
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XXXX, NO. XXXX, XXXX 2003 1

Optimal Data Partitioning of MPEG-2 Coded Video
Alexandros Eleftheriadis Senior Member, IEEE, and Pankaj Batra, Member, IEEE

Abstract— We analyze the problem of optimal data partitioning
of MPEG-2 coded video in an operational rate-distortion context.
The optimal algorithm is characterized and shown to have high
complexity and delay. A causally optimal algorithm based on
Lagrangian optimization is proposed, that optimally solves the
problem for intra (I) pictures, and provides an optimal solution
for predicted/interpolated (P/B) pictures when the additional
constraints of causal operation and/or low-delay are imposed.
A memoryless version of the algorithm, theoretically optimal for
intra-pictures only, is shown to perform almost identically but
with significantly less computational complexity. Finally, a fast,
suboptimal algorithm using purely rate-based optimization is also
proposed, and is shown to perform quite close (within 1 dB) to
the causally optimal one. Experimental results are provided using
actual MPEG-2 coded video bitstreams.

Index Terms— Data partitioning, Dynamic rate shaping,
Transcoding, Operational Rate-Distortion Theory.

I. INTRODUCTION

T HE traditional problem in video coding for the past
several decades has been that of compression: describe

the signal with as few bits as possible. The signal is treated as
a single waveform, with compression employing techniques
such as transform and/or prediction [1], [2] and resulting
in a lossy representation. In several cases, however, it is
beneficial to segment the original signal into multiple parts,
and handle each one independently. Such an approach was
originally applied to speech using the so-called sub-band
coding approach [2], which partitions the signal into multiple
frequency bands. The primary motivation is that, since the
human aural system perceives the various frequency bands
in different ways, one could apply different compression
techniques to each of the sub-bands.

A more general application of this principle is the so-
called pyramidal, or hierarchical approach [3]. Here the signal
is again decomposed into a number of different layers, but
now each layer represents a successive refinement of the
previous one. During compression, each layer is formed by
compressing the difference between the original signal and its
reconstructed version up to the particular layer. Consequently,
an equivalent point of view is that each layer represents
the compression error of its immediately lower layers. This
representation is again typically (but not necessarily) lossy,
hence leaving a residual compression error. In sub-band coding
approaches, the individual layers are orthogonal to each other
(or approximately so, depending on the filter bank used). For
this reason, compression of the different layers can occur in
parallel.

Manuscript received XXXX XXXX, XXXX; revised XXXX XXXX,
XXXX.

The authors are with the Department of Electrical Engineering, Columbia
University. P. Batra is also with SMARTS, Inc.

The benefits and applications of both approaches are nu-
merous. A key feature is that they can facilitate interoper-
ability. A classical example from the analog world is that
of monochrome and color television receivers: the base layer
here is the luminance signal (the monochrome component),
while the added layers are the chrominance. The two layers
are transmitted separately (modulated at different frequencies),
and hence allow monochrome receivers to process color sig-
nals by “decoding” only the luminance part.

A more modern example from the digital domain is com-
patible High Definition Television coding: a layered approach
allows the base component to be compatible with standard
resolution television receivers, and hence a single signal can
be used to service both systems.

Another important feature of layered compression is that it
can be made robust to channel errors. In particular, one can
associate a better transmission environment for the base layer,
and less protected ones for the higher layers. In some trans-
mission environments this association is directly supported.
In packet-based networks for example, it is possible to mark
higher layer packets so that, when congestion is created in
intermediate routers or switches, they are dropped first. In
systems that are not capable of prioritized transmission, one
can essentially emulate the same effect by using different
levels of forward error correction. By utilizing more efficient
error-correcting codes for the lower layers, one can ensure—
given some assumptions about the channel “noise”—that the
base layer will arrive intact at the receiver. Examples of
such channels are over-the-air broadcast, as well as individual
virtual circuits within packet-based networks.

A significant drawback of layered approaches is that they
are, in general, less efficient than their single-layer counter-
parts. In other words, for a particular signal to noise ratio
(SNR), it is better to compress a signal using a single layer
than multiple ones. “Better” here implies that fewer bits
are required to represent the signal. In several applications,
however, this is acceptable due to the added flexibility. We
should also note that layered approaches also tend to be much
more expensive to implement that single-layer ones, due to
the added encoding and decoding complexity.

From an applications perspective, the most important draw-
back of layering is that it is embedded in the encoding method.
In other words, the layers can only be constructed during the
encoding process; doing so at a later stage would require
significant computational resources, in essence consisting of
full decoding and recoding. There are several reasons, how-
ever, to desire a layered structure even without support from
the encoder. First, due to the cost of hierarchical (or scal-
able) encoding, it is likely that single-layer, general-purpose
encoders will dominate in actual systems. Second, the exact
partitioning point in terms of bit rates is not obvious, due

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XXXX, NO. XXXX, XXXX 2003 2

to the potentially large number of channel types over which
the signal may be transported. Finally, due to the loss in
compression efficiency it is likely that, in applications such
as video-on-demand, only a single-layer high-quality version
of the signal will be utilized (stored for retrieval by the users).
It is then important to examine approaches in which layering
is provided after encoding has already taken place.

In this paper we examine one such approach, called “data
partitioning”, which is applicable to any block-based, trans-
form coding scheme. Our primary focus will be the MPEG-
2 coding scheme [4], which provides direct support in its
bitstream syntax to effect data partitioning, and in which
partitioning was first introduced.

We analyze the problem of optimal data partitioning using
an operational rate-distortion approach. The optimal algorithm
is characterized, and is shown to have significantly high
complexity and delay, as a result of the temporal structure
of predictive compression. A “causally optimal” algorithm
based on Lagrangian multipliers is described; it optimally
solves the problem when the additional constraints of causal
operation and/or low-delay are imposed. A memoryless ver-
sion of the algorithm, theoretically optimal for non-predictive
compression only, is shown to perform almost identically but
with significantly lower computational complexity. Finally, a
fast, suboptimal algorithm using “rate-based” optimization is
also proposed, and is shown to perform quite close (within 1
dB) to the causally optimal one. We should note that data
partitioning can be applied to potentially any compression
scheme; although the theoretical tools would be identical to
those presented here, the performance characteristics may be
significantly different.

The structure of the paper is as follows. In Section II we
introduce the problem of data partitioning, and formulate it in
an operational rate-distortion context. In Section III we present
the optimal solution for non-predictive coding, whereas in
Section IV we analyze the more general predictive coding
case. In both cases we present experimental results using
actual MPEG-2 video bitstreams. The paper concludes with
a summary of the key results presented and a discussion
of their importance for actual applications. It is assumed
that the reader is familiar with the algorithmic foundation
and bitstream syntax of MPEG. An overview is presented
in [5], while detailed descriptions can be found in [6], [7];
the standards themselves are documented in [8] (MPEG-1)
and [4] (MPEG-2).

II. THE DATA PARTITIONING PROBLEM

A. Data Partitioning

Data partitioning is a feature of the MPEG-2 standard that
provides for the segmentation of a coded signal bitstream into
two components or partitions [4], [6], [9], [10]. It can be a
very effective tool for the transmission of video over chan-
nels that allow selective protection of each of the partitions.
Channels of this type can be implemented, for example, using
increased forward error correction, or employing high priority
transmission in an ATM-based networking environment. By
transmitting the most critical information with high reliability,

ENCODER DP DECODER

CHANNEL 1

CHANNEL 0

DM

Partition 0

Partition 1

Data
Merging

Data
Partitioning

x y ŷ

p0

p1

B

B<B^

Fig. 1. Block diagram of a Data Partitioning system.

i.e., over the highest quality channel, the average quality of
the signal reconstructed at the receiver can be significantly
increased for the same level of channel distortion. This feature
is one of the major benefits of pyramidal or—more generally—
hierarchical, multi-layer coding schemes.

