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Abstract 

With the emergence of standards such as MPEG-4, systems and applications using object-

based audio-visual presentations will become more and more common. The main 

distinguishing feature of object-based audio-visual presentations is the scene composition at 

the user terminal. In this paper we discuss the problem of scheduling object-based audio-

visual presentations with resource constraints. We explore the similarities with the problem 

of job sequencing on a single machine. We present a family of algorithms to determine the 

schedulability of audio-visual presentations, and for un-schedulable presentations, we 

present algorithms to compute a schedule that minimizes the additionally acquired 

resources.  We present algorithms for computing incremental schedules for applications 

such as content authoring that require immediate feedback on resource consumption. The 

algorithms can be used to schedule object-based MPEG-4 presentations. We discuss the 

algorithms and results by considering a relatively complex MPEG-4 presentation with 16 

objects including audio, video, and images.  

1. Introduction 

Image and video encoding has been totally transformed with the advent of new coding and 

representation techniques [28]. These next generation coding techniques have made possible 

encoding and representation of audio-visual scenes with semantically or structurally meaningful 

objects.  Such a new paradigm of object-based representation of audio-visual scenes and 

presentations will change the way audio-visual applications are created. MPEG-4 is a 

standardization activity, under the auspices of the ISO, specifying tools to enable object-based 

audio-visual presentations [25]. These include tools to encode individual objects, compose 

presentations with objects, store these object-based presentations, and access these presentations 

in a distributed manner over networks. The main distinguishing feature of object-based audio-

visual presentations is the scene composition at the user terminal. The objects that are part of a 
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scene are composed and displayed at the user end as opposed to encoding the composed scenes as 

is done in the case of MPEG-2 systems. Such object-based representation and presentation has 

several benefits including compression efficiency and the capability to interact with individual 

objects.  

 

The MPEG-4 Systems specification [1][12] [13][26] defines an architecture and tools to create 

audio-visual scenes from individual objects. The scene description and synchronization tools are 

at the core of the systems specification. The MPEG-4 scene description, also referred to as Binary 

Format for Scenes (BIFS), is based on the Virtual Reality Modeling Language (VRML) and 

specifies the spatio-temporal composition of objects in a scene [26]. MPEG-4 also specifies 

DMIF or the Delivery Multimedia Integration Framework, a general application and transport 

delivery framework [14]. In order to keep the user unaware of underlying transport details, 

MPEG-4 defined an interface between user level applications and the underlying transport 

protocol called the DMIF Application Interface (DAI). The DAI provides the required 

functionality for realizing multimedia applications with quality-of-service (QOS) support. This 

architecture allows creation of complex presentations with wide-ranging applications. As the 

complexity of the content increases, so does the complexity of the servers and user-terminals 

involved. The servers now have to manage multiple streams (objects) to deliver a single 

presentation. 

 

The flexibility of MPEG-4 enables complex interactive presentations but makes the content 

creation process non-trivial. Unlike MPEG-2, the content creation process involves much more 

than multiplexing the media streams. Determining the schedulability of a presentation is also 

important during the content creation process to determine if the presentation being designed can 

be scheduled for specific channel rates and client buffer capacity. It may not be possible to 

schedule a presentation with a given set of resources. In order to create a schedulable 

presentation, some constraints may be relaxed. In the case of scheduling objects, relaxing a 

constraint may involve increasing the buffer capacity, increasing the channel capacity, not 

scheduling some object instances, or removing some objects from a presentation. 

 

In this paper we discuss the problem of scheduling audio-visual objects and present algorithms 

for optimal scheduling of audio-visual objects. We present new algorithms, based on job 

sequencing on a single machine proposed by Carlier [3], for scheduling objects in a presentation. 

