
 1

Algorithms for Multiplex Scheduling of Object-Based Audio-Visual

Presentations

Hari Kalva and Alexandros Eleftheriadis

Dept. of Electrical Engineering, Columbia University, New York

Abstract

With the emergence of standards such as MPEG-4, systems and applications using object-

based audio-visual presentations will become more and more common. The main

distinguishing feature of object-based audio-visual presentations is the scene composition at

the user terminal. In this paper we discuss the problem of scheduling object-based audio-

visual presentations with resource constraints. We explore the similarities with the problem

of job sequencing on a single machine. We present a family of algorithms to determine the

schedulability of audio-visual presentations, and for un-schedulable presentations, we

present algorithms to compute a schedule that minimizes the additionally acquired

resources. We present algorithms for computing incremental schedules for applications

such as content authoring that require immediate feedback on resource consumption. The

algorithms can be used to schedule object-based MPEG-4 presentations. We discuss the

algorithms and results by considering a relatively complex MPEG-4 presentation with 16

objects including audio, video, and images.

1. Introduction

Image and video encoding has been totally transformed with the advent of new coding and

representation techniques [28]. These next generation coding techniques have made possible

encoding and representation of audio-visual scenes with semantically or structurally meaningful

objects. Such a new paradigm of object-based representation of audio-visual scenes and

presentations will change the way audio-visual applications are created. MPEG-4 is a

standardization activity, under the auspices of the ISO, specifying tools to enable object-based

audio-visual presentations [25]. These include tools to encode individual objects, compose

presentations with objects, store these object-based presentations, and access these presentations

in a distributed manner over networks. The main distinguishing feature of object-based audio-

visual presentations is the scene composition at the user terminal. The objects that are part of a

 2

scene are composed and displayed at the user end as opposed to encoding the composed scenes as

is done in the case of MPEG-2 systems. Such object-based representation and presentation has

several benefits including compression efficiency and the capability to interact with individual

objects.

The MPEG-4 Systems specification [1][12] [13][26] defines an architecture and tools to create

audio-visual scenes from individual objects. The scene description and synchronization tools are

at the core of the systems specification. The MPEG-4 scene description, also referred to as Binary

Format for Scenes (BIFS), is based on the Virtual Reality Modeling Language (VRML) and

specifies the spatio-temporal composition of objects in a scene [26]. MPEG-4 also specifies

DMIF or the Delivery Multimedia Integration Framework, a general application and transport

delivery framework [14]. In order to keep the user unaware of underlying transport details,

MPEG-4 defined an interface between user level applications and the underlying transport

protocol called the DMIF Application Interface (DAI). The DAI provides the required

functionality for realizing multimedia applications with quality-of-service (QOS) support. This

architecture allows creation of complex presentations with wide-ranging applications. As the

complexity of the content increases, so does the complexity of the servers and user-terminals

involved. The servers now have to manage multiple streams (objects) to deliver a single

presentation.

The flexibility of MPEG-4 enables complex interactive presentations but makes the content

creation process non-trivial. Unlike MPEG-2, the content creation process involves much more

than multiplexing the media streams. Determining the schedulability of a presentation is also

important during the content creation process to determine if the presentation being designed can

be scheduled for specific channel rates and client buffer capacity. It may not be possible to

schedule a presentation with a given set of resources. In order to create a schedulable

presentation, some constraints may be relaxed. In the case of scheduling objects, relaxing a

constraint may involve increasing the buffer capacity, increasing the channel capacity, not

scheduling some object instances, or removing some objects from a presentation.

In this paper we discuss the problem of scheduling audio-visual objects and present algorithms

for optimal scheduling of audio-visual objects. We present new algorithms, based on job

sequencing on a single machine proposed by Carlier [3], for scheduling objects in a presentation.

The original contributions of this paper include: algorithm to determine the schedulability of

 3

audio-visual presentations, algorithm to compute startup-delay optimal schedules, algorithm to

compute schedules that minimize the required channel capacity, and algorithms to compute

incremental schedules. A more detailed discussion including the issues in scheduling interactive

presentation can be found in [17]. The paper is organized as follows: the general problem of

scheduling audio-visual objects and related earlier work is presented in Section 2. The

characteristics of startup delay and terminal buffer are discussed in Section 3. In Section 4 we

present several algorithms to schedule audio-visual presentations. Discussion and results are

presented in Section 5. We conclude the paper in Section 6.

2. Scheduling Audio-Visual Objects

Scheduling and multiplexing of audio-visual (AV) objects in a presentation is a complex problem.

Scheduling of audio-visual objects has been the subject of study in [1][23][27]. In [23] Little and

Ghafoor present synchronization of multi-object presentations using Petri-net models to describe

timing relations in multimedia presentations. They present network-level and application-level

synchronization protocols for multi-object presentations. The problem considered is delivering

objects from multiple sources to a single destination. The problem we are considering is the

network-independent scheduling of interactive audio-visual objects on the server side. We assume

the use of underlying network services for establishing connections for data transport. We also

show that scheduling objects jointly results in bandwidth savings. In the Firefly system [2], the

issue addressed was scheduling a set of local objects to ensure synchronization by adjusting the

duration of the media objects involved. The authors address the issue of meeting specified timing

constraints on the presentation by adjusting the play-rate of objects (speeding up or slowing down

playback) but do not consider network delivery issues. We address the problem of

synchronization by assuming a constant delay network, a terminal buffer, and time stamps

associated with the objects in the presentations. In [27] Song et. al, describe the JINSEL system

that uses bandwidth profiles to reserve bandwidth for media objects on a delivery path. The

JINSEL system computes the bandwidth required on the network segments on the delivery path

using the amount of buffer available on the switch/component. This approach to delivering

object-based presentations is not practicable because of the processing required at the

intermediary nodes. The approach reserves a CBR channel assuming only CBR sources while it

has been shown that multiple CBR sources, when combined, result in a VBR source [9]. We

consider a generic MPEG-4 presentation and present algorithms for determining a delivery

schedule.