An important characteristic of data partitioning is that it can
be employed even after encoding has taken place, in contrast
with other hierarchical approaches, such as the SNR, spatial,
or temporal scalability modes of MPEG-2 [4], [6], or the
embedded DCT coding approach proposed in [11]. This is
because the encoder does not need to maintain a prediction
loop for each signal layer, a necessary requirement for a pyra-
midal scheme in which each coding layer is an enhancement
of its previous one. As a direct consequence, it is also less
robust in the sense that neither partition is self-contained;
loss of information in either one will cause error propagation
and accumulation during the decoding process if temporal
predictive/interpolative modes are used. As we will see later
on, error accumulation can in fact be kept under control. Data
partitioning and its close cousin SNR scalability were first
supported in MPEG-2 and later in a somewhat different form
of SNR scalability called fine granular scalability in MPEG-
4 [12]. MPEG-4 has also adopted a data partitioning mode to
aid error localization and enable better resychronization. The
idea used is to rearrange the bitstream elements (DC and AC
coefficients, motion vectors, headers etc.) into groups based
on their sensitivity to errors. The approach we will take in
this paper is somewhat generic, and applicable to any motion-
compensated DCT based codec.

The system diagram of the data partitioning scheme is
shown in Figure 1. In between an MPEG-2 encoder/decoder
pair, the bitstream (assumed here to be coded at the constant
rate of B Mbps) is split into two parts, each being transmitted
on a different “channel”. In this paper we assume that channel
0 is a perfect one, i.e., it exhibits no losses, errors, or
insertions. We also assume that it has a given fixed available
bandwidth B̂ < B. Channel 1 is assumed to exhibit arbitrary
stochastic behavior.

In other words, we are given a bitstream of bit rate B, but
our communication resources only allow us to reliably transmit

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XXXX, NO. XXXX, XXXX 2003 3

breakpoint

picture

slice

macroblock

DCT Block

0,0

7,7

0

0

0

5

run-length

partition 0

partition 1

Fig. 2. Breakpoint position in the zig-zag pattern of DCT coefficients.

at a bit rate of B̂. The problem is then how to optimally split
the bitstream into two parts, the base one complying with the
rate constraint B̂, so that the quality of the decoded signal at
the receiver is maximized.

Partitioning is performed at well-defined points in the
bitstream syntax [4], called breakpoints. These can occur at
various levels of the bitstream hierarchy. For our purposes, and
to ensure that partition 0 is independently decodable, we will
constrain the allowable breakpoint positions so that critical
quantities such as macroblock address increment (indicating
the relative position of a macroblock with respect to the
previously coded one) and DCT DC differential values (for
intra-coded macroblocks) are included in partition 0. As a
result, partitioning will only affect the number of coefficient
run-length codes that will be carried in partition 0, while the
rest will be assigned to partition 1. This is depicted in Figure 2.

Note that, in MPEG-2, the breakpoint value is the same for
all blocks of a given slice. The breakpoint value, i.e., a fixed-
length code indicating the number of run-length codes that
are included in partition 0, is included in the slice header.
Sequence headers are replicated in partition 1 to increase
robustness, and hence the total rate for the transmission of the
signal is slightly increased. We now proceed to a mathematical
formulation of the problem.

B. General Problem Formulation

Let pi be the signal of the i-th partition, and let R(·) be
its bit rate. Denote by y the coded video signal and by ŷ
the output of the decoder given R(p0) ≤ B̂. The problem of
optimal data partitioning can then be expressed as follows:

min
R(p0)≤B̂

{‖y − ŷ‖} (1)

The metric ‖ · ‖ above denotes the squared error criterion:

‖x‖ ≡ xT x =
N−1∑
i=0

x(i)2 (2)

and is applied only in the luminance component. The rate
constraint, however, refers to all three color components.

The optimization window in (1) is not specified, and it can
span from just a part of a picture, up to any number of pictures.
In general, and taking into account that data partitioning as
described here is performed after encoding has taken place, it
is desirable to keep the end-to-end delay low. Computational
complexity considerations impose additional constrains on the
window length, as will be made evident later on. Consequently,
we will typically be interested in solutions of (1) that consider
up to a single complete picture.

An important aspect of the problem not readily evident
in (1) is its recursive nature, caused by the corresponding
recursive process with which y and ŷ are generated (decoded)
when P and B pictures are involved. In the following we
separately consider the two cases: optimal data partitioning
in non-predictive coding (I pictures only), and optimal data
partitioning in predictive coding (I, P, and B pictures).

III. NON-PREDICTIVE CODING

A. Problem Formulation

In non-predictive or intra-picture only partitioning, there
is no temporal dependence between pictures. Consequently,
the partitioning distortion will simply consist of the DCT
coefficients that were assigned to partition 1. Since the DCT
matrix C is unitary, i.e.,

CT C = I (3)

the energy of the signal in the spatial domain is equal to
its energy in the transform domain. In other words, and
considering the one-dimensional case for simplicity, if:

X = Cx (4)

then

xTx ≡
N−1∑
i=0

x(i)2 =
N−1∑
i=0

X(i)2 ≡ XTX (5)

Now let b denote the truncation point, i.e., all DCT coefficients
from b up to N − 1 are moved to partition 1. Considering the
truncated—in the DCT domain—representation x̃ of x and
using (5) we have:

‖x − x̃‖ = ‖X − X̃‖ =
N−1∑
i=b

X(i)2 (6)

eq. (6) provides an expression for the truncation, or partition-
ing distortion directly in the DCT domain. Generalization to
two dimensions is straightforward.

Let us now consider the partitioning distortion in two
dimensions for a group of blocks. We recall that the breakpoint
values are identical for all blocks of a given slice i (Section II-
A). This value will be denoted by bi, and indicates that the
bi-th and higher-order DCT run-length codes of all blocks
of this slice will be removed and placed in partition 1. The
domain of bi is the set of values {1, 2, . . . , 64}. Since blocks
are transformed independently, the partitioning distortion for
a set of blocks will simply be the sum of the partitioning
distortions of the individual blocks.

In the following, we shall be denoting the DCT coefficient
of the k-th run-length of block j of slice i by X i

j(k), and the

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XXXX, NO. XXXX, XXXX 2003 4

set of blocks that belong to slice i by Si. We can express the
partitioning distortion for a particular slice as:

Di(bi) =
∑
j∈Si

∑
k≥bi

X i
j(k)

2
(7)

Note that this is a function of the breakpoint value b i. Since
error calculations are only done on the luminance component,
we will assume that, for chrominance blocks,

Di(bi) = 0 (8)

Returning to eq. (1), we can now explicitly express the
problem of minimizing the partitioning distortion D as:

min
R(p0)≤B̂

{‖y − ŷ‖} ⇐⇒ min
S∑

i=1
Ri(bi)≤B̂

{
S∑

i=1

Di(bi)

}
(9)

where Ri(bi) denotes the rate required to encode slice i
when the breakpoint value bi is used, and S is the total number
of slices considered (may span several pictures).

Our objective here is to find those values b∗i , i = 1, . . . , S
that minimize the distortion as given in (9). An exhaustive
search would be clearly impossible, as the number of possible
combinations that would have to be examined can be huge
(64S). We recall that data partitioning is typically applied im-
mediately prior to transmission (when the value of B̂ becomes
known), and hence complexity and delay considerations are
very important.