The original contributions of this paper include: algorithm to determine the schedulability of 
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audio-visual presentations, algorithm to compute startup-delay optimal schedules, algorithm to 

compute schedules that minimize the required channel capacity, and algorithms to compute 

incremental schedules. A more detailed discussion including the issues in scheduling interactive 

presentation can be found in [17]. The paper is organized as follows: the general problem of 

scheduling audio-visual objects and related earlier work is presented in Section 2. The 

characteristics of startup delay and terminal buffer are discussed in Section 3. In Section 4 we 

present several algorithms to schedule audio-visual presentations. Discussion and results are 

presented in Section 5. We conclude the paper in Section 6.  

2. Scheduling Audio-Visual Objects  

Scheduling and multiplexing of audio-visual (AV) objects in a presentation is a complex problem. 

Scheduling of audio-visual objects has been the subject of study in [1][23][27].  In [23] Little and 

Ghafoor present synchronization of multi-object presentations using Petri-net models to describe 

timing relations in multimedia presentations. They present network-level and application-level 

synchronization protocols for multi-object presentations. The problem considered is delivering 

objects from multiple sources to a single destination. The problem we are considering is the 

network-independent scheduling of interactive audio-visual objects on the server side. We assume 

the use of underlying network services for establishing connections for data transport. We also 

show that scheduling objects jointly results in bandwidth savings. In the Firefly system [2], the 

issue addressed was scheduling a set of local objects to ensure synchronization by adjusting the 

duration of the media objects involved. The authors address the issue of meeting specified timing 

constraints on the presentation by adjusting the play-rate of objects (speeding up or slowing down 

playback) but do not consider network delivery issues. We address the problem of 

synchronization by assuming a constant delay network, a terminal buffer, and time stamps 

associated with the objects in the presentations. In [27] Song et. al, describe the JINSEL system 

that uses bandwidth profiles to reserve bandwidth for media objects on a delivery path. The 

JINSEL system computes the bandwidth required on the network segments on the delivery path 

using the amount of buffer available on the switch/component. This approach to delivering 

object-based presentations is not practicable because of the processing required at the 

intermediary nodes. The approach reserves a CBR channel assuming only CBR sources while it 

has been shown that multiple CBR sources, when combined, result in a VBR source [9]. We 

consider a generic MPEG-4 presentation and present algorithms for determining a delivery 

schedule.   
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In the following, the problem is explained in the context of MPEG-4 Systems. MPEG-4 Systems 

specifies an architecture to describe scenes and communicate audio-visual data that corresponds 

to the objects in a scene [1]. A scene consists of one or more audio-visual objects with each of 

these objects associated with an elementary stream that carries the corresponding data. All the 

elementary streams are typically multiplexed in a transport multiplex. A server that is transmitting 

objects (elementary streams) should make sure that an access unit (access unit is the smallest data 

entity to which timing information can be attributed; e.g., frames in an elementary stream) arrives 

at the terminal before its decoding time. The constraints on the server transmission are the 

channel capacity and buffer capacity at the receiving terminal. This problem has similarities with 

VBR scheduling [24], where the goal is to maximize the number of streams supported by a 

server. The difference is that in VBR scheduling discussed in [24] and references therein, the 

assumption is that the video data being handled is periodic (e.g., 30 fps). In a general architecture 

such as MPEG-4, such assumption is not valid as the data can consist of only still images and 

associated audio. Furthermore, the multiple streams in MPEG-4 presentations are synchronized at 

the same end-user terminal using a single clock or possibly multiple clocks whereas there are no 

inter-dependencies when scheduling multiple VBR video streams. This puts tighter restrictions on 

the scheduling of an AV presentation. In such cases the decoding times of individual access units 

have to be considered for efficient scheduling. Furthermore, the delay tolerances and relative 

priorities of objects in an audio-visual presentation can be used to schedule objects for delivery. 