 4

In the following, the problem is explained in the context of MPEG-4 Systems. MPEG-4 Systems

specifies an architecture to describe scenes and communicate audio-visual data that corresponds

to the objects in a scene [1]. A scene consists of one or more audio-visual objects with each of

these objects associated with an elementary stream that carries the corresponding data. All the

elementary streams are typically multiplexed in a transport multiplex. A server that is transmitting

objects (elementary streams) should make sure that an access unit (access unit is the smallest data

entity to which timing information can be attributed; e.g., frames in an elementary stream) arrives

at the terminal before its decoding time. The constraints on the server transmission are the

channel capacity and buffer capacity at the receiving terminal. This problem has similarities with

VBR scheduling [24], where the goal is to maximize the number of streams supported by a

server. The difference is that in VBR scheduling discussed in [24] and references therein, the

assumption is that the video data being handled is periodic (e.g., 30 fps). In a general architecture

such as MPEG-4, such assumption is not valid as the data can consist of only still images and

associated audio. Furthermore, the multiple streams in MPEG-4 presentations are synchronized at

the same end-user terminal using a single clock or possibly multiple clocks whereas there are no

inter-dependencies when scheduling multiple VBR video streams. This puts tighter restrictions on

the scheduling of an AV presentation. In such cases the decoding times of individual access units

have to be considered for efficient scheduling. Furthermore, the delay tolerances and relative

priorities of objects in an audio-visual presentation can be used to schedule objects for delivery.

To make a presentation schedulable, objects of lower priority could be dropped. Even different

instances of an object may be assigned different priorities (e.g, higher priority for I and P frames

and a lower priority for B frames in an MPEG video stream). These characteristics of the audio-

visual services can be used to efficiently schedule a presentation with minimal resource

consumption.

Elementary
Streams

Object
Scheduler

MPEG-4
Pump

DMIF

DAI
Network
Interface

DMIF

DAI
Network

Interface

Decoder
Buffers

decoders

Figure 1.a. Terminal Model

Figure 1.b. Server Model

 5

2.1. System Model and Assumptions

We discuss the scheduling of audio-visual objects in the context of a system consisting of client

(end-user), server, and network components as shown in Figure 1.a. Figure 1.b shows the server

model. The server delivers objects in a presentation as scheduled by the scheduler. The scheduler

uses the decoding timestamps to schedule the delivery of access units. A decoder is assumed at

the far end that decodes the objects for real-time playback. On the client side, data is retrieved

from the network and provided to the decoders at decoding time of that access unit. Any data that

arrives before its decoding time is buffered at the terminal. The terminal buffer model is not

considered to keep the schedule independent of terminal designs. However we need the minimum

buffer size for a class of terminals to compute object schedules. The data delivered from the

server is transported on the channel established between the client and the server. The following

assumptions are made about the content, decoders, network, and the server.

Content:

• An audio-visual presentation is composed of one or more objects (AV Objects).

• An access unit (AU) is the smallest piece of data that can be associated with a decoding

time.

• An audio-visual object contains one or more access units.

• Objects and their access units may be assigned relative priorities.

Terminal/Decoders:

• The decoders have given, limited memory for receiving and decoder buffers.

• The object data is removed instantaneously from the buffer at the decoding time given by

the object's decoding timestamp.

• An object/instance that is received before the decoding time is buffered in the decoder-

input buffers until its decoding time.

• More than one object instance may be present in the decoder-input buffers.

Channel/Network:

• End-to-end delays from the server to the player (including the transmission delay) are

assumed to be constant.

• The capacity required for the signaling channel is assumed to be negligibly small.

 6

• The transport layer is work conserving, and delivers the packets to the network

instantaneously.

Server:

• Audio-visual objects are available at the server in the form of time-stamped access units.

• All the access units of an object are delivered in their decoding order.

• A server presents an access unit to the transport layer at the send time determined by the

scheduler.

2.2. Notation

The following notation is used in this paper.

N – set of objects to be scheduled

N – number of objects to be scheduled

ni – number of access units per object (£ £i N)

A kj () – access unit k of object j

A A k
j k

j∫ »
,

() – set of all access units in the presentation

T kj
d () – decoding time of A kj () .

T kj
s () – send time of A kj () .

s ∫ »
j k

j
sT k

,
() – the send-time schedule

C – a transmission channel of capacity C.

s kj () – size in bytes of A kj ()

d kj () – duration (channel occupancy) of access unit k on the wire; d k C s kj j() ();= ÷

Ts – startup delay.

Ts
max – max startup delay.

T d Ts k
k

k
min () () = 0 0 0Â ' = – time to transmit AUs of all objects with DTS/CTS of

zero.

 7

2.3. Problem Formulation

Given a set of N objects that comprise an audio-visual presentation, with each object containing ni

access units each with a decoding time T kj
d () , of kth access unit of object j, a transmission

channel of capacity C, terminal buffer of size B, allowed startup delay of Ts
max, and duration

(channel occupancy) of each access unit on the channel, d kj () : is there a schedule s that

satisfies the following constraints?

T k T k d kj
s

j
d

j() () ()£ - (1)

T k T k d kj
s

j
s

j() () ()+ ≥ +1 (2)

if then,

either or

A k A A l

T k d k T l T k T l d l

i j

i
s

i j
s

i
s

j
s

j

() (),

() () () () () ()

∈ −

+ ≤ ≥ +
 (3)

B t C d k j T k d k t T k tj
j k

j
s

j j
d() * () () () , ()

,

= ' + £ ≥Â (4)

 T Ts s£ max (5)

Constraints (1)-(5) represent the conditions for transmission and playback of object based audio-

visual presentations. Constraint (1) enforces the on-time delivery of access units. Ignoring the

constant end-to-end delays, (1) gives the latest time an access unit can be transmitted. Constraint

(2) imposes intra-object synchronization by enforcing precedence constraints among the access

units. Access units are never transmitted out of order; they are transmitted in their decoding order.

Since a single channel is used for transmission, channel occupancy of any two access units cannot

overlap. Constraint (3) ensures that data is delivered on a single channel between a server and a

client; i.e., if we consider any two access units in the presentation, only one of them can be

transmitted at any time. Equation (4) gives the buffer occupancy at the end-user terminal at time t.

Constraint (5) gives a bound on the startup delay for the given presentation. If the problem cannot

be solved, i.e., a schedule that satisfies the given resource constraints cannot be found, some of

the constraints could be relaxed in order to find a schedule. The constraints can be relaxed by:

reducing the number of objects, increasing the startup delay, or increasing the channel capacity.

EXAMPLE: Consider the scheduling of a presentation with three objects as shown in Figure 2.

Object 1 has five access units, object 2 has three, and object 3 has one access unit. The AUs are

 8

shown with increasing decoding time stamps from left to right. We have to find a schedule, if one

exists, that sequences the AUs starting with the first AU of one the three objects and satisfying

the constraints. Figure 2 shows one such sequence. The general problem of determining the

existence of such a sequence is NP-complete. We prove that in Theorem 1 below.

