
eight pixel-pairs with its eight neighboring pixels. If
both pixels in a pixel-pair have the same label, this
pixel-pair is a homogeneous pair, otherwise it is
a heterogeneous pair. n

B
is the number of those

inhomogeneous pairs that are in vertical or hori-
zontal positions and n

C
is the number of those in

diagonal positions. B and C are two weighting
factors that represent the distance factor of those
pixel-pairs in di!erent positions in relation to the
boundary pixel under consideration. In general we

should have B"J2C. The 3]3 neighborhood
used for the boundary smoothness measure is illus-
trated in Fig. 8.

After the boundary relaxing, a seven-point 3D
spatial-temporal median "lter is used on the fore-
ground map:

med
t
(x, y)"med

7
[I

t~1
(x, y), I

t`1
(x, y), I

t
(x!1, y),

I
t
(x, y), I

t
(x#1, y), I

t
(x, y!1), I

t
(x, y#1)]. (18)

The purpose of this median "lter is to suppress the
temporal high-frequency noise on the boundary,
which will be quite annoying when the segmented
VOs are played back with an MPEG-4 player.

Note that this "lter introduces a delay of one frame.
For real-time applications, a higher-order median
"lter is not desirable.

3.3. Segmentation experiments

We implemented the segmentation system on
a 200 MHz Pentium PC with an Intel Proshare
videoconference camera and capture card. The al-
gorithm performance was 15 fps (frames per second)
at QCIF size (176]144) and 30 frames per second
at the sub-sampled size (44]36,M"4).

Because of the online feature of our segmentation
algorithm, we could not use standard video seque-
nces in our testing. Instead we captured a testing
sequence with our videoconference system. The
quality might not be as good as those standard
sequences, but it is closer to the quality of real
applications. The sequence is 800 frames in length,
10 fps, and consists of one person with considerable
motion before a static background.2

Fig. 9 shows two segmentation results at the
lower (a) and the full (b) resolution. Note that in
image (b) the gray region labels the tracked head
region while in image (a) the gray region is not used
to enable better observation. In addition, the
boundary between head-and-shoulders regions are
approximated with their containing rectangle
boundaries (for approximation purpose, the bou-
ndary for either rectangles may be used to separate
head-and-shoulder regions). In Fig. 10, we show the
e!ect of boundary relaxation and 3D spatial/tem-
poral median "ltering. In the "rst row from left to
right are three consecutive original frames. The
second row shows their segmented results without
relaxation and "ltering. The third row shows the
"nal results with both relaxation and "ltering.
We can see that in the second row, some noise
on the boundary is produced because part of the
background's color is very similar to that of
the foreground model. However, with boundary
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Fig. 9. Segmentation results at di!erent resolutions: (a) the segmented result of the 260th frame of the testing sequence at the resolution
M"4; (b) the segmented result of the 260th frame at the full resolution. Note that in (b), the head region is labeled with gray color while
in (a) the head region is not labeled in order to o!er better observation. In addition, the boundary between head region and shoulder
region is approximated with their containing rectangles.

Fig. 10. Comparison of "lter e!ects. The "rst row from left to right is three consecutive original frames. The second row is their
segmented result without spatial/temporal "ltering and the third row is the "nal result with spatial/temporal "ltering. We can see that
the temporal high-frequency noise on the boundary is e!ectively removed.
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Fig. 11. Comparison of our model based segmentation algorithm with one of the proposed MPEG-4 VO segmentation algorithms
(Hannover algorithm). (a), (b) are the segmentation results of the 233rd and 317th frame of the testing sequence by our model-based
algorithm. (c), (d) are the segmentation results of the 233rd and 317th frame by the Hannover algorithm.

3Because the Hannover algorithm has several a priori para-
meters, we tried to set them to the best of our knowledge. The
parameters we used are: 5 for threshold for CDMi, 5 for constant
¸ for CDMu and 5]5 neighborhood for morphological pro-
cessing. For detailed meaning of these parameters, readers are
referred to [11].

relaxation and 3D "ltering, the boundaries in the
third row are much smoother, both spatially and
temporally. When played in real time, this high-
frequency boundary noise will be visually quite
annoying.