To make a presentation schedulable, objects of lower priority could be dropped. Even different 

instances of an object may be assigned different priorities (e.g, higher priority for I and P frames 

and a lower priority for B frames in an MPEG video stream). These characteristics of the audio-

visual services can be used to efficiently schedule a presentation with minimal resource 

consumption. 
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Figure 1.a. Terminal Model 

Figure 1.b. Server Model 
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2.1. System Model and Assumptions 

We discuss the scheduling of audio-visual objects in the context of a system consisting of client 

(end-user), server, and network components as shown in Figure 1.a. Figure 1.b shows the server 

model. The server delivers objects in a presentation as scheduled by the scheduler. The scheduler 

uses the decoding timestamps to schedule the delivery of access units. A decoder is assumed at 

the far end that decodes the objects for real-time playback. On the client side, data is retrieved 

from the network and provided to the decoders at decoding time of that access unit. Any data that 

arrives before its decoding time is buffered at the terminal. The terminal buffer model is not 

considered to keep the schedule independent of terminal designs. However we need the minimum 

buffer size for a class of terminals to compute object schedules. The data delivered from the 

server is transported on the channel established between the client and the server. The following 

assumptions are made about the content, decoders, network, and the server. 

 

Content: 

• An audio-visual presentation is composed of one or more objects (AV Objects). 

• An access unit (AU) is the smallest piece of data that can be associated with a decoding 

time. 

• An audio-visual object contains one or more access units. 

• Objects and their access units may be assigned relative priorities. 

  

Terminal/Decoders: 

• The decoders have given, limited memory for receiving and decoder buffers. 

• The object data is removed instantaneously from the buffer at the decoding time given by 

the object's decoding timestamp.  

• An object/instance that is received before the decoding time is buffered in the decoder-

input buffers until its decoding time. 

• More than one object instance may be present in the decoder-input buffers.  

 

Channel/Network: 

• End-to-end delays from the server to the player (including the transmission delay) are 

assumed to be constant. 

• The capacity required for the signaling channel is assumed to be negligibly small. 
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• The transport layer is work conserving, and delivers the packets to the network 

instantaneously. 

  

Server: 

• Audio-visual objects are available at the server in the form of time-stamped access units. 

• All the access units of an object are delivered in their decoding order. 

• A server presents an access unit to the transport layer at the send time determined by the 

scheduler. 

2.2. Notation 

The following notation is used in this paper. 

N – set of objects to be scheduled 

N  – number of objects to be scheduled 

ni – number of access units per object ( £ £i N ) 

A kj ( )   – access unit k of object j 

A A k
j k

j∫ »
,

( )  – set of all access units in the presentation 

T kj
d ( )  – decoding time of A kj ( ) . 

T kj
s ( )  – send time of A kj ( ) . 

s ∫ »
j k

j
sT k

,
( )  – the send-time schedule 

C – a transmission channel of capacity C. 

s kj ( )    – size in bytes of A kj ( )  

d kj ( )  – duration (channel occupancy) of access unit k on the wire; d k C s kj j( ) ( );= ÷  

Ts  – startup delay. 

Ts
max – max startup delay. 

T d Ts k
k

k
min ( ) ( )  =         0 0 0Â ' =  – time to transmit AUs of all objects with DTS/CTS of 

zero. 
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2.3. Problem Formulation 

Given a set of N objects that comprise an audio-visual presentation, with each object containing ni 

access units each with a decoding time T kj
d ( ) , of kth access unit of object j, a transmission 

channel of capacity C, terminal buffer of size B, allowed startup delay of Ts
max, and duration 

(channel occupancy) of each access unit on the channel, d kj ( ) : is there a schedule s  that 

satisfies the following constraints?  