Scheduling is a complex problem and has been widely studied [4][5][6][8]. Many of the

scheduling problems are NP-complete and a number of approximation algorithms are developed

trading off optimality for tractability [10][30]. The scheduling problem closest to the audio-visual

object scheduling is job shop scheduling on a single machine. There has been earlier work on

scheduling on single machines. Complexity of machine scheduling problems is studied in [21].

Carlier proved the NP-hardness of one-machine sequencing problem in [3] and some

approximation algorithms are discussed in [10]. Another problem with similarities to audio-visual

scheduling is job scheduling with temporal distant constraints. NP-completeness results and

polynomial time algorithms for a restricted instance of the problem are given in [11]. In spite of

the similarities to the current problem, the approximation results for single machine scheduling

problems cannot be applied to audio-visual object scheduling because of an entirely different

problem domain and additional constraints on AV-object scheduling. Approximation algorithms

are based on heuristics and domain knowledge is essential to develop good designs. Even though

the results of single-machine scheduling are not directly applicable to audio-visual presentations,

some of the results can be used in scheduling individual objects on a channel. The results of

single machine scheduling problem as formulated by Lawler in [19][20] may be used to

determine the schedulablity of individual objects.

Figure 2. Sequencing of access units in a 3-object Presentation

 9

2.4. Complexity of audio-visual object scheduling

Theorem 1: Scheduling of access units in Audio-Visual presentations (SAV) is NP-

Complete in the strong sense.

Proof: We prove this by transforming the problem of SEQUENCING WITHIN INTERVALS (SWI),

proven to be NP - Complete in the strong sense [8].

We restate SWI below.

INSTANCE: A finite set T of tasks and, for each t TŒ , an integer release time r t() ,≥ 0 a

deadline d t Z() ,Œ + and a length l t Z() .Œ +

QUESTION: Does there exist a feasible schedule for T, i.e., a function s :T ZÆ + , such

that, for each t T t r t t l t d tŒ ≥ + £, () (), () () (),s s and if t T t then' { },Œ - ,

either t l t t or t t l ts s s s() () () () () ()' ' '+ £ ≥ +

The basic units of the SWI problem are the tasks t TŒ . The local replacement for each

t TŒ is a single access unit A kj () with r A k T kj j
s(()) ()≥ - 1 , d t T kj

d() ()=

l t d kj() ()= . We disregard the buffer and startup delay constraints. It is easy to see that

this instance can be created from SWI in polynomial time. Since SWI can be transformed

to SAV, SAV is at least as hard as SWI.

Since SAV is NP - Complete in the strong sense, it cannot be solved by a pseudo-

polynomial time algorithm. We present several polynomial-time algorithms based on heuristics

and constraint relaxation and evaluate their performance with respect to speed and efficiency.

3. Startup Delay and Terminal Buffer

An MPEG-4 terminal has a finite buffer to store the received data until they are decoded. The

amount of buffer capacity required depends on the type and number of elementary streams being

buffered. Since there are usually no limits on the number of objects in audio-visual presentations,

it is not practical to have sufficient buffer for all presentations. A terminal should be designed to

support a class of presentations. The amount of buffer available also determines the upper bound

on the startup delay for a session. The higher the startup delay, the higher the buffer capacity

 10

required (with channel capacity remaining the same). When scheduling presentations, a scheduler

should assume the minimum allowable buffer for terminals in order to support all terminal types.

Even though the knowledge of the buffer occupancy at a terminal may help improve the schedule,

it makes the schedule dependent on the buffer model used by the terminals. Since the buffer

model and management in a terminal depends on terminal design, we designed the scheduler to

be buffer model independent.

Startup delay can be defined as the time a user has to wait from the time a request is made until

the time the presentation starts. A startup delay of Ts is not equal to buffering Ts seconds of the

presentation. The amount of startup delay varies from presentation to presentation and even for

the same presentation, it may vary with varying resources (e.g, bandwidth and buffer). Startup

delay can be viewed as preloading the beginning of a presentation so that the presentation is

played back continuously once the playback starts. The amount of startup delay required for the

smooth playback of a presentation depends on the channel capacity. For any channel, the

minimum startup delay is the time needed to transmit (buffer) access units that are presented at

time 0 (AUs with timestamp 0).

Consider a presentation composed of several images displayed on the first screen, followed by an

audio track. The images to be displayed on the first screen should reach the terminal before the

presentation starts, resulting in a startup delay. If the channel bandwidth reserved for the

presentation is allocated based on the low bitrate audio stream that follows the images, the startup

delay will be higher. On the other hand, if the higher bandwidth is reserved to minimize the

startup delay, the capacity may be wasted during the remainder of the presentation when low

bitrate audio is delivered. The tradeoff depends on resource availability and startup-delay

tolerance of the application.

Given a startup delay, Ts, the buffer required is equal to the size of the objects that can be loaded

(transmitted to the client) in time Ts. The minimum buffer required for this delay is Ts * C. The

minimum startup delay for any presentation is equal to the time required to transmit (load) the

objects/ instances to be displayed at time 0. We refer to this time as Ts
0 . Ts

0 is the optimal startup

delay for startup delay-optimal schedules and is the lower bound on startup delay for bandwidth-

optimal schedules.

 11

3.1. Residual Data Volume

We introduce the notion of data volume to quickly compute the minimum startup delays needed

for a presentation and determine the non-schedulability. Data volume (Vd) is the amount of data

(in bits) transferred during a session. The amount of data that can be carried by a channel during a

session is the data pipe volume (C Dp p= *). The amount of data volume exceeding the data

pipe volume is the residual data volume (V Vres d p= -). A positive Vres gives the lower bound

on the amount of data to be loaded during startup and hence determines the lower bound on the

startup delay for a presentation. A negative value of Vres indicates unused channel capacity during

the session. We prove the lower bound on channel capacity required in Theorem 2 below.

Theorem 2: For a presentation of duration Dp, the lower bound on channel capacity

required for a startup delay-optimal schedule is:

C C where C
V

D
d

p

≥ min min = , and the bound is tight.