In order to evaluate our segmentation algorithm
as a possible solution for MPEG-4 VO creation, we
compared it with one of the proposed MPEG-4
segmentation algorithms [11]. [11] is a typical
motion-based segmentation algorithm proposed by
the University of Hannover, which we refer to as
Hannover algorithm in this paper. Fig. 11 illustrates
two typical frames of the segmentation results by
our algorithm and the Hannover algorithm. (a), (b)
are the segmentation results of the 213rd and 317th
frame of the testing sequence by our model-based
algorithm, and (c), (d) are the corresponding seg-

mentation results by the Hannover algorithm.3
Obviously, when the motion of the foreground is
salient, Hannover algorithm produces as good a
result as our model-based algorithm does, but
when the foreground is relative static, the Hannover
algorithm fails.

From the experimental results, we believe the
discussed segmentation algorithm is useful for
MPEG-4 video object creation for videoconference
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applications. The di!erence between this algorithm
and algorithms like the Hannover algorithm is that
our algorithm is speci"cally designed for video-
phone application while the Hannover algorithm is
general purpose. But, as we have mentioned in the
introduction, by limiting the application domain,
we can get more domain knowledge and reduce the
complexity of our algorithm. Only in this way we
can apply the algorithm to real-time video services.

So far we have focused on MPEG-4 video object
creation in our segmentation algorithm design.
This segmentation algorithm is also useful for tra-
ditional DCT-based video coding techniques like
H.263, because of its low complexity and real-time
features. This is perhaps not so straightforward.
The basic idea here is that from the segmentation
result, we have a subjective idea of the input image
before we actually encode it. We can then allocate
more bits to the head region macroblocks (MBs)
and less to the background MBs. This way, we can
use the bits more e$ciently than a uniform MB
encoding that a standard H.263 encoder uses. In
addition, for this application, only MB level seg-
mentation is necessary and no pixel level accuracy
is required. We can run only the subsampled
(M"8) part of the segmentation algorithm and no
boundary re"ning in the full resolution is necessary,
which makes real-time performance easier to
achieve. In the following section of this paper, we
describe in detail our design of a H.263 compatible
encoder that makes use of segmentation results to
improve its bit allocation and rate control.

4. Region-based bit allocation and rate control

4.1. The idea of encoder optimization

In the general framework of MPEG and
H.261/H263 standards, there has been extensive
research on optimal encoder design. This includes
all the `non-standardizeda steps such as coding
model choice, bit allocation, adaptive quantization
and rate control. The possible di!erent choices of
all these steps provide large room for optimization.
In this work, we try to incorporate subjective fac-
tors, which are obtained with the previously dis-
cussed segmentation algorithm, into a traditional

rate-distortion model and design an optimal H.263
compatible encoder in this sense.

Early relevant research can be found in [5,6,8].
In [6], an ellipse detection algorithm was used to
detect the face region in typical head-and-shoulders
videophone sequences and two techniques, i.e.,
bu!er rate modulation and bu!er size modulation
were used in an H.261 compatible encoder to con-
trol the quantization that allocated more bits to the
facial region. Lee and Eleftheriadis [8] extended
this idea in two aspects: one was that it classi"ed the
image into four regions: eye, lip, face and back-
ground rather than two (face and background) as in
[6] and assigned di!erent subjective importance to
each region. The other was that it introduced the
idea of temporal scalability that used di!erent tem-
poral updating rates for di!erent regions. For
example, the lip region was updated at the highest
rate in order to get lip synchronization. The ideas in
these papers are interesting but we also "nd open
problems. First, there is no uniform way to judge
the rate-quality relationship and to choose proper
trade-o!s between rate and distortion in these rate
control algorithms. Second, excessive segmentation
of an image into multiple regions in these algo-
rithms not only increases analysis complexity, but
also brings visual artifacts. Applying di!erent tem-
poral rates to three di!erent facial regions can, in
some cases, be annoying when the decoded video is
played back in real time.