 

T k T k d kj
s

j
d

j( ) ( ) ( )£ -               (1) 

T k T k d kj
s

j
s

j( ) ( ) ( )+ ≥ +1       (2) 

if then,

either or

A k A A l

T k d k T l T k T l d l

i j

i
s

i j
s

i
s

j
s

j

( ) ( ),

( ) ( ) ( ) ( ) ( ) ( )

∈ −

+ ≤ ≥ +
    (3) 

B t C d k j T k d k t T k tj
j k

j
s

j j
d( ) * ( ) ( ) ( ) , ( )

,

= ' + £ ≥Â  (4) 

 T Ts s£ max        (5) 

 

Constraints (1)-(5) represent the conditions for transmission and playback of object based audio-

visual presentations. Constraint (1) enforces the on-time delivery of access units. Ignoring the 

constant end-to-end delays, (1) gives the latest time an access unit can be transmitted. Constraint 

(2) imposes intra-object synchronization by enforcing precedence constraints among the access 

units. Access units are never transmitted out of order; they are transmitted in their decoding order. 

Since a single channel is used for transmission, channel occupancy of any two access units cannot 

overlap. Constraint (3) ensures that data is delivered on a single channel between a server and a 

client; i.e., if we consider any two access units in the presentation, only one of them can be 

transmitted at any time. Equation (4) gives the buffer occupancy at the end-user terminal at time t. 

Constraint (5) gives a bound on the startup delay for the given presentation. If the problem cannot 

be solved, i.e., a schedule that satisfies the given resource constraints cannot be found, some of 

the constraints could be relaxed in order to find a schedule. The constraints can be relaxed by: 

reducing the number of objects, increasing the startup delay, or increasing the channel capacity. 

 

EXAMPLE: Consider the scheduling of a presentation with three objects as shown in Figure 2. 

Object 1 has five access units, object 2 has three, and object 3 has one access unit. The AUs are 
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shown with increasing decoding time stamps from left to right. We have to find a schedule, if one 

exists, that sequences the AUs starting with the first AU of one the three objects and satisfying 

the constraints. Figure 2 shows one such sequence. The general problem of determining the 

existence of such a sequence is NP-complete. We prove that in Theorem 1 below. 

Scheduling is a complex problem and has been widely studied [4][5][6][8]. Many of the 

scheduling problems are NP-complete and a number of approximation algorithms are developed 

trading off optimality for tractability [10][30]. The scheduling problem closest to the audio-visual 

object scheduling is job shop scheduling on a single machine. There has been earlier work on 

scheduling on single machines. Complexity of machine scheduling problems is studied in [21]. 

Carlier proved the NP-hardness of one-machine sequencing problem in [3] and some 

approximation algorithms are discussed in [10]. Another problem with similarities to audio-visual 

scheduling is job scheduling with temporal distant constraints. NP-completeness results and 

polynomial time algorithms for a restricted instance of the problem are given in [11]. In spite of 

the similarities to the current problem, the approximation results for single machine scheduling 

problems cannot be applied to audio-visual object scheduling because of an entirely different 

problem domain and additional constraints on AV-object scheduling. Approximation algorithms 

are based on heuristics and domain knowledge is essential to develop good designs. Even though 

the results of single-machine scheduling are not directly applicable to audio-visual presentations, 

some of the results can be used in scheduling individual objects on a channel. The results of 

single machine scheduling problem as formulated by Lawler in [19][20] may be used to 

determine the schedulablity of individual objects.  

Figure 2. Sequencing of access units in a 3-object Presentation 
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2.4. Complexity of audio-visual object scheduling 

Theorem 1:  Scheduling of access units in Audio-Visual presentations (SAV) is NP-

Complete in the strong sense. 

 

Proof: We prove this by transforming the problem of SEQUENCING WITHIN INTERVALS (SWI), 

proven to be NP - Complete in the strong sense [8]. 

 

We restate SWI below. 

 

INSTANCE: A finite set T  of tasks and, for each t TŒ , an integer release time r t( ) ,≥ 0  a 

deadline d t Z( ) ,Œ +  and a length l t Z( ) .Œ +  

QUESTION: Does there exist a feasible schedule for T, i.e., a function s :T ZÆ + , such 

that, for each t T t r t t l t d tŒ ≥ + £, ( ) ( ), ( ) ( ) ( ),s s  and if t T t then' { },Œ - , 

either t l t t or t t l ts s s s( ) ( ) ( ) ( ) ( ) ( )' ' '+ £ ≥ +  

 

The basic units of the SWI problem are the tasks t TŒ . The local replacement for each 

t TŒ  is a single access unit A kj ( )  with r A k T kj j
s( ( )) ( )≥ - 1 , d t T kj

d( ) ( )=  

l t d kj( ) ( )= . We disregard the buffer and startup delay constraints. It is easy to see that 

this instance can be created from SWI in polynomial time. Since SWI can be transformed 

to SAV, SAV is at least as hard as SWI. 