B. The Optimal Algorithm

This constrained minimization problem can be solved using
the approach of Lagrange multipliers [13]. A similar algo-
rithmic approach but in a different context has been used
in [14]–[16]. The Lagrange multipliers approach converts the
constrained optimization problem to an unconstrained one, by
adding more dimensions to the parameter space. Consider the
following problem. Given a constraint B, find

min
b∈A

D(b) (10)

subject to
R(b) ≤ B (11)

Then the following theorem holds [13].
Theorem 1: For any λ ≥ 0, the solution b∗(λ) to the

unconstrained problem

min
b∈A

{D(b) + λR(b)} (12)

is also the solution to the constrained problem (10)–(11) with
the constraint B = R(b∗(λ)), that is, with R(b) ≤ R(b∗(λ)).

The proof is quite simple and can be found in [13]. Note that
Theorem 1 does not guarantee any solution to the constrained
problem (10)–(11) (in other words, the two problems are
not equivalent). It only indicates that for every nonnegative
λ, there is a corresponding constrained problem for which
the solution is identical to that of the unconstrained one. If,
however, R(b∗(λ)) happens to be equal to B, then b∗(λ) is
the desired solution for the constrained problem.

Since the constraint B in our problem is given (the reliable
channel bandwidth B̂ in the notation of (9)), our algorithm will
have to find an appropriate value for λ so that R(b∗(λ)) = B.
Since the domain of b in our case is discrete, such an exact
solution may not be attainable. We will consequently be
satisfied with a solution for which R(b∗(λ)) is as close as
possible to B. In fact, there can be at most two fractional
values in the optimal solution in the linear relaxation of
the resulting integer problem. The above method essentially
rounds the linear optimal solution so that the rate constraint
is not violated [17], [18].

Returning to our original problem, we can rewrite (9) as an
unconstrained problem as follows

min

{
S∑

i=1

Di(bi) + λ
S∑

i=1

Ri(bi)

}
(13)

By defining the per-slice quantity

Li(λ, bi)
def= Di(bi) + λRi(bi) (14)

the above can be rewritten as

min

{
S∑

i=1

Li(λ, bi)

}
(15)

We observe that, given a particular λ, the minimization
problem above can be solved independently for each slice,
since Li(λ, bi) ≥ 0. In other words, each Li can be min-
imized independently of the others. This structure helps to
significantly reduce the complexity of the problem. Within
each slice, one can even use exhaustive search to obtain the
optimum breakpoint value b∗i , since the possibilities are limited
(64 in the worst case). Hence the complexity of solving the
Lagrangian problem becomes proportional to 64S, where S is
the number of slices.

In order to find the optimal solution b∗i , however, we
must also find the appropriate value λ∗ for λ. This can be
accomplished using an iterative bisection algorithm [14], [15],
[19], [20]. The algorithm starts with two initial estimates for
λ (typically its extreme values 0 and ∞), and continuously
refines its estimate until convergence is achieved.

Figure 3 illustrates the procedure for the simple case of
a single slice. The graph shows the various rate-distortion
points (marked with “x”) when different breakpoint values are
selected. For example, point A (first from the left) corresponds
to the breakpoint value b = 0, i.e., to the case where all
DCT coefficients are carried in partition 1. This gives rise to a
particular partitioning distortion D and rate R that is required
to represent the slice, as depicted in the figure. The rate is
non-zero, since there are also overhead bit for headers etc.
Similarly, point C corresponds to the breakpoint value b = 2.
Since more DCT coefficients are included in partition 0, the
rate is slightly increased but the distortion is reduced. Hence
the R(D) curve1 is monotonically non-increasing. The curve
does not necessarily have to have 64 points, since typically
only a small number of run-lengths are needed to encode each
block.

1Although the term “R(D) curve” is used in this paper, we should note
that, strictly speaking, it is imprecise as it implies continuity.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XXXX, NO. XXXX, XXXX 2003 5

R

D

λ=|∆D/∆R|
B

λl=0

λu=∞

A

BC

^

Fig. 3. Overview of the bisection algorithm.

We should note that these R(D) curves are not results
of a stochastic minimization problem as in rate-distortion
theory [21], [22], but discrete point curves that result from
actual compression and differ from slice to slice. This is the
reason why the term “operational” rate distortion minimization
is used to differentiate it from the stochastic case (an R(D)
curve obtained from actual data is shown in Figure 4).

As initial values for λ we select the two extreme cases
λl = 0 and λu = ∞ (the subscripts are for “lower” and
“upper’ respectively). In the former case the minimum is
achieved by independently minimizing the distortion, and
hence the optimal breakpoint for this value of λ (denoted
by b∗(λ)) is obtained by using the maximum possible value
of b: b∗(0) = bmax ≤ 64. This solution is indicated at
point B in Figure 3. In the case λu = ∞, the minimum is
achieved by independently minimizing the rate, corresponding
to b∗(∞) = 0 or point A of Figure 32. At points A and B we
also show the lines that pass from these points and have as
a slope the negative value of their corresponding λ. Observe
that these points minimize the expression: D(b) + λR(b) + c,
and hence for some value of the constant c (for the particular
λ) the optimum solution is on the line, while all other points
are above it.

We observe that our initial estimates R(λl) and R(λu)
contain the desired target rate B̂, which ensures that the
problem is feasible. The next step is to select a new value
for λ, which can be done in any number of different ways.
Lacking any a priori information on the R(D) curve, and given
its high variability from slice to slice, a plausible selection
is the slope of the line segment interconnecting our original
points A and B. We thus have:

λnext =
D(λu) − D(λl)
R(λl) − R(λu)

(16)

Next, we minimize D(b) + λR(b) for this particular λ, and
obtain as a solution, say, point C. Note that the new optimal
breakpoint value will be between those of points A and B.

2Using this formulation, and for purposes of precision, the rate should be
exactly 0; one can always, however, subtract the overhead bit rate from the
rate constraint B̂, ensuring this way that R(0) = 0.

We then examine which of the intervals

[R(b∗(λu)), R(b∗(λnext))) and (R(b∗(λnext)), R(b∗(λl))]
(17)

contains our target bit rate B̂, and repeat the procedure from
the start using these new values of λ as starting points. If it
turns out that R(b∗(λnext)) = B̂ then we have found an exact
solution. In practice, convergence will occur when the new
R(D) point coincides with one of the initial two points (the
point that gives the lower rate is chosen).

We now present the detailed description of the algorithm,
applicable to any number of slices. Since in an actual im-
plementation it is more convenient to deal directly with the
number of bits instead of the rate, in the following we can
consider that rate-related quantities refer to just quantities of
bits. The two are proportional to each other, related by a
normalization constant, and hence the two interpretations are
equivalent.

We denote by b∗i (λ) the optimal breakpoint for slice i for
the particular value of λ, and R∗

i (λ) and D∗
i (λ) the optimal

rate and distortion respectively of slice i for the given value
of λ, i.e., we have:

R∗
i (λ) def= Ri(b∗i (λ)) and D∗

i (λ) def= Di(b∗i (λ)) (18)

We also denote by Rbudget the target bit budget for the
particular set of slices {Si}. We should note that although
the average rate of partition 0 has to be less than or equal
to B̂, there is flexibility on how the target bit budget for any
given set of slices is allocated.