Keeping all these in mind, we designed our
region-based H.263 compatible encoder. We call it
a region-based encoder in this paper. As a compari-
son reference, we "rst brie#y introduce Telenor's
H.263 Testing Model 5 (TM5) [7] in Section 4.2
and then describe our algorithm in Section 4.3.

4.2. Telenor's TM5

Telenor's implementation of TM5 supports most
the coding models of H.263. Here we focus on its
(online) rate control mechanism, which is imple-
mented as follows.
1. The "rst intra picture is coded with Q"16 (de-

fault value, can be set by user), and the bu!er
content is initialized as

bu!er"R/F
5!3'%5

#3R/FR and B
t~1

"BM ,
(19)
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4Or more appropriately, intra and inter MBs, but in this work
we only consider intra and inter transitions at the frame level. In
addition, only baseline mode, no advanced modes like PB mode
are considered in our work.

where R is the target bit-rate, FR is the frame
rate of the source material (typically 25 or
30Hz), F

5!3'%5
is target frame rate, B

t~1
is the bits

spent in the previous frame and BM is the target
number of bits for each frame (under uniform
allocation).

2. For the following pictures the quantizer is up-
dated at the beginning of each new macroblock
line:

Q
/%8

"QM
t~1

(1#D
G
#D

L
),

D
G
"(B

t~1
!BM )/(2BM ), (20)

D
L
"12A

i
+
k/1

B
t,k
!(i/M)BM BNR,

where QM
t~1

is the mean quantizer in the pre-
vious frame, M is the number of macroblocks in
one frame, B

t,k
is the bits spent for the kth MB

in the current frame (time t) and i is the index of
current macroblock.

3. The bu!er content is updated as the following
pseudo-code:

buffer"buffer]B}t;

while( buffer'3R/FR )

M buffer!"R/FR; frame}incr]]; N.

Note that the variable B}t is just previous
B
t

and the variable frame}incr controls the
number of frames skipped from the input video.

The simple designing consideration behind this
scheme is that the available bits are allocated uni-
formly to every frame and every MB. A linear feed
back is used to control the quantizer to make the
actual bit consumption meet to the budget (in
Eq. (20), D

G
controls the bit allocation to frames

and D
L

controls the allocation to MBs). If a frame
uses more bits than allocated, some succeeding
frames are skipped in order to maintain the bu!er
content. Thus this scheme may not provide a "xed
frame rate due to the frames skipped, though it
accepts a target frame rate as an input.

4.3. Region adaptive bit allocation and rate control

In our work, we try to improve the rate control
module of Telenor's implementation of H.263

while still maintaining the bit stream compatibility.
More speci"cally, our contribution comes in three
aspects: bit allocation, temporal adaptation and
adaptive quantization.

4.3.1. Bit allocation
There are two steps in bit allocation: one is to

allocate bits to frames and the other is to allocate
bits to macroblocks. In H.263, there are only I and
P frames but no B frames.4 Because there is no
random access requirement and H.263 is designed
for real-time applications, P frames constitute the
majority in an H.263 stream and I frames are
only inserted to compensate for channel errors. It is
not possible to pre-segment the input video into
frame groups and assign bits to each I and P frame
according to their relative complexity measures as
in [14]. Therefore, in this work, we just allocate bits
uniformly to each frame as TM5 does while con-
centrating on the controlling of bit allocation to
di!erent macroblocks.