Proof:

s k

D T n T n

d
j k

j

p
j

j
d

j
j

j
d

j

=

= -

Â
,

()

max{ ()} min{ ()}

For a presentation of length Dp, the data pipe volume at the given pipe capacity is

C Dp p= *

Assuming that the buffers are filled up at a rate C, the startup delay due to Vres is

T V V Cs
res

d p= -() /

To minimize the startup delay,

 T V V C V Vs
res

d p p d= - = fi =() / 0

Since C Dp p= * , substituting p we get the lower bound on the channel capacity

C
V

D
d

p
min =

 12

From constraint (1)

T T d T T s Cj
s

j
d

j j
s

j
d

j() () () () () () /1 1 1 1 1 1£ - fi £ -

From constraint (2)

T T s Cj
s

j
s

j() () () /1 0 0≥ +

Assuming that the presentation starts at time 0

T T s Cj
s

j
s

j() , () () /0 0 1 0= fi ≥

From constraints (1) and (2),

T T s C T s C s C

T T s C T T s C

T s C s C s C

j
s

j
s

j j
s

j j

j
s

j
d

j j
d

j
s

j

j
d

j j j

() () () / () () / () /

() () () / () () () /

() () / () / () /

2 1 1 2 0 1

2 2 2 2 2 2

2 0 1 2

≥ + fi ≥ +

£ - fi ≥ +

fi ≥ + +

Similarly,

T n s C s C s n Cj
d

j j j j j() () / () / ... () /≥ + + + 0 1

Since the AUs are transmitted on a single channel,

D T n s C s C s n C

D
C

s k

D
C

C D

C C

p j
d

j j j j j

p j
j k

p p

= ≥ + + +

≥

fi ≥

fi ≥

Â

Â

max{ ()} () / () / ... () /

()

* *

,

min

min

j

0 1

1

1

We can show that the bound is tight by considering the example as shown in the Figure 3.

Object 1 has 2 AUs and object 2 has 1 AU. The decoding times and sizes of AUs in bytes

are: T T T s s sd d d
1 1 2 1 1 21 4 2 10 1 8 1 10 2 5 1 10() , () , () , () , () , ()= = = = = = .

With these values the send times and channel capacity are:

T T Ts s s
1 1 21 0 2 8 1 4() , () , ()= = = , and

C C bytes= =min . / sec2 5 .

A (1) A (1) A1(2)

10 8 4 0

Figure 3. Example to prove the tightness of the bound

 13

The actual channel capacity required to minimize startup delay may be higher depending on the

timing constraints of access units. Note that irrespective of the channel capacity, the minimum

startup delay remains non-zero and is equal to Ts
0 .

Thus for any given presentation with resource constraints:

the minimum startup delay is, T T Ts s
res

s
min max{ , }= 0

the minimum buffer capacity required is, B T Csmin
min *=

the presentation is schedulable only if the available buffer is at least equal toBmin .

4. Scheduling Algorithms

In this section we describe a family of scheduling algorithms for AV object scheduling. Given an

AV presentation, the scheduling algorithms compute a delivery schedule according to the selected

criteria. We assume that the terminal buffer is fixed and compute startup delay-optimal or

bandwidth-minimizing schedules. The algorithms can also be re-purposed to compute the

Presentation Resources

Is this
Schedulable?

Find
schedule

YES NO

Acquire
resources?

YES NO

Relax
Constraints?

NO

No schedule

END

YES

Use priorities.
Drop AUs

Find the best
schedule

Acquire
bandwidth?

YES

Find the bandwidth
optimal schedule

END

NO

Find delay
optimal schedule

END

Figure 4. Determining the Schedulability of a Presentation

 14

minimum terminal buffer required for a given channel capacity. Figure 4 shows the flowchart for

selecting an appropriate scheduling algorithm. The choice of the algorithm depends on the

applications, resource availability, and constraints.

4.1. Algorithm FullSched

This algorithm is based on the last-to-first idea mentioned in [20] for scheduling jobs on a single

machine. The main principle behind this algorithm is scheduling an AU with latest deadline first

and scheduling it as close to the deadline as possible. The algorithm computes the schedule

starting with an AU with the latest decoding time in the presentation. This algorithm computes

the schedule, the required startup delay, and any channel idle times. The channel idle times

computed are used in the gap-scheduling algorithm described in Section 4.2.

Let S be the set of current AUs to be scheduled. Initialize S to contain the last AU of each of the

objects to be scheduled. Let xj be the index of the next AU of object j to be scheduled.

x n j Nj j= £ £, 1

Initialize S A x j Nj j= £ £{ ()}, 1

S j() is the AU of object j to be scheduled next.

S contains at most one AU for every object j.

G is the set of channel idle times. Idle time is given by a tuple <t, d>, i.e, the channel is idle for

duration d starting at time t. Initialize G = { }f

Set current time i = •

Sort AU of objects in the decreasing order of their decoding times.

BEGIN
 while ()S π f {

 i = min{i, max{T kj
d () }}, T k A k Sj

d
j() ()' Œ

 T xj
s

j()= i - d xj j() ; //send time for A xj j()
 // Update i
 i -= d xj j() ;

 xj--;
 // Update S by removing S j()from S
 S S j- = ();
 // add A xj j()to S
 if(x j π 0)

 S AU j x j+ = (,)

 15

 if i T kj
d(max{ ()})> , T k A k Sj

d
j() ()' Œ

 // there is a gap on the channel

 G T k i T kj
d

j
d + = -({max{ ()}, {max{ ()})

 }
 if Tfirst

s < 0

 then T Ts first
s=

 T k T j kj
d

s() , , + = "

 END

The process begins with S initialized with the last AU of each of the objects in the presentation

and G initially empty. In each of the iterations, the AU with the latest decoding time is scheduled

as close to the decoding time as possible. Ties are broken arbitrarily. Once the AU of an object is

scheduled, the next AU of that object is added to S as long as there are AUs to be scheduled. The

current time is given by i. A value of i greater than the largest decoding time of AUs in S

(max{ ()}T kj
d) indicates idle time on the channel (gaps or slots). The channel is idle because

nothing can be scheduled between max{ ()}T kj
d and i. This is illustrated in the example below.

EXAMPLE: Consider two objects O1 with two AUs and object O2 with one AU with duration on

channel, d, and decoding time stamp, T given as a set of tuples <d,T>. O1 ={<7,7>, <10, 21>}

and O2 = {<5, 6>}. After A1 2() is scheduled, at time T s
1 2() = 11, nothing can be scheduled

between T d
1 1() = 7 and current time i=11 resulting in a gap on the channel. A negative value of

the send time indicates that the AU has to be transmitted before the presentation starts giving rise

to a startup delay.