Lagrangian Minimization Algorithm

Step 1: Initialization: Set λl = 0 and λu = ∞. If the
inequality:

S∑
i=1

R∗
i (λu) ≤ Rbudget ≤

S∑
i=1

R∗
i (λl) (19)

holds as an equality for either side, an exact solution has been
found. If the above does not hold at all, then the problem is
infeasible (this can happen if the target rate B̂ is too small).
Otherwise go to Step 2.

Step 2: Bisection and Pruning: Compute:

λnext :=

∣∣∣∣∣
∑S

i=1[D
∗
i (λu) − D∗

i (λl)]∑S
i=1[R

∗
i (λu) − R∗

i (λl)]

∣∣∣∣∣ (20)

and find R∗
i (λnext) and D∗

i (λnext) such that B∗
i (λu) ≤

B∗
i (λnext) ≤ B∗

i (λl).

Step 3: Convergence Test: If

S∑
i=1

R∗
i (λnext) =

S∑
i=1

R∗
i (λu) or

S∑
i=1

R∗
i (λnext) =

S∑
i=1

R∗
i (λl)

(21)
then stop; the solution is B∗

i (λu), i = 1, . . . , S. If

S∑
i=1

R∗
i (λnext) > Rbudget (22)

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XXXX, NO. XXXX, XXXX 2003 6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

500

1000

1500

Bits Per Pixel

M
ea

n
S

qu
ar

ed
 E

rr
or

 (
Y

 o
nl

y)

Fig. 4. Slice 20 (full-width, frame 0) from “Flower Garden”, coded at 24
Mbps (x) and 12 Mbps (o).

then λl := λnext, else λu := λnext.

The bisection algorithm operates on the convex hull of the
R(D) curve of each slice. Consequently, points which lie
above that, and hence are not R(D) optimal, are not con-
sidered by the algorithm. Figure 4 shows the R(D) plots for
an actual slice (frame-based, intra coding of “Flower Garden”
at 24 and 12 Mbps, slice 20—full-width—of frame 0). Worth
noting is the locally non-convex behavior in both cases. This
property can be traced back to the structure of the MPEG-
2 run-length encoding tables [4], where specific examples
of non-convexity can be easily found. In most cases (and
particularly for P and B pictures as we will see later on),
the number of R(D) points which lie above the convex hull is
small, and hence in practice they do not represent a significant
problem.

In some cases, if the R(D) curve of a slice is sufficiently
misbehaved, the bisection algorithm can be set off track,
with a resulting underutilization of the target bit budget. In
order to mitigate this effect, and also to speed up operation,
each iteration considers a continuously shrinking interval of
possible breakpoint values (“pruning”). This will result in
convergence of the algorithm to a much smaller set of non-
convex points, and is a byproduct of convexity.

C. Performance Evaluation

The collection of necessary data in eq. (13) that is needed
to run the algorithm, requires only parsing of the input
bitstream up to inverse quantization of the DCT coefficients.
In other words, all operations can be performed directly in the
compressed domain. Note that distortion data are computed
from the luminance component only, whereas rate data are
computed from all three components. The parsing process
represents a very small fraction of the complete decoding
process; the dominant processing step in decoding is in fact
the inverse DCT.

The window S (number of consecutive slices) in which the
algorithm operates has been considered up to now a design
parameter. Since data partitioning is performed after encoding,

it is desirable to minimize the additional delay introduced by
the extra processing step. Even in cases where partitioning is
applied on stored material prior to transmission, delay is a very
important parameter for interactive applications. A plausible
selection is then a complete single picture (frame or field).

As we mentioned in the previous section, the target bit
budget Rbudget can be set quite arbitrarily, given however that
the average rate does not exceed B̂. This represents another
degree of freedom which is not (and cannot be) optimized by
the above algorithm. A convenient selection is obtained by
choosing for each picture the value

Rbudget = (B̂/B)R − Ro (23)

where R is the size (in bits) of the currently processed frame
(or, more generally, a set of slices), and Ro is the number of
bits spent for coding components of the bitstream that are not
subject to data partitioning (overhead bits for headers, motion
vectors, etc.). Allocated bits that are left over from one picture
are carried over to the subsequent picture. Note also that R
is immediately available after the complete picture has been
parsed.

It is very easy to show that the budget selection in (23)
guarantees that the target bit rate is not exceeded. We have:

Rbudget + Ro =
B̂R

B
(24)

and since the average value R̄ of R over time is R̄ = B.
Hence the average rate for the partitioned picture will be:

Rbudget + Ro =
B̂R̄

B
= B̂ (25)

In addition, it is easy to see that this allocation can satisfy any
scaled buffering constraints that may be imposed.

The value given by eq. (23) carries over to the partitioning
algorithm several properties of the encoder. In particular,
we observe that bit allocation is performed in a manner
proportional to the one decided by the encoder. Assuming
that an “intelligent” encoder has been used, the original bit
allocation may have been meticulously optimized; utilizing a
proportional allocation in the partitioning process can help to
improve the overall video quality. In the case where buffering
constraints are imposed to partition 0 for placement prior
to transmission, one can convert the problem to a buffer-
constrained optimization problem. The approach would be
similar to [23], although the problem there was focused on
quantizer selection. It is doubtful, however, that the significant
extra complexity of the problem can in fact achieve improved
results (an optimal fast algorithm for this problem is not
known).

The computational overhead of the iterative algorithm is
small, with convergence achieved typically within 8–10 itera-
tions. Figure 5 shows the results of applying the algorithm
to 20 frames of “Flower Garden”, using frame-based intra
coding at 24 Mbps, and with a target rate of 12 Mbps for
partition 0. The quality metric used is “Y-PSNR”, i.e., the Peak
SNR of the luminance component only. PSNR is derived from

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XXXX, NO. XXXX, XXXX 2003 7

0 2 4 6 8 10 12 14 16 18 20
23

23.5

24

24.5

25

25.5

26

26.5

Frame Number

P
S

N
R

 (
Y

 o
nl

y)

optimal

rate−based

Fig. 5. Data partitioning of frame-based, intra coded “Flower Garden”, from
24 Mbps to 12 Mbps, using optimal and rate-based algorithms.

the squared error e = ‖y − p0‖ using:

PSNR = −10 log10

(
2552

e

)
in dB (26)

where 255 is the peak value for the luminance signal (using
an 8-bit representation).

Also shown in Figure 5 are the results of a simpler algorithm
that uses rate-based optimization. In this latter case each slice
is independently assigned a target bit budget proportional to
its original size Ri, and a breakpoint is selected so that this
budget is not exceeded (leftover bits are carried over to the
next slice). In other words, we select the breakpoint of each
slice as:

b∗i = max
{
bi : Ri(bi) ≤ Rbudgeti

}
(27)

The bit budget for each slice is set according to:

Rbudgeti =
Ri

Rbudget/S
(28)

where S is the number of slices. In order to compute Rbudgeti,
a complete picture is read; this makes the algorithms compa-
rable in terms of the optimization window used. Note that this
algorithm is purely rate-based, i.e., the distortion is completely
ignored. Lagrangian optimization outperforms in this case the
rate-based algorithm by 0.6 dB on the average.

IV. DATA PARTITIONING IN PREDICTIVE CODING

A. Problem Formulation

When all variants of picture coding types are used (I, P,
and B), the problem of data partitioning becomes significantly
more complex. The decoding process can be described by:

yi = Mi(yi−1) + ei (29)

where yi denotes the i-th decoded picture (in coding order),
Mi(·) denotes the motion compensation operator for picture
i, and ei denotes the coded prediction error. The first picture
is assumed to be intra-coded, and hence

e0 = y0 (30)

Although, for simplicity, a single reference picture is shown
above for motion compensation, the expression can be trivially
extended to cover the general case (which includes B pictures).