Problem. The problem can be expressed as fol-
lows. Given the bit budget B, "nd the optimal bit
allocation B

i
to M macroblocks (i"1, 2,2, M)

that minimizes the overall distortion in an R-D
sense. As [9] pointed out, the bit budget B includes
three portions: B"B

4
#B

.
#B

#
, where B

4
is the

bits needed for header information, B
.

is the bits
needed to code the motion vectors, and B

#
is the

bits for DCT parameter coding. The portion of bits
that we can control is only B

#
. In [9], the bit

allocation between B
#

and B
.

is also discussed
(this means motion compensation should also be
controlled). We do not consider this problem here.
In the remaining part of this paper, B and B

i
refer

to DCT bits only.
Distortion model. In H.263, the DCT coe$cients

within a macroblock are quantized with one quan-
tizer Q

i
. Assuming that the DCT coe$cients are

distributed uniformly within one macroblock, we
use the following expression to measure the coding
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distortion for one frame:

D"

M
+
i/1

b
i
(kQ2

i
), (21)

where kQ2
i

refers to the objective quantization
errors with k being a constant and Q

i
being the

quantizer, b
i

is a subjective importance factor for
macroblock i. In this work, we decide b

i
for each

MB according to the support map s (x, y) obtained
through our segmentation algorithm, i.e., we assign
higher b to those MBs labeled as head region and
lower b to those labeled as shoulder and back-
ground regions.

Encoder model. In this work, we use the following
equation to model the functional relationship be-
tween an H.263 encoder's bit consumption B

i
and

its quantizer Q
i
:

B
i
"a

i
p2
i
Qbi

i
, (22)

where p2
i

is the (motion compensated) standard
deviation of the luminance of the macroblock,
a
i

and b
i

are two constants. According to our
experiment as well as results reported in available
papers [4,14,16], the empirical value of b

i
is in

the range of !1.5 to !2. In practice, we "nd
b
i
"!2 is a good compromise between computa-

tion complexity and modeling accuracy. In addi-
tion, because most motion estimotion modules
produce standard absolute deviation (SAD) as a
byproduct, we use mean absolute deviation (MAD)
in place of standard deviation p to save computa-
tion time. Here the de"nition of SAD and MAD are

SAD"min
$x,$y

G
x/16
+
x/1

y/16
+
y/1

Doriginal(x, y)

!previous(x#dx, y#dy)DH , (23)

MAD"

1

256
SAD, (24)

where (dx, dy) is the motion vector, and orig-
inal(x, y) and previous(x,y) refer to pixel at the
position (x, y) in the current and the previous
frames, respectively. More speci"cally, we use

B
i
"a

I
MAD2

i
Qbi

i
(25)

to approximate previous Eq. (22) in our implemen-
tation. In our experiments, we "nd the behavior of
Eq. (22) model and that of (25) are quite similar but
the latter one is much easier to obtain. In addition,
because both of them are empirical rather than
theoretical, the accuracy of modeling also depends
on proper choice and adaptation of model para-
meters like a

i
, which we will discuss later.

R-D optimization. With distortion model Eq. (21)
and encoder model Eq. (22), it is easy to solve the
R-D optimization problem with Lagrange method:

S"D#jB"

M
+
i/1

D
i
#j

M
+
i/1

B
i
. (26)

Setting RS/RB
i
"0, we have

b
i
a
i
p2
i

B2
i

"!

j
k
"constant. (27)

If we let

w
i
"Jb

i
a
i
p2
i
, (28)

then the optimal bits allocation to each MB can be
obtained as

BK
i
"

w
i

+M
k/1

w
k

BM , (29)

where BM is the average bits allocated to each frame.
This equation shows that the optimal bit allocation
BK
i
to MB i is proportional to its subjective impor-

tant factor b
i
and its objective complexity p2

i
, which

is in accordance with our intuition.

4.3.2. Temporal adaptation
In the bit allocation weight Eq. (28), the subjec-

tive factor b
i
is used to control the bit allocation so

as to introduce spatial adaptation. In most video-
conference cases, the background is relative static
and it is reasonable to reduce its temporal updating
rate while still maintaining good visual quality. The
bene"t is that we can avoid spending bits on vis-
ually unimportant information. In some cases, for
example, when the background itself is static, the
bits we used for the background account for noth-
ing but white noise. Even when there are changes
in the background, it does not bring about much
visual degradation to remove some temporal high
frequencies in the background.
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Fig. 12. Temporal scalability: PO and PF frames illustration. At
the PO frames, only the foreground object's MBs are coded,
while at the PF frames, all the MBs of the whole frame are
coded. Thus the temporal updating frequency of the background
is lower than that of the foreground.