When S becomes empty, i.e., all AUs are scheduled, a negative value of i indicates the required

startup delay for the presentation and G gives the set of gaps on the channel. Since the decoding

times, T kj (), are all non-negative, once i becomes negative, there are no gaps on the channel

indicating that the AUs are tightly packed. A gap is not an indication of the sub-optimality of the

d1(1)=7 d1(2)=10 d2(1)=5

 T d
1 2 21() =

0

gap

 T d
2 1 6() =

 T d
1 1 7() =

Figure 5. Applying FullSched to a two-object Presentation

 T s
1 2 11() = T d

1 1 0() = T d
2 1 5() = -

 16

schedule. However, it may indicate the sub-optimality of the bandwidth-optimized schedule; i.e,

it may be possible to schedule the presentation at a lower bandwidth. When N=1, this algorithm

can be used to determine the schedulability of individual objects and determine the un-

schedulability of a presentation. This is especially useful during the content creation process

where objects are added to create presentations. When an object is added during an editing

operation, it is faster to determine the un-schedulability of a presentation by computing the

independent schedules of objects and adding the startup delays of the independent schedules.

However, a full schedule should still be computed after the editing operations to determine the

schedulability of the presentation under given resource constraints. This algorithm is not efficient

in computing the schedulability during the content creation process, as the full schedule needs to

be re-computed every time an object is added. We next present a gap-scheduling algorithm that

computes incremental schedules to determine the schedulability of a presentation and is well

suited for the content creation process. We also prove that FullSched and gap-scheduling

algorithm compute startup delay optimal schedules.

Theorem 3: Algorithm FullSched produces a startup delay-optimal schedule.

Proof: The algorithm selects an AU with the latest decoding time and schedules it as close

to the deadline as possible. i.e., the algorithm schedules the AUs in non-increasing order

of their decoding times. On a conceptual timeline, with time increasing from left to right,

we are stacking the AUs as much to the right as possible. Gaps occur only when there is

nothing to be scheduled in that gap. Any (or part of) AUs that appear to the left of the

origin (time = 0) give the startup delay. Since the algorithm always moves the AUs to the

right whenever possible, the startup delay is minimized. A smaller startup delay is not

possible because, it would mean moving the AUs to the right implying that there is a usable

gap on the channel. This cannot be the case because the algorithm would have scheduled

an AU in that gap!

4.2. The GapSched Algorithm

The gap-scheduling (GapSched) algorithm schedules AUs in the available gaps on a channel. It

starts with available gaps on a channel and tries to fit an access unit or a partial AU using the

SplitAndSchedule procedure. The initial set of gaps may be obtained by using FullSched to

schedule a single object. The algorithm looks for the first available gap starting at a time less than

the decoding time of the AU to be scheduled. Since G is already sorted in the decreasing order of

 17

gap-times, the look up can be done very efficiently. If the gap duration is not long enough to fit

an AU, the AU is split, with one part scheduled in the current gap and the other added to S to be

scheduled next. The AUs in the presentation are iteratively scheduled until S becomes empty.

S contains all the AU of the object j

S A k k n j Nj j= £ £ Œ{ ()}, , { } 1

Sort AUs in S in the decreasing order of their decoding times

G = πset of available slots { }f .

G(l), is the l th tuple in G with start time G(l).t and duration G(l).d.

k n j=

BEGIN
 while ()S π f {

 find a slot l, G(l), such that T k G l tj
d () > ().

 if G l d d kj((). ())≥ {

 T k G l t d kj
s

j() (). ()= - //send time for A kj ()

 k--;
 // update the gap

 if G l d d kj((). ())- > 0

 G l d G l d d kj (). (). ()= -

 else
 G G l - = { ()};

 // remove AU from the set
 S A kj- = ();

 }
 else{
 PROCEDURE SplitAndSchedule (A kj () ,G(l));

 }
 }
END

Split the AU into two parts, one part that is scheduled in G(l) and the other that is placed back in

S.

PROCEDURE SplitAndSchedule (A kj () ,G(l)){

Create a sub - AU of length containing the last bytes of the AU

G l d G l d C

t k G l t

d k d k G l d

G G l

j

j j

(). (). *

() (). ;

() () (). ;

{ ()};

' =

= -

- =

}

 18

4.3. The IncSched Algorithm IS

The incremental scheduling (IncSched) algorithm computes the schedule for a presentation by

considering one object at a time. This is a typical content creation scenario where objects are

composed to create a presentation. Instead of re-computing the full schedule with FullSched

algorithm each time an object is added, this algorithm computes the schedules incrementally by

scheduling the AU in the available gaps. Note that not all the gaps are schedulable. A gap is un-

schedulable if there are no AUs with decoding times greater than the gap time. An un-schedulable

gap indicates unused bandwidth, which is either due to the structure of the presentation or due to

a sub-optimal schedule. The IncSched algorithm uses FullSched and GapSched algorithms to

schedule a presentation. This algorithm appears to be more efficient than FullSched as it

schedules parts of AUs and fills all the gaps. However, this is only as efficient as FullSched as far

as startup delay is concerned. Splitting the AUs in order to pack the gaps is not going to decrease

the startup delay, as the available channel capacity is the same. The startup delay, like in other

cases, is given by the send-time of the first AU transmitted.

OBJ is the set of objects in the presentation.

BEGIN
Apply FullSched and compute schedule for object 1.
//LRG is a sufficiently large number to accommodate startup delay.

 G LRG i LRG + = < - - >{ , }
 for j OBJŒ - { }1 , apply gap scheduling GS to j.
 for j OBJŒ , find t first , the send time of the first AU to be transmitted (smallest t kj ())

 if Tfirst
s < 0

 then T Ts first
s=

 T k T j kj
d

s() , , + = "

END

 19

Theorem 4: The IncSched algorithm is startup delay-optimal.

Proof: The first object is scheduled using FullSched producing a startup delay-optimal

schedule for that object. GapSched, when applied iteratively to the remaining objects,

packs the AUs tightly; i.e., an access unit is scheduled if the gap time is less than the

decoding time for that AU. The resulting startup delay is optimal because the algorithm

would reduce the startup delay by moving the AU to the right on the timeline if any

schedulable gap is available.

EXAMPLE: Consider two objects O1 with two AUs and object O2 with one AU with duration on

channel, d, and decoding time stamp, T given as a set of tuples <d,T>. O1 ={<7,7>, <10, 21>}

and O2 = {<5, 6>}. The top part of the figure shows the schedule computed using FullSched and

the bottom half shows the schedule computed with IS, with object 2 scheduled first using

FullSched. The figure also shows un-schedulable gaps in both the schedules.