By applying data partitioning and decoding partition 0,
eq. (29) becomes:

ŷi = Mi(ŷi−1) + êi (31)

where êi denotes the partitioned prediction error.
Using (29) and (31), we get:

min
M∑

i=1
Ri(bi)≤B̂

∥∥∥∥∥
M∑
i=1

[Mi(yi−1) −Mi(ŷi−1) + ei − êi]

∥∥∥∥∥ (32)

where M is the size of the optimization window. Note that:

Mi(yi−1) −Mi(ŷi−1) �= Mi(yi−1 − ŷi−1) (33)

i.e., motion compensation is a non-linear operation, because it
involves integer arithmetic with truncation away from zero [4].

From eq. (32) we observe that, in contrast with the intra-
only case, optimization involves the accumulated error:

ai
def= Mi(yi−1) −Mi(ŷi−1) (34)

Furthermore, due to the error accumulation process, parti-
tioning decisions made for a given picture will have an effect
in the quality and partitioning decisions of subsequent pictures.
As a result, an optimal algorithm for (32) would have to
examine a complete group of pictures (I-to-I), since breakpoint
decisions at the initial I-picture may affect even the last B
or P picture. Not only the computational overhead would be
extremely high, but the delay would be unacceptable as well.
It is desirable then to seek fast solutions with small delay, that
are able to control error propagation in a well-defined fashion.

An attractive alternative algorithm is one that solves eq. (32)
on a picture basis, and where only the error accumulated from
past pictures is taken into account. This algorithm will be
referred to as causally optimal. In addition, in order to avoid
similar complications that arise when the optimization window
spans more than one picture, we will restrict our discussion
for the case where the windows is up to a complete single
picture. This property is also an indirect consequence of the
causality argument.

Note that in order to accurately compute a i, two prediction
loops have to be maintained: one for a decoder that receives
the complete signal, and one for a decoder that receives only
partition 0. This is because of the nonlinearity of the integer
arithmetic of motion compensation expressed by eq. (33). With
the penalty of some lack in arithmetic accuracy, these two
loops can be collapsed together. In the following we will
assume that the (optimal) dual-loop operation is always used.

B. The Causally Optimal Problem

The causally optimal problem can now be formulated as
follows. Substituting eq. (34) in (32) we have

min
R(p0)≤B̂

{‖ai + ei − êi‖} (35)

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XXXX, NO. XXXX, XXXX 2003 8

‖ai + ei − êi‖ =
∑
j∈Si

{
N−1∑
k=0

(
Ai

j(k) + Ei
j(k) − Êi

j(k)
)2

}

=
∑
j∈Si

{
N−1∑
k=0

Ai
j(k)

2
+ 2

N−1∑
k=0

Ai
j(k)

(
Ei

j(k) − Êi
j(k)

)
+

N−1∑
k=0

(
Ei

j(k) − Êi
j(k)

)2
}

=
∑
j∈Si

{
N−1∑
k=0

Ai
j(k)

2
+ 2

N−1∑
k=b

Ai
j(k)Ei

j(k) +
N−1∑
k=b

Ei
j(k)

2

}
(36)

where

Ê(k) =
{

E(k) if k < b
0 otherwise

(37)

D̂i(bi) =
∑
j∈Si

N−1∑
k=0

Ai
j(k)2 +

∑
k≥bi

2Ai
j(Ii

j(k))Ei
j(k) +

∑
k≥bi

Ei
j(k)2

 (38)

We must now obtain an expression for the total partitioning
distortion ai + ei − êi. As in the non-predictive case of
Section III-A, we first consider a single block. Let A(k) denote
the k-th DCT coefficient of the accumulated error a (in zig-
zag scanning order), E(k) the corresponding coefficient of the
decoded picture e, Ê(k) the one of the partitioned picture, and
b the breakpoint value. Using this notation we get eqns. (36)
and (37). Observe that the total distortion involves not only the
accumulated error and the current picture’s partitioning error
(identical to the non-predictive case), but crossterms as well.

Due to the independence of individual blocks, we can
extend (36) for a complete slice. We should note, however, that
while the prediction error DCT coefficients are represented by
their run-lengths, and the truncation point is also defined by
the number of run-length to be included in partition 0, the
accumulated error has no such representation. Consequently,
a mapping function I(k) is necessary that maps the k-th run-
length of a block into the appropriate position in the zig-zag
scanning pattern. It should be noted that I(k) can be a different
mapping function for different blocks.

Denoting by D̂i(bi) the total partitioning distortion of slice
i for the breakpoint value bi gives us eq. (38) in which
Si denotes the blocks of slice Si, Ai

j(k) is the k-th DCT
coefficient (in zig-zag scanning order) of the j-th block of
the i-th slice of the accumulated error ai, and Ei

j(k) is the
DCT coefficient of the k-th run-length of the j-th block of
the i-th slice of the coded prediction error. Using (38), the
data partitioning problem (35) for the predictive case can be
formulated as:

min
R(p0)≤B̂

{‖ai + ei − êi‖} ⇐⇒ min
N∑

i=1
Ri(bi)≤B̂

{
S∑

i=1

D̂i(bi)

}

(39)
where S is the total number of slices in the optimization
window.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

50

100

150

200

250

300

350

400

Bits Per Pixel

M
ea

n
S

qu
ar

ed
 E

rr
or

 (
Y

 o
nl

y)

x − Distortion including accumulation error

o − Distortion with only prediction error partitioning

Fig. 6. Slice 20 (full-width, frame 3, P-picture) from “Mobile” coded at 4
Mbps and partitioned at 3.2 Mbps: (x) D̂(Bi), (o) D(Bi).

C. The Causally Optimal Algorithm

The minimization problem in (39) can be solved using the
Lagrangian optimization approach of the non-predictive case
in Section III-B, using the more general definition of the
distortion D̂ given by eq. (38).

Of particular concern is the convexity of the R(D) curves
when the total distortion (including the accumulated error) is
taken into account. Figure 6 shows the R(D) curve for slice 20
of frame 3 (P-picture) from the sequence “Mobile” coded at 4
Mbps (frame-based coding) and partitioned at 3.2 Mbps using
the causally optimal algorithm. The upper curve takes into
account the accumulated error ai, whereas the bottom one
involves only the prediction error partitioning distortion e i−êi.

We observe that convexity is clearly present. In fact, for
predicted pictures, R(D) curves tend to be uniformly convex,
compared with intra pictures which tend to have a concave
middle segment. We have experimentally verified that this
property holds even for small slice sizes (e.g., 11 or 4
macroblocks per slice, instead of the regular 44 which amounts

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XXXX, NO. XXXX, XXXX 2003 9

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5
x 10

5

Field Number

B
its

 (
T

ot
al

/O
ve

rh
ea

d)

Fig. 7. Bit distribution for the “Mobile” sequence coded at 4 Mbps, with I
period 12, and B period 3 (the overhead bits include all non-DCT bitstream
components). Total bits are shown with a dotted line, while overhead bits are
shown with a solid line.

to the whole picture width), although the curves become
progressively flatter.

D. Performance Evaluation

An important issue in mixed-mode coding, as in non-
predictive coding, is the target bit budget that will be set
for each picture (or more generally, a set of slices). The
matter is more complicated than in the intra-only case, due
to the irregular bit distribution among pictures of different
types. In a typical situation, I and P picture DCT coding
requires a significant number of bits, while B picture sizes
are dominated by header and motion vector coding bits.
Figure 7 depicts the number of total vs. overhead bits for
the “Mobile” sequence coded at 4 Mbps. “Overhead” here
includes everything except the DCT coefficients which are
subject to partitioning. Observe the evident periodic pattern
between I pictures, and the irregularity of the bit distribution
between I, P, and B pictures.