Taking this into consideration, we classify the
P frames in H.263 into PO and PF frames. In PO
frames only the foreground object MBs are coded,
while in PF frames all the MBs in the full frame are
coded. PF frames work as anchors for PO frames
and their temporal relation is illustrated in Fig. 12
where possible I frames are also included. The para-
meter ¹

PF
(time between two PF frames) should

be adjusted according to the estimation of back-
ground motion. In this work we measure ¹

PF
as the

number of PO frames between two adjacent PF
frames. Also note that PO and PF control can be
easily integrated into bit allocation Eq. (29) by
assigning b

"!#,'306/$
"0 for PO MBs and

b
"!#,'306/$

O0 for PF MBs.

4.3.3. Adaptive quantization
In the above discussion, we derived an optimal

bit allocation to each MBs but how to choose
proper quantizers to achieve the allocation remains
a problem. Actually, since the encoder model is
only an empirical one, there are no clear theoretical
functions like Q"f (B) or B"f (Q). In addition,
due to the real-time nature of H.263, it is not
appropriate to introduce trial coding to estimate
quantization model parameters as suggested in [4].
There should always be some online feedback
mechanism in the rate control module in order to
make sure that the actual bit-rate does not exceed
the available bandwidth. In this work, we propose
two adaptive quantization schemes to realize our
bit allocation.

Scheme 1. Scheme 1 is developed based on
Telenor's TMN5 model. We adapt Telenor's feed-
back rate control scheme as follows:

Q
t,i
"QM

t~1, s(i)
(1#D

G
#D

L
), (30)

where

D
G
"(B

t~1
!BM )/(2BM ), (31)

D
L
"4A

i
+
k/0

B
t,k
!

i
+
k/0

BK
t,kBNR. (32)

Compared with Telenor's scheme Eq. (20), we
maintain di!erent average quantizers QM

t~1, s(i)
for

di!erent segmented regions s (i). The idea is that
the quantizers should be similar between neighbor-
ing frames for the same type of regions. Another
change is that we use a di!erent cumulative target
rate +i

k/0
BK

t,k
to generate local adaptive factor, not

a uniform allocation any more.
In the encoder model Eq. (22), parameter a

i
is

assumed to be MB-dependent. In the implementa-
tion of Scheme 1, we try to classify the MBs into
di!erent groups according to their complexity p2

i
:

g(i)"
p2
i

G
5)

, (33)

where G
5)

is a threshold to divide MBs into groups
and g(i) is the group index of macroblock i. The
average a

i
is tracked and updated for each group

individually as a6
t, g(i)

. When encoding MB i at the
time t, we have

a
t, g(i)

"a6
t~1, g(i)

. (34)

Note that in quantization model Eq. (22) we set
b
i
as !2 and only a

i
is used to account for input

adaptation. By grouping the MBs by their com-
plexity and estimating model parameters individ-
ually for each MB group, we can better control the
performance of this empirical model.

Scheme 2. Another way to control the quantizer
Q

i
is to make use of the empirical encoder model

Eq. (22) directly. From Eq. (22), it is easy to derive
the Q

i
expression in relation to bit allocation B

i
:

Q
i
"S

a
i
p2
i

B
i

. (35)

So according to this empirical encoder model, we
can allocate optimal B

i
's as well as the Q

i
's that are

used to realize the optimal bit allocation. In prac-
tice, in order to "t the empirical model to actual
input data distribution, we have to add a linear
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feedback term and set the actual quantizer as