There may be cases where splitting the AUs is necessary, for example, the underlying transport

layer may not be able to handle large AUs. This result shows that AUs can be split while

maintaining the optimality of the schedule. Although the IncSched algorithm produces an optimal

schedule and is useful in determining the schedulability of a presentation in applications such as

content creation, the schedule generated by FullSched may be more efficient when the overhead

due to splitting and packetizing is significant.

d1(1)=7 d1(2)=10 d2(1)=5

0

Split A1 (1)

d1(2)=10 d2(1)=5

0

Startup delay = 5 Un-usable gaps

Figure 6. Schedules Computed Using FullSched and IS

 T d
1 2 21() = T d

1 1 7() =

 T d
2 1 6() =

 20

4.4. Algorithm MinC

In scheduling audio-visual objects, we have so far answered two questions: 1) is the given

presentation schedulable under the given resource constraints and 2) what is the minimum startup

delay required for this presentation. If the answer to question 1 is negative (or if bandwidth

consumption needs to be minimized), the question we need to address is: what are the minimum

amounts of resources required to schedule the presentation. Since we cannot make assumptions

about decoder buffers in order to keep the schedules player-independent, the only resource that

can be acquired is the bandwidth (C). We next present the MinC algorithm that computes the

minimum bandwidth (CBR) required to schedule a presentation.

This algorithm is based on the premise that there is a gap on the channel only when everything

else after the gap-time has been scheduled. Otherwise an un-scheduled AU would have taken up

the gap. The presentation is not schedulable because there is not enough channel capacity until

the first gap time, Tg (smallest gap time). Consider the case in Figure 7. Tg is the first gap-time,

Ts
max, is the maximum allowable startup delay with the current channel capacity, and Ts is the

current start-up delay. The channel capacity should be increased to accommodate Ts -Ts
max in the

duration Tg -Ts
max. The new value of C then is C C T T T Tg s g snew = − −*(() / ())max . The

additional bandwidth necessary is therefore equal to C T T T Ts s g s*(() / ())max max− − . The

algorithm also outputs the bandwidth profile (BP) for the presentation in the form of 3-tuples

<capacity, start, end>. Note that the increased channel capacity is not going to affect the schedule

from Tg to Tlast. A finer bandwidth profile can be obtained by initializing C with Cmin and

increasing C by a small value in each iteration.

BEGIN
 G Gc = = gap count, number of gaps on the channel.
 BP = { }f
 Tlast is the decoding time of the first AU scheduled (= duration of the presentation)

 Ts max T Ts

Scheduled AUs

 Tg Tlast

Figure 7. First gap-time and startup delay of a presentation

 21

 C = Cmin, computed using the results of theorem 2.
SCHEDULE: compute schedule using FullSched
If schedulable goto END
if (Gc == 0)
 Tg = Tlast
else {
 Tg-old = Tg
 Find the smallest gap time, Tg
 BP += {<C, Tg, Tg-old >}
}

C C C T T T Ts s g s = + − −*(() / ())max max

goto: SCHEDULE
END

The channel capacity output by the algorithm is in the form of a set of 3-tuples forming a

bandwidth profile. The minimum CBR channel required is given by the maximum value of C in

the bandwidth profile. This profile may also be used to reserve session bandwidth efficiently.

Since the schedule is computed from last to first (right-to-left on the timeline), the bandwidth

profile will always be a step function with possible steps (decreasing) from left to right. Figure 8

shows some sample profiles. This algorithm does not give the best profile to reserve variable

session bandwidth since the algorithm does not reduce the bandwidth when it is unused. Consider

the example shown in the Figure 8. At Tg, a capacity increase is necessary. Suppose the increase

in C at Tg is sufficient to schedule the presentation. It is possible that the presentation from 0 to Tb

could have been scheduled with a much smaller capacity.

4.5. Algorithm BestSched

When a presentation cannot be scheduled with the given resources, and additional resources

cannot be acquired, the only way to schedule the presentation is to drop some access units. AUs

cannot be dropped arbitrarily as they have different effects on the presentation. Content creators

should assign priorities to objects and possibly AUs of objects to help a scheduler in determining

0 Tlast Tg Tb

Figure 8. Typical shapes of bandwidth usage generated by MinC

 22

the AUs to be dropped. The following algorithm schedules a presentation by dropping lower

priority objects.

BEGIN
SCHEDULE: Compute schedule using FullSched.

 if (B <= Ts * C) {
 Remove A kj ()of lower priority objects such that,

 R A k d k T C Bj j s= ' ≥ -Â{ ()} () * C*
 A R - = { }
 goto: SCHEDULE
 }
END

5. Discussion and Results

Determining the schedulability of a presentation is of O(n) complexity, where n is the number of

AUs in the presentation. Both FullSched and GapSched fall under this category. These algorithms

are used to determine the schedulability, compute an optimal startup delay for the given channel

capacity, and for computing incremental schedules. The MinC algorithm, used to compute the

minimum channel capacity required to schedule the presentation, calls FullSched iteratively with

channel capacity incremented in each iteration. The number of iterations depends on the structure

of the presentation and the initial value of C. The complexity of this algorithm is O(Kn) = O(n),

where K is a constant determined by the structure of the presentation and the initial channel

capacity. The proposed algorithms are fast enough to determine the schedulability of the

presentations in real-time.

I1

I2

I3

I4

S1

O1

I5

I6

I7

I8

I9
I10

I11

I12

0
10 15 16 122

Time in seconds

Figure 9. Structure of the presentation in the example

80

 23

The structure of the presentation has significant impact on the performance of MinC algorithm.

To aid the discussion, we consider a relatively complex MPEG-4 presentation with structural

overview as shown in Figure 9. The properties of the objects in the presentation are tabulated in

Table 1.

Table 1: Properties of objects in the example

Object

FileName (ID)

Size (KB) Start
Time

AU
Count

Scene.od (O1) 0.5 0 1

Scene.bif (S1) 1 (1025 Bytes) 0 4

Main1.jpg (I1) 25 0 1

Main2.jpg (I2) 22 0 1

Main3.jpg (I3) 19 0 1

Main4.jpg (I4) 20 0 1

main_ui.jpg (I5) 39 10 1

Advent_logo.jpg (I6) 7 10 1

CU_logo.jpg (I7) 9 10 1

Lm_logo.jpg (I8) 6 10 1

Xbind_logo.jpg (I9) 8 10 1

geo_pict.jpg (I10) 23 15 11

dance_pict.jpg (I11) 29 15 1

next_page.jpg (I12) 51 16 1

clip01.h263 (V1) 552 16 974

clip01.g723 (A1) 64 16 3233

In the following discussion we refer to objects by the codes shown in the first column of the table.