 

Since SAV is NP   - Complete in the strong sense, it cannot be solved by a pseudo-

polynomial time algorithm. We present several polynomial-time algorithms based on heuristics 

and constraint relaxation and evaluate their performance with respect to speed and efficiency.  

3. Startup Delay and Terminal Buffer 

An MPEG-4 terminal has a finite buffer to store the received data until they are decoded.   The 

amount of buffer capacity required depends on the type and number of elementary streams being 

buffered. Since there are usually no limits on the number of objects in audio-visual presentations, 

it is not practical to have sufficient buffer for all presentations. A terminal should be designed to 

support a class of presentations. The amount of buffer available also determines the upper bound 

on the startup delay for a session. The higher the startup delay, the higher the buffer capacity 
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required (with channel capacity remaining the same). When scheduling presentations, a scheduler 

should assume the minimum allowable buffer for terminals in order to support all terminal types. 

Even though the knowledge of the buffer occupancy at a terminal may help improve the schedule, 

it makes the schedule dependent on the buffer model used by the terminals. Since the buffer 

model and management in a terminal depends on terminal design, we designed the scheduler to 

be buffer model independent. 

 

Startup delay can be defined as the time a user has to wait from the time a request is made until 

the time the presentation starts. A startup delay of Ts is not equal to buffering Ts seconds of the 

presentation. The amount of startup delay varies from presentation to presentation and even for 

the same presentation, it may vary with varying resources (e.g, bandwidth and buffer). Startup 

delay can be viewed as preloading the beginning of a presentation so that the presentation is 

played back continuously once the playback starts. The amount of startup delay required for the 

smooth playback of a presentation depends on the channel capacity. For any channel, the 

minimum startup delay is the time needed to transmit (buffer) access units that are presented at 

time 0 (AUs with timestamp 0). 

  

Consider a presentation composed of several images displayed on the first screen, followed by an 

audio track. The images to be displayed on the first screen should reach the terminal before the 

presentation starts, resulting in a startup delay. If the channel bandwidth reserved for the 

presentation is allocated based on the low bitrate audio stream that follows the images, the startup 

delay will be higher. On the other hand, if the higher bandwidth is reserved to minimize the 

startup delay, the capacity may be wasted during the remainder of the presentation when low 

bitrate audio is delivered. The tradeoff depends on resource availability and startup-delay 

tolerance of the application. 

 

Given a startup delay, Ts, the buffer required is equal to the size of the objects that can be loaded 

(transmitted to the client) in time Ts. The minimum buffer required for this delay is Ts * C. The 

minimum startup delay for any presentation is equal to the time required to transmit (load) the 

objects/ instances to be displayed at time 0. We refer to this time as Ts
0 . Ts

0 is the optimal startup 

delay for startup delay-optimal schedules and is the lower bound on startup delay for bandwidth-

optimal schedules.  
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3.1. Residual Data Volume 

We introduce the notion of data volume to quickly compute the minimum startup delays needed 

for a presentation and determine the non-schedulability. Data volume (Vd) is the amount of data 

(in bits) transferred during a session. The amount of data that can be carried by a channel during a 

session is the data pipe volume ( C Dp p= * ). The amount of data volume exceeding the data 

pipe volume is the residual data volume ( V Vres d p= - ). A positive Vres gives the lower bound 

on the amount of data to be loaded during startup and hence determines the lower bound on the 

startup delay for a presentation. A negative value of Vres indicates unused