QI
i
"S

a
i
p2
i

B
i

(1#D
G
#D

L
), (36)

where the linear term (1#D
G
#D

L
) is as de"ned in

Eq. (20). In addition, the encoding model parameter
a
i
is also adapted by groups as in Scheme 1.
Implementation issues. In H.263, the encoding

quantizer can be adjusted at three layers: picture
layer (QUANT), group of block (GOB) layer
(GQUANT) and macroblock (MB) layer
(DQUANT). Among them, both QUANT and
GQUANT are 5-bit absolute values, while
DQUANT is a 2-bit value that re#ects the quan-
tizer di!erence from the previous one. It is, there-
fore, not possible to set the quantizer of a macro-
block arbitrarily as indicated in the previous two
adaptation algorithms. The practical implementa-
tion is realized in a constrained domain if a bit-
stream compatibility is desired.

In our implementation, macroblocks are pro-
cessed by GOBs. Each GOB contains one horizon-
tal stripe of MBs. First for each MB i within the
current GOB, its Q

i
is calculated according to Eq. (30)

or (35). An average quantizer is then obtained by

QM " +
i|GOB

Q
iN +

i|GOB

1. (37)

The GOB quantizer is set to QM and DQUANT for
each MB is then set in the best possible way.

In videoconference applications, the MBs in a
GOB (a horizontal MB stripe) tend to belong to
two classes: either the background and the head
regions or the background and the shoulder re-
gions. Because the background is assumed to be
relative static, background MBs are skipped in
most of the cases and they do not in#uence the
GOB quantizer QM as de"ned in Eq. (37). Therefore,
QM is obtained only for one class of MBs, either
head region MBs or shoulder region MBs. These
MBs tend to have similar quantizers and 2-bit
DQUANT is su$cient to represent their di!erence.

4.4. Experimental results

We implemented a simulation version of our
region based H.263 encoder on a PC with a hard-

ware system as described in Section 3.3. As men-
tioned already, because of the online feature of our
segmentation algorithm, we could not use standard
video sequences in our testing. Instead we used the
800-frame testing sequence described in Section 3.3
and all the experiments in this paper were based on
this testing sequence.

In the experiment, our region-based algorithm
was compared with Telenor's TM5 [13]. In our
algorithm, two di!erent adaptive quantization
schemes are used to realize the optimal bit alloca-
tion budget as discussed in Section 4.3.3. In the
following discussion, we refer to these two algo-
rithms as Scheme 1 and Scheme 2. We use tmn-2.0
to represent Telenor's standard H.263 implementa-
tion because their latest software implementation
is Version 2.0. In addition, all the three algorithms
used in the experiments used the baseline mode,
and no advanced modes are used. The target frame
rate was 10 fps, and the bit-rate was set to 32 kbps
(kilo bits per second). The parameters used in our
algorithm were G

5)3%4)0-$
"200, ¹

PF
"30. The sub-

jective factors used were b
)%!$

"4, b
4)06-$%3

"1,
b
"!#,'306/$

"0 for PO frames and b
)%!$

"1,
b
4)06-$%3

"1, b
"!#,'306/$

"1 for PF frames.
Fig. 13 shows the bit allocation of a typical PO

frame by one of our region-based algorithms
(Scheme 1). We number the images from left to right
and top to bottom. Fig. 13(a) is an original frame
(the 295th frame of the testing sequence), Fig. 13(b)
is the gray scale display of the MAD (mean abso-
lute deviation) of MBs (the brighter, the bigger),
Fig. 13(c) is the bit allocation budget according to
Eq. (29) and Fig. 13(d) is the actually achieved bit
allocation by the adaptive quantization Scheme 1,
which was discussed in Section 4.3.3. Note that (d)
is not strictly equal to (c) due to the error in the
empirical encoder model and the nature of the
feedback control mechanism that is used to "t the
model with the actual data.