As a result of the bit distribution irregularity, B pictures
provide much less flexibility for data partitioning. In order
to accommodate this behavior, I and P pictures are assigned
proportional bit budgets as in Section III-C. For B pictures
the same is done, except when the resulting bit budget is
negative, in which case it is set to 0. The negative budget,
however, is accounted for, so that the bits spent for the B
picture are subtracted from the budget of the immediately
following picture. Note that an optimal bit allocation for each
picture would be a direct by-product of the optimal non-causal
algorithm.

Figure 8 shows the Y-PSNR resulting from the causally
optimal algorithm on 15 frames of the “Mobile” sequence (I
distance N=15, I/P frame distance M=3), frame-based coded
at 4 Mbps and partitioned at 3.2 Mbps (80% of the rate goes to
partition 0). This is the signal quality that would be observed
by a decoder that receives only partition 0, compared with one
that receives both partitions. We see that I and P frames suffer
the most, while B frames are in general up to 1 dB better.

0 5 10 15
25.5

26

26.5

27

27.5

28

28.5

29

Frame Number

P
S

N
R

 (
Y

 o
nl

y)

causally optimal

rate−based

memoryless

Fig. 8. PSNR (Y only) for “Mobile” sequence, frame-based coded at 4
Mbps and partitioned at 3.2 Mbps using the causally optimal, memoryless,
and rate-based algorithms.

The complexity of solving eq. (39) is significant, as it
requires at least one complete decoding loop for the luminance
signal. If the non-linearity of the motion compensation is taken
into account, then two such loops are required. In addition,
since motion compensation is performed in the spatial domain
while partitioning is performed in the DCT domain, a forward
DCT computation module is required as well in order to
compute Ai

j(·). As a result, the implementation complexity
is between that of a decoder and an encoder.

E. The Memoryless and Rate-Based Algorithms

Given the complexity of the causally optimal algorithm, it
is interesting to examine the benefit of error accumulation
tracking. This can be evaluated by applying the algorithm of
Section III-B (intra-only case) to the mixed-mode case, since
the only difference is the accumulated error term a i. Bit budget
allocation, however, is performed as discussed in Section IV-D
(mixed-mode case).

Surprisingly, the results of this memoryless mixed-mode
partitioning algorithm are almost identical to the causally
optimal one. Figure 8 shows the relevant PSNR values for
the “Mobile” sequence. The difference is in general less than
0.1 dB and the curves can hardly be distinguished. We have
experimentally verified that this holds for a very wide range
of bit rates (i.e., down to 50% reduction, or more depending
on the original rate and picture resolution) and slice sizes.
The difference, however, increases slightly to 0.2–0.3 dB.
We should note that these difference values are perceptually
insignificant.

This is a very important result, as it implies that we can
dispense completely with the error accumulation calculation
and its associated computational complexity, for a minimal
cost in performance. The quality degradation between the
causally optimal and memoryless algorithms will be percep-
tually insignificant, across the spectrum of slice sizes and
partition rates.

This property is hinted at by Figure 6 upon closer ex-
amination. The upper and lower curves are almost identical,

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XXXX, NO. XXXX, XXXX 2003 10

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

Slice Number

D
is

to
rt

io
n

(Y
−

R
M

S
)

accumulated error

causally optimal

memoryless

Fig. 9. Distribution of accumulated error, causally optimal, and memoryless
distortions across all slices of a picture (“Mobile”, coded at 4 Mbps and
partitioned at 3.2 Mbps, frame 3, P picture).

except for a vertical shift. Figure 9 depicts the two types
of distortions (from the causally optimal and memoryless
algorithms) as well as the accumulated error across all slices
of a picture. We observe that the two distortions behave in very
similar ways as we move along the picture. In order for the
accumulated error to affect the partitioning decisions, either
the slope of the R(D) curves or the overall accumulated error
distribution across a picture would have to be significantly
affected. This, however, is not the case, because at each picture
the partitioning decisions are optimally made.

Finally, we examine the performance of the rate-based
optimization algorithm introduced in Section III-C (eq. (27)),
in a mixed-mode coding environment. Since, as was previously
pointed out, rate-based optimization does not take into account
the distortion, there is no difference whether or not the
accumulated error is tracked. Consequently, the only difference
lies in the bit budget allocation. Figure 8 depicts the results
obtained on the “Mobile” sequence, with the same coding
and partitioning parameters as before. We see that the rate-
based algorithm is inferior by about 1 dB. The complexity,
however, is significantly reduced as well, as the Lagrangian
optimization iteration is avoided. This makes the rate-based
algorithm attractive, when complexity and/or implementation
costs are of importance.

To further substantiate the above observations, we report
experimental results for the Flower and Table Tennis sequences
MPEG-2 encoded at 10 Mbps3. Figure 10 shows the results of
various data partitioning algorithms on 400 frames from the
Flower sequence originally encoded at 10 Mbps and shaped
to 6.5 and 6 Mbps. Similar results are shown in Figure 11
for the Table Tennis sequence. As witnessed for the Mobile
sequence shaped by about 80%, these plots again show that
the memoryless algorithm is a very good approximation and
performs about 0.1-0.2 dB within the causally optimal scheme.

3The conformance bitstreams used were downloaded from
ftp://ftp.tek.com/tv/test/streams/Element/index.html
and the MPEG-2 Video Encoder (Version 1.1) from MPEG Software
Simulation Group was used to re-encode the streams.

While the recoding approach consistently outperforms the
causally optimal algorithm, it is computationally far more
intensive and requires that all encoding steps like motion
estimation, DCT, quantization and run-length encoding be
done from scratch. For comparison purposes, we examine the
performance of a purely rate-based optimization algorithm.
As seen for the Mobile sequence shaped from 4 Mbps to
3.2 Mbps, we witness that the rate-based algorithm performs
within 2 dB of the causally optimal approach. This makes it
an attractive avenue that avoids the Lagrangian iterations and
therefore reduces the complexity significantly with minimal
penalty in terms of the solution quality. Also shown in these
figures is the PSNR if both partitions were correctly received.
At the partitioning points under consideration, the PSNR of
both streams combined is about 6 dB above the causally
optimal algorithm or about 2 dB above the recoding algorithm.

Figure 12 shows the average PSNR values for a wide spec-
trum of shaping rates for several commonly used sequnces.
Yet again, the memoryless algorithm performs extremely close
to the causally optimal one with a difference of only 0.1
to 0.2 dB for wide range of data partitioning ratios and
sequences. Directly encoding the raw input data at the lower
rate using MPEG Software Simulation Group’s (Netcom)
MPEG-2 encoder can be seen to consistently out-perform the
causally optimal data partitioning approach. If the input data
is available only in pre-compressed format, a recoding (or
requantization approach) must be used. We notice that due to
quantization errors in the first compression stage, the recoding
approach (with no reuse of motion vectors or other coding
parameters) under-performs direct encoding at the lower rate.
The performance of the data partitioning algorithm is seen to
fall off much faster than recoding as the ratio of bit rate of the
original and data partitioned streams increases. At a ratio of
about 2:1 this difference is seen to range from 2.5 dB (for the
Cactus and Comb sequence) to 6.5 dB (for the Table Tennis
sequence). We expect that, as a rate shaping stategy, the data
partitioning approach is a viable one if this ratio remains less
than 2. At higher ratios, recoding or requantization are likely
to perform much better. At lower ratios, on the other hand,
the much lower complexity of our optimal data partitioning
strategy (and its fast approximations) are likely to make it
the choice. The rate-based algorithm performs within 1-2
dB of the memoryless and causally optimal algorithms. One
difference is with the Cactus and Comb sequence where the
performance of the rate-based algorithm is much poorer than
the memoryless one with the latter out-performing by 5 dB or
so. Strangely, the rate-based algorithm marginally outperforms
the causally optimal one at data partitioning ratios much in
excess of 3:1. Theoretically speaking, this is impossible since
the feasible set of the rate-based alorithm is a proper subset of
that of the causally optimal one, and because the latter solves
a problem optimally while the former only uses a heuristic to
find the set of breakpoint values. It must be noted, however,
that the data partitioning ratios at which this happens are
unrealistic. At such high ratios, the retention of DC coefficients
alone (since they are never subject to partitioning) along with
the target bit budget allocation strategy used for B frames led
to buffer underflows. We therefore recommend the use of a