The presentation is made up of 16 objects including scene description, object description, images,

audio, and video. A screenshot of the presentation as seen in an MPEG-4 player is shown in

Figure 10. The presentation is composed of three scenes. Before the scenes are loaded, the scene

description and object description streams are received and decoded by the terminal. The first

scene consists of four jpeg images (I1 - I4) animated to give a breakout effect. The scene is

encoded to animate the images for 10 seconds and then load the second scene. The second scene

consists of a background image (I5), four logos with animation effects (I6 - I9), and two images

(I10 and I11) with descriptive text of the following audio-visual scene. The last scene consists of

 24

a background image, an audio stream, and a video stream. The temporal layout of the presentation

is shown in Figure 9. The times indicated are the decoding times of the first AUs of the objects

starting at that time. Thus the first four images (I1-I4), the scene description (S1) and the object

descriptor stream (O1) should reach the decoder before anything is displayed on the screen. This

amounts to the minimum startup delay for the presentation. The objects I5 - I9 should reach the

decoder by the time t = 10, I10 and I11 by 15, and the first AU of V1 and A1, and the object I12

should reach the terminal by the time t = 16. The video ends at t = 80 while the audio stream

continues until the end of the presentation. The total length of the presentation is 122 seconds.

This temporal ordering of objects in the presentation results in higher data rates toward the

beginning of the presentation (object data to be delivered in the first 16 seconds: 261 KB ~= 130

Kbps).

Figure 10. Snapshot of the Player with the Scheduled Presentation

 25

Figure 11. Computing min capacity using MinC

5.1. Startup Delay and Capacity Computation

Figure 11 shows the plot of the minimum channel capacity required for a given startup delay.

This is a scenario with variable buffer at the terminal. We assume a work-conserving transport

layer that delivers the objects at the minimum required capacity. The amount of buffer available

at the terminal should be at least sufficient to store the data during the startup. For a startup delay

of Ts , if Cmin is the min capacity required, then the buffer at the terminal B T Csmin min> * . This

curve is useful to determine the amount of buffer (delay) required based on the available network

capacity, especially with terminals such as PCs with sufficient memory. As mentioned earlier in

the discussion of the MinC algorithm, the MinC algorithm also computes the bandwidth profile

for presentations. Figure 12 shows the bandwidth profile computed for a startup delay of 5

seconds. The minimum capacity in the profile is 59 Kbps even for the segment (80 - 120 secs)

that only has low bit rate audio (6 Kbps). This is because MinC starts with an initial value of C

computed using the residual data volume as described in Section 3. This starting point is

acceptable for computing a CBR channel required; for a profile to be used in reserving variable

network resources, a lower initial value of C should be selected. The final bandwidth jump in the

profile gives the minimum channel capacity required for the given delay or buffer.

Channel capacity for given startup delay

50

250

450

650

850

1050

1250

50
0

10
00

15
00

20
00

25
00

30
00

40
00

60
00

70
00

80
00

10
00

0

12
00

0

18
00

0

25
00

0

30
00

0

Startup delay (msec)

C
ha

nn
el

 C
ap

ac
it

y
(K

bp
s)

 26

Figure 12. Computing the bandwidth profile using MinC

Bandwidth profile given startup delay (5000 ms)

135

79 75

59
50

70

90

110

130

150

16000 79162 80086 122656

Time (msec)

C
h
an

n
el

 C
ap

ac
it

y
 (
K

b
p
s)

5.2. Buffer and Capacity Computation

The available buffer at the terminal determines the amount of startup delay a terminal can

support. The available channel capacity imposes a lower limit on the buffer required. Lower

channel capacity implies higher startup delays and hence larger required buffer. Figure 13 gives

the required buffer at various channel capacities. This can be directly converted to the startup

delay at that capacity. Computing the capacity for a given buffer is bit more computationally

intensive. Unlike the previous case where we assumed enough capacity to support the required

startup delay, the buffer capacity is fixed in this case. This typically the scenario when using

dedicated devices such as set-top-boxed with fixed receiving buffers. Since the buffer is fixed, the

supported startup delay decreases as channel capacity increases. For MinC algorithm to complete,

the reduction in startup delay due to increased channel capacity should be greater than the

reduction in startup delay supported by the buffer.

 27

Figure 13. Minimum required buffer

Figure 14. Partial profile for low terminal buffer

Min buffer for given channel capacity

75

150

225

300

375

450

525

600

28 33 40 45 50 56 64 128

Channel Capacity (Kbps)

M
in

 B
uf

fe
r

(K
B

yt
es

)

Figure 14 shows a case with terminal buffer < Bmin . For the given presentation, B KBmin = 85 ,

the size of objects to be decoded at time 0. As discussed in Section 3, for a presentation to be

schedulable, the available buffer should be greater than Bmin , the lower bound on the required

buffer capacity for the presentation. Since the terminal buffer is less than the required buffer, at

any given capacity C, the supported startup delay
B

C

B

C
term < min , the required startup-delay. The

presentation is hence un-schedulable with terminal buffer capacity of 84 KB. This is depicted in

Figure 14, which shows the presentation is un-schedulable even at 3323 Kbps. The plot shows

that no matter how much the channel capacity is increased, the presentation cannot be scheduled

because of limited terminal buffer. To avoid infinite loops in MinC, the scheduler should first

examine the available and required buffer capacities.

Bandwidth profile given buffer capacity (84K < Bmin)

3323

79 75 5950

550

1050

1550

2050

2550

3050

3550

16000 79162 80086 122656

Time (msec)

C
h
an

n
el

 C
ap

ac
it

y
 (
K

b
p
s)

 28

6. Conclusion

We presented the problem of scheduling object-based audio-visual presentations under resource

constraints. The problem is NP-complete in the strong sense. We explored similarities with the

problem of sequencing jobs on a single machine and used the idea of last-to-first scheduling to

develop heuristic algorithms to determine schedulability and compute startup delay-optimal

schedules. The proposed algorithms are applicable in optimizing the delivery of any generic

object-based audio-visual presentations and also mixed media presentations described with

formats such as SMIL[31]. The algorithms can be applied in scheduling object-based MPEG-4

presentations.