To evaluate the encoder quality better, we intro-
duce the concept of region-based PSNR and de"ne
it as

PSNR"10 log
10G

2552S(s
k
)

+
sk (x,y)/1

[I(x,y)!IK (x, y)]2H,
where I(x, y) and IK (x, y) are the original and the
decoded image pixel's scalar value (only luminance
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Fig. 13. Bit allocation of a typical PO frame by one of our region based algorithm (Scheme 1). (a) An original frame, (b) the grayscale
display of the MAD (mean absolute deviation) of MBs (the brighter, the bigger), (c) the bit allocation budget according to Eq. (29) and
(d) the actual achieved bit allocation by adaptive quantization Scheme 1.

factor > is considered in this experiment), S(s
k
) is

the size of blob k's support map and can be de"ned
as

S(s
k
)" +

(x,y)|I
s
k
(x, y).

With region-based PSNR, we try to compare the
decoded image quality of our algorithm with that
of the Telenor's standard H.263 algorithm. The
testing sequence we used for explaining here is
a 100-frame sequence (from the 220th to the 320th
frame of the 800 frame testing sequence). To have
a fair comparison of the rate control mechanism,
we treat the decoded video frame by frame. That is,
for those frames skipped by the encoder, their
PSNR is calculated with the repeated previous
frame at the decoder. Fig. 14 shows the frame-by-
frame comparison of the head region PSNR of the

three algorithms and Fig. 15 is the frame-by-frame
comparison of the regular PSNR (calculated over
the whole frame) of three algorithms. From these
two "gures, we see that our algorithms (both
Scheme 1 and Scheme 2) improve the head region
PSNR by about 1}1.5 dB in the whole testing frame
range as compared with tmn-2.0. This gain comes at
the expense of the loss of the regular PSNR of our
algorithms by about 0.5}1dB, as compared with
that of tmn-2.0. The regular PSNR loss is due
mainly to the PSNR loss in the background region,
which is always the biggest region in the image and
thus has the largest in#uence on the overall PSNR
result. However, we also notice that within the
comparing frame range, tmn-2.0 skips more frames
than our algorithms, which is re#ected in the fre-
quent negative peaks in its PSNR curve. In Fig. 16
the bit-rate produced by the three algorithms are
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Fig. 14. Frame-by-frame comparison of the head region PSNR
of the three algorithms. The light solid curve is for Scheme 1; the
dark solid curve is for Scheme 2 and the dashed curve is for the
tmn-2.0 algorithm.

Fig. 15. Frame-by-frame comparison of the frame level PSNR
of the three algorithms. The light solid curve is for Scheme 1; the
dark solid curve is for Scheme 2 and the dashed curve is for the
tmn-2.0 algorithm.

Fig. 16. Comparison of the bit consumption of the three algo-
rithms. The light solid curve is for Scheme 1; the dark solid curve
is for Scheme 2 and the dashed curve is for the tmn-2.0 algo-
rithm. The average bit-rate of tmn-2.0 is higher than that of our
two algorithms. That is because it skips more frames and thus
has more bits to use for each coded frame.

compared. The curves indicate that both Scheme 1
and Scheme 2 produce smoother rate than tmn-2.0.
This means the alternation of PO and PF frames
scheme in our region-based algorithm does not
bring about higher bit-rate #uctuation than tmn-
2.0, and the feedback rate control scheme used

works well. In Fig. 16, the average bit-rate of tmn-
2.0 is higher than that of our two algorithms. That
is because it skips more frames and thus has more
bits to use for each coded frame. In addition, when
we compare our Scheme 1 and Scheme 2, we can
see that Scheme 1 is a little bit better than Scheme 2
on the smoothness of the bit-rate produced, never-
theless their PSNR behaviors are quite similar.