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XXXX, NO. XXXX, XXXX 2003 11

50 100 150 200 250 300 350
20

22

24

26

28

30

32

34

36

38
Flower sequence (10 to 6.5 Mbps)

Both partitions

Recoding

Optimal

Memoryless

Rate based

Frame Number

P
S

N
R

 (
Y

 o
nl

y)

(a) Shaped from 10 to 6.5 Mbps.

100 105 110 115
22

24

26

28

30

32

34

36

38

40
Flower sequence (10 to 6.5 Mbps)

Both partitions

Recoding

Optimal (Solid)

Memoryless (Dashed)

Rate based

Frame Number

P
S

N
R

 (
Y

 o
nl

y)

(b) Selected frames from (a).

50 100 150 200 250 300 350
20

22

24

26

28

30

32

34

36

38
Flower sequence (10 to 6 Mbps)

Both partitions

Recoding
Optimal

Memoryless

Rate based

Frame Number

P
S

N
R

 (
Y

 o
nl

y)

(c) Shaped from 10 to 6 Mbps.

100 105 110 115
20

22

24

26

28

30

32

34

36

38

40
Flower sequence (10 to 6 Mbps)

Both partitions

Recoding

Optimal (Solid)

Memoryless (Dashed)

Rate based

Frame Number

P
S

N
R

 (
Y

 o
nl

y)

(d) Selected frames from (c).

Fig. 10. PSNR (Y only) for “Flower” sequence, coded at 10 Mbps and shaped to 6.5 and 6 Mbps using either brute force recoding, or data partitioning
using causally optimal, memoryless, and rate-based algorithms. Also shown is the PSNR of both the partitions.

requantization or recoding based method if the ratio of original
to transcoded stream goes beyond 2:1.

Figure 13 shows the same reconstructed frame (luminance
only) using the various partitioning algorithms 4. The frame is
what a decoder would display if only partition 0 was received,
except from Figure 13(a) which is the decoded frame at full
rate. The figures show frame number 12 (a P picture) from the
“Mobile” sequence, coded at 4 Mbps and partitioned at 3.2
Mbps. We can see instances where the optimal (causally and
memoryless) algorithms perform better than the rate-based
scheme, but there are a few cases where the reverse is true
as well. For example, the small birds in the middle of the
top-most slices are better in the optimal algorithms; the same
is true for the dotted ball (bottom left), the border of the
stream engine and the car, as well as the 3rd row of the
calendar’s numbers (11–17). There are two cases, however,
where the allocation performed by the rate-based scheme

4The images here are halftoned and scaled down
for printing. The original images can be accessed at
http://www.ee.columbia.edu/˜eleft/dp (in PGM format,
luminance only).

provides better perceptual results: the duck in the middle of
the left-hand side border is sharper, as well as the 2nd row
of the calendar’s numbers (4–10). These results corroborate
our SNR evaluations, indicating that the rate-based approach,
although definetely inferior, is still a competitive technique.

V. CONCLUDING REMARKS

The problem of optimal data partitioning in motion-
compensated transform coding was analyzed, with particular
emphasis in its use by the MPEG-2 video coding standard.
Data partitioning can be a very effective tool for transmission
of single-layer video bitstreams over unreliable channels,
including channels that provide prioritized transmission (i.e.,
virtual channels in packet-based networks). A key property
of the approach is that it can be applied even after encoding
has already taken place, and thus is applicable not only for
live transmission systems, but also for stored video appli-
cations such as video-on-demand. A potential drawback of
the approach is that, in contrast with other scalable coding
approaches, neither of the two partitions in which the bitstream
is split is self-contained (although the base partition is closed

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XXXX, NO. XXXX, XXXX 2003 12

0 50 100 150 200 250 300 350 400
20

22

24

26

28

30

32

34

36

38
Table tennis sequence (10 to 6.5 Mbps)

Both partitions

Recoding

Optimal

Memoryless

Rate based

Frame Number

P
S

N
R

 (
Y

 o
nl

y)

(a) Shaped from 10 to 6.5 Mbps.

100 105 110 115
15

20

25

30

35

40
Table tennis sequence (10 to 6.5 Mbps)

Both partitions

Recoding

Optimal (Solid)

Memoryless (Dashed)

Rate based (Solid)

Frame Number

P
S

N
R

 (
Y

 o
nl

y)

(b) Selected frames from (a).

0 50 100 150 200 250 300 350 400
20

22

24

26

28

30

32

34

36

38
Table tennis sequence (10 to 6 Mbps)

Both partitions

Recoding

Optimal

Memoryless

Rate based

Frame Number

P
S

N
R

 (
Y

 o
nl

y)

(c) Shaped from 10 to 6 Mbps.

100 105 110 115
15

20

25

30

35

40
Table tennis sequence (10 to 6 Mbps)

Both partitions

Recoding

Optimal (Solid)

Memoryless (Dashed)

Rate based (Solid)

Frame Number

P
S

N
R

 (
Y

 o
nl

y)

(d) Selected frames from (c).

Fig. 11. PSNR (Y only) for “Table Tennis” sequence, coded at 10 Mbps and shaped to 6.5 and 6 Mbps using either brute force recoding, or data partitioning
using causally optimal, memoryless, and rate-based algorithms. Also shown is the PSNR of both the partitions.

in the sense that it may be independently decoded as a
syntactically correct MPEG stream). Consequently, due to
the recursive nature of motion-compensated compression, if
part of the bitstream is lost (namely, from partition 1), error
accumulation will occur as the motion prediction loop at the
decoder gets skewed relative to the one at the encoder (the
latter assumes information from both the partitions while the
former has access to only partition 0).

We provided an analysis of data partitioning in an opera-
tional rate-distortion context. An optimal algorithm based on
Lagrange multipliers was derived for non-predictive (intra-
only) coding, and shown to be less complex than a full
decoder. For the predictive coding, or mixed-mode case (I, P,
and B pictures) the optimal algorithm was characterized and
shown to possess significantly high complexity and delay, as
a complete group of pictures was required to be processed at
a time. As an alternative, a “causal” minimization formulation
was proposed, in which only the accumulated error from past
pictures is taken into account (while the one propagated to
future pictures is ignored).

An optimal algorithm for the causal problem was developed

as a generalization of the non-predictive case. Experimental
results have shown that the algorithm performs quite well, with
P and B pictures having about 1 dB higher quality than I ones.
It was then shown that tracking the error accumulation from
one frame to the next does not actually benefit the partitioning
process in any significant way, and hence that a memoryless
algorithm employing Lagrangian optimization is sufficient.