We introduced the notion of residual data volume to compute lower bounds on buffer, channel

capacity and startup delay. Determining the schedulability of presentations online is important for

applications like content creation where an additional object may make the presentation un-

schedulable. We presented an algorithm that computes incremental schedules and produces a

startup delay optimal schedule. The incremental scheduling is very useful in application such as

content authoring where authors add and remove objects to presentations during creation. The

IncSched algorithm computes the incremental resources required to schedule the additional

object. Starting with a lower bound on the channel capacity for scheduling a presentation, the

MinC algorithms minimizes the CBR channel capacity required to schedule the presentation. The

proposed algorithms are of low complexity and can be implemented efficiently.

7. References

[1] O. Avaro, A. Eleftheriadis, C. Herpel, G. Rajan, and L. Ward, "MPEG-4 Systems:

Overview", Signal Processing: Image Communication, Tutorial Issue on the MPEG-4

Standard, Vol. 15, Nos. 4-5, January 2000, pp.281-298.

[2] M. C. Buchanan and P. T. Zellweger, “Scheduling Multimedia Documents Using

Temporal Constraints,” NOSDAV 92, pp. 223-235.

[3] J. Carlier, "The One Machine Sequencing Problem," European Journal of Operational

Research, No. 11, 1982, pp. 42-47.

[4] T.L. Casvant and J.G. Kuhl, “A Taxonomy of Scheduling in General Purpose Distributed

Computing Systems,” IEEE Transactions on Software Engineering, Vol. 14, No. 2, Feb

1988, pp. 141-154.

 29

[5] P. Chretienne, E.G. Coffman Jr., J.K. Lenstra, and Z. Liu, editors, "Scheduling Theory and

its Applications," John Wiley & Sons, 1995.

[6] R.W. Conway, W.L. Maxwell, and L.W. Miller, "Theory of Scheduling," Addison-Wesley

Publishing Company, 1967.

[7] M.L. Escobar-Molano, "Management of Resources to Support Coordinated Display of

Structured Presentations," Ph.D. Dissertation, Graduate School, University of Southern

California, 1996.

[8] M. R. Garey and D. S. Johnson, “Computers and intractability: a guide to the theory of NP-

completeness,” W. H. Freeman, San Francisco, 1979.

[9] L. Grossglauser and S. Keshav, "On CBR Service," Proceedings of the INFOCOM, March

1996.

[10] L.A. Hall, "Approximation Algorithms for Scheduling," Approximation algorithms for NP-

hard problems," D. S. Hochbaum edts., PWS Pub. Co., c1997, pp. 1-45.

[11] C.-C.Han, K.-J.Lin, J.W.-S. Liu, "Scheduling Jobs with Temporal Distance Constraints,"

SIAM Journal on Computing, Vol. 24, N0. 5, October 1995, pp. 1104-1121.

[12] C. Herpel and A. Eleftheriadis, "MPEG-4 Systems: Elementary Stream Management",

Signal Processing: Image Communication, Tutorial Issue on the MPEG-4 Standard, Vol.

15, Nos. 4-5, January 2000, pp.299-320.

[13] ISO/IEC/SC29/WG11, “Generic Coding of Moving Pictures and Associated Audio

(MPEG-4 Systems) - ISO/IEC 14386-1,” International Standards Organization, April 1999.

[14] ISO/IEC/SC29/WG11, “Delivery Multimedia Integration Framework (DMIF) - ISO/IEC

14496-6,” International Standards Organization, February 1999.

[15] N. S. Jayant, “Signal compression: Technology targets and research directions,” IEEE

Journal on Selected Areas in Communications, Special issue on speech and image coding,

June 1992.

[16] H. Kalva, L-T. Cheok, A. Eleftheriadis, "MPEG-4 Systems and Applications,"

Demonstration, ACM Multimedia '99, Orlando, FL.

[17] H. Kalva, “Delivering MPEG-4 Based Audio Visual Services,” ISBN 0-7923-7255-7,

Kluwer Academic Publishers, Nov. 2000.

 30

[18] L. Kleinrock and A. Nilsson, “On Optimal Scheduling Algorithms for Time-Shared

Systems,” Journal of the ACM, Vol. 28, No. 3, July 1981, pp. 477-486.

[19] E.L. Lawler, "A Functional Equation and its Application to Resource Allocation and

Sequencing Problems," Management Science, Vol. 16, No. 1, September 1969, pp. 77-84.

[20] E.L. Lawler, "Optimal Sequencing of a Single Machine Subject to Precedence

Constraints," Management Science, Vol. 19, No. 5, January 1973, pp. 544-546.

[21] J.K. Lenstra, A.H.G.R. Kan, and P. Brucker, "Complexity of Machine Scheduling

Problems," Annals of Discrete Mathematics 1, 1977, pp. 343-362.

[22] T.D.C. Little and A. Ghafoor, “Synchronization and Storage Models for Multimedia

Objects,” IEEE Journal on Selected Areas in Communications, Vol 8, No. 3, Dec 1990, pp.

413-427.

[23] T.D.C. Little and A. Ghafoor, “Multimedia Synchronization Protocols for Broadband

Integrated Services,” IEEE Journal on Selected Areas in Communications, Vol 9, No. 9,

Dec 1991, pp. 1368-1382.

[24] S. Paek and S.F. Chang, "Video Server Retrieval Scheduling and Resource Reservation for

Variable bit Rate Scalable Video," To be published in IEEE Transactions on Circuits and

Systems for Video Technology.

[25] A. Puri and A. Eleftheriadis, "MPEG-4: A Multimedia Coding Standard Supporting

Mobile Applications" ACM Mobile Networks and Applications Journal, Special Issue on

Mobile Multimedia Communications, Vol. 3, No. 1, June 1998, pp. 5-32 (invited paper).

[26] J. Signes, Y. Fisher, and A. Eleftheriadis, "MPEG-4’s Binary Format for Scene

Description," Signal Processing: Image Communications, Tutorial Issue on the MPEG-4

Standard, Vol. 15, Nos. 4-5, January 2000, pp.321-345.

[27] J. Song, A. Dan, and D. Sitaram, “Efficient Retrieval of Composite Multimedia Objects in

JINSIL Distributed System,” ACM SIGMETRICS, June 1997.

[28] L. Torres, M. Kunt, eds., “Video Coding : The Second Generation Approach,” Kluwer

Academic Publishers, 1996.

[29] D. Trietsch, “Scheduling Flights at Hub Airports,” Transportation Research, Vol 27, No. 2,

1993, pp 133-150.

 31

[30] J.D. Ullman, "NP-Complete Scheduling Problems," Journal of Computer and System

Sciences, No. 10, 1975, pp. 384-393.

[31] W3C, “Synchronized Multimedia Integration Language (SMIL 1.0),” W3C

Recommendation, June 1998.