To evaluate the PSNR performance more accu-
rately, we list the frame-by-frame average of the
PSNR within the 100-frame range for all the three
algorithms in Table 1. In Table 1, we can see that
both Scheme 1 and Scheme 2 encode about ten more
frames than tmn-2.0. This means as a rate control
algorithm, both Scheme 1 and Scheme 2 are better
than tmn-2.0. In addition, due to their region adap-
tive bit allocation, both our algorithms produce
higher head region PSNR than tmn-2.0, the di!er-
ence is about 1 dB, averaged over the 100 frames. In
the regular PSNR sense, our algorithms' perfor-
mance is only about 0.2 dB below that of tmn-2.0.
Unlike the regular PSNR curve in Fig. 15, the
average regular PSNR drop of our algorithms is
less because tmn-2.0 skipped more frames, which
penalized itself in the average performance
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Table 1
Comparison of compression e$ciency of our algorithm and that of the standard H.263. Rate is in kilo bit per second, PSNR is the peak
SNR of the entire frame in dB, PSNR-b is PSNR of the background region, PSNR-h is PSNR of the head region and PSNR-s is the
PSNR of the shoulder region

Coded frames Rate (kbits/s) PSNR PSNR-head PSNR-s PSNR-b

Scheme 1 91 31.84 32.86 33.66 29.72 35.75
Scheme 2 90 32.04 32.84 34.02 29.25 36.40
Tmn-2.0 79 32.26 32.98 32.75 29.94 36.51

Fig. 17. Comparison of a typical pair of reconstructed frames. (a) The reconstructed 260th frame (of the testing sequence) with Scheme 1;
(b) the reconstructed 260th frame with tmn-2.0. The facial region of the left image (a) is clearer than that of the right image (b).

evaluation. Obviously, because of the relative
amount of PSNR changes, we believe this result of
our algorithm is surely interesting for most video-
conference applications.

Fig. 17 compares two reconstructed frames by
the region-based algorithm Scheme 1 (left) and
tmn-2.0 (right). The region-based algorithm exhibits
better subjective quality in the head and facial
region. In addition, the PO and PF alternation
maintains decent background quality and the over-
all trade o! is bene"cial to the subjective quality
evaluation.

Because we did not have source code for a real-
time H.263 encoder, we did not implement a real-
time system that combines the segmentation and
H.263 encoding. In our experiment, we used
Telenor's H.263 source code, which by itself is
meant for simulation purpose and needs much op-
timization for a real-time performance. Thus an
experimental result for the complexity of our
region-based H.263 encoder is not yet available.

However, as our segmentation algorithm runs at
30 fps for subsampled QCIF size video and most
commercial H.263 software run at around 20 fps for
QCIF video on average Pentium PCs, it is reason-
able to believe that we can combine the segmenta-
tion and H.263 encoding into one system and still
attain the frame rates around 8}10 fps for QCIF
video. We expect to do this work in the near future.

5. Conclusion

In this paper, we proposed a simple online video
segmentation algorithm for videophone applica-
tions. This algorithm uses feasible limitation on its
application domain but gets good results with rela-
tively low computational complexity. Because of
its low complexity and real-time performance, this
segmentation algorithm is especially useful for in-
troducing some degree of intelligence into real-
time video coding. One direct application of this
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segmentation algorithm is MPEG-4 VO creation.
Another application is to apply this segmentation
algorithm to traditional DCT-based video coders.
In our experiment, an H.263 compatible simulation
encoder is implemented that makes use of the seg-
mentation results in its rate control. Spatial and
temporal adaptation are introduced and an im-
provement in subjective quality is observed. Our
work shows that it is possible to combine the seg-
mentation and traditional coding systems into an
integrated intelligent coding system while still
maintaining real-time performance on an average
PC platform.

An interesting point worth noting is that we can
use the discussed segmentation algorithm as an
optional module for traditional videoconference sys-
tems. That is, when the segmentation module loses
track or cannot "t the detected foreground to its
internal blob model (for example, when there are
multiple persons in the scene), it turns itself auto-
matically back to the initialization loop and the
H.263 encoder in the system works in its regular
mode. However, when the segmentation module
"nds its expected foreground successfully and
changes back to the tracking loop, the segmenta-
tion output is then available as an option to
support region-based rate control for the H.263
encoder. This way, our segmentation algorithm can
be incorporated into general-purpose videocon-
ferencing systems without any concern that the
tracking failure of the segmentation module will
cause any negative problems to the whole system.
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