We compared the performance of the data-partitioning
approach to rate shaping with the direct encoding and re-
encoding (or re quantization) schemes. By studying the aver-
age PSNR achieved for a wide spectrum of data-partitioning
ratios for several commonly used test sequences, we observed
that DP performs quite well if the ratio of bit rates of the
transcoded to original bitstream remains below 2:1. How-
ever, its performance falls off much faster than the more
computationally intensive re-quantization approach at higher
partitioning ratios.

Finally, a faster but suboptimal algorithm that uses rate-
based optimization was also proposed for comparison pur-
poses. It was shown to perform quite close (within 0.6 dB
on the average) to the optimal one for the intra-only case, but

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XXXX, NO. XXXX, XXXX 2003 13

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

20

25

30

35

40

Cactus and comb sequence

Average PSNR of both partitions

Direct encoding (solid)

Recoding (dashed)

Causally optimal (Solid)

Memoryless (Small dashes)

Rate based (Dashes and Dots)

Rate of data partitioned stream in Mbps (base layer)

A
ve

ra
ge

 P
S

N
R

 (
Y

 o
nl

y)

(a) Cactus and Comb Sequence.

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

20

25

30

35

40

Flower sequence

Average PSNR of both partitions

Direct encoding (solid)

Recoding (dashed)

Causally optimal (Solid)

Memoryless (Small dashes)

Rate based (Dashes and Dots)

Rate of data partitioned stream in Mbps (base layer)

A
ve

ra
ge

 P
S

N
R

 (
Y

 o
nl

y)

(b) Flower Sequence.

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

20

25

30

35

40

Mobile sequence

Average PSNR of both partitions

Direct encoding (solid)

Recoding (dashed)
Causally optimal (Solid)

Memoryless (Small dashes)
Rate based (Dashes and Dots)

Rate of data partitioned stream in Mbps (base layer)

A
ve

ra
ge

 P
S

N
R

 (
Y

 o
nl

y)

(c) Mobile Sequence.

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

20

25

30

35

40

Susie sequence

Average PSNR of both partitions

Direct encoding (solid)

Recoding (dashed)

Causally optimal (Solid)
Memoryless (Small dashes)
Rate based (Dashes and dots)

Rate of data partitioned stream in Mbps (base layer)

A
ve

ra
ge

 P
S

N
R

 (
Y

 o
nl

y)

(d) Susie Sequence.

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

20

25

30

35

40

Table tennis sequence

Average PSNR of both partitions

Direct encoding (solid)

Recoding (dashed)

Causally optimal (Solid)

Memoryless (Small dashes)

Rate based (Dashes and dots)

Rate of data partitioned stream in Mbps (base layer)

A
ve

ra
ge

 P
S

N
R

 (
Y

 o
nl

y)

(e) Table Tennis Sequence.

Fig. 12. Results of various rate-shaping algorithms on different MPEG-2 Sequences encoded at 10 Mbps and rate shaped at different target rates.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XXXX, NO. XXXX, XXXX 2003 14

(a) No partitioning. (b) Causally optimal partitioning.

(c) Memoryless optimal partitioning. (d) Rate-based partitioning.

Fig. 13. Reconstructed frame using various data partitioning algorithms (“Mobile”, coded at 4 Mbps and partitioned at 3.2 Mbps, frame 12, P picture).

proved to be inferior by 1 dB on the average for the mixed-
mode case. Nevertheless, its simplicity makes it potentially
attractive for low cost implementations.

REFERENCES

[1] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression.
Boston, Massachusetts: Kluwer Academic Publishers, 1992.

[2] N. S. Jayant and P. Noll, Digital Coding of Waveforms: Principles and
Applications to Speech and Video. Englewood Cliffs, New Jersey:
Prentice Hall, 1984.

[3] A. N. Netravali and B. G. Haskell, Digital Pictures: Representation,
Compression, and Standards (2nd ed.). New York, New York: Plenum
Press, 1995.

[4] “Information Technology – Generic Coding of Moving Pictures and As-
sociated Audio, ITU-T Draft Recommendation H.262, ISO/IEC 13818
Draft International Standard (MPEG-2),” 1994.

[5] D. LeGall, “MPEG: A Video Compression Standard for Multimedia
Applications,” Communications of the ACM, vol. 34, no. 4, pp. 46–58,
April 1991.

[6] B. G. Haskell, A. Puri, and A. N. Netravali, Digital Video: An Introduc-
tion to MPEG-2. New York, New York: Chapman and Hall, 1997.

[7] J. L. Mitchell, W. B. Pennebaker, D. LeGall, and C. Fogg, MPEG Video
Compression Standard. New York, New York: Chapman and Hall,
1997.

[8] “Information Technology – Coding of Moving Pictures and Associated
Audio for Digital Storage Media at up to About 1,5 Mbit/s, ISO/IEC
11172-2 International Standard (MPEG-1),” 1993.

[9] A. Eleftheriadis, Dynamic Rate Shaping of Compressed Digital Video.
New York, New York: Ph.D. Thesis, Columbia University, 1995.

[10] A. Eleftheriadis and D. Anastassiou, “Optimal Data Partitioning of
MPEG-2 Coded Video,” in Proceedings, 1st IEEE International Confer-
ence on Image Processing, Austin, Texas, November 1994, pp. I.273–
I.277.

[11] A. Reibman, “DCT-Based Embedded Coding of Packet Video,” Image
Communication, vol. 3, pp. 231–237, 1991.

[12] “Coding of Audio Visual Objects – Part 2: Visual, ISO/IEC 14496-
2:2001, 2nd Edition,” 2001.

[13] H. Everett, “Generalized Lagrange Multiplier Method for Solving
Problems of Optimum Allocation of Resources,” Operations Research,
vol. 11, pp. 399–417, 1963.

[14] K. Ramchandran and M. Vetterli, “Rate-distortion optimal fast threshold-
ing with complete JPEG/MPEG decoder compatibility,” in Proceedings,
Picture Coding Symposium ’93, March 1993.

[15] ——, “Rate-distortion optimal fast thresholding with complete
JPEG/MPEG decoder compatibility,” IEEE Transactions on Image Pro-
cessing, Special Issue on Video Sequence Compression, vol. 3, no. 5,
pp. 700–704, September 1994.

[16] Y. Shoham and A. Gersho, “Efficient bit allocation for an arbitrary
set of quantizers,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 36, no. 9, pp. 1445–1453, 1988.

[17] P. Batra, “Modeling and Efficient Optimization for Object-Based Scal-
ability and Some Related Problems,” IEEE Transactions on Image
Processing, vol. 9, pp. 1677–1692, 2000.

[18] ——, Modeling and optimization techniques for digital video commu-
nication. New York, New York: Ph.D. Thesis, Columbia University,
2003.

[19] M. Fisher, “The Lagrangian Method for Solving Integer Programming
Problems,” Management Science, vol. 27, pp. 1–18, 1981.

[20] B. Fox and D. Landi, “Searching for the multiplier in one-constraint
Optimization Problems,” Operations Research, vol. 18, pp. 253–262,
1970.

[21] T. Berger, Rate Distortion Theory. Englewood Cliffs, New Jersey:
Prentice Hall, 1971.

[22] T. Cover and J. Thomas, Elements of Information Theory. New York,
New York: John Wiley & Sons, 1991.

[23] A. Ortega, K. Ramchandran, and M. Vetterli, “Optimal Buffer-
Contrained Source Quantization and Fast Approximations,” in Proceed-
ings, IEEE Intl. Symposium on Circuits and Systems, ISCAS ’92, San
Diego, May 1992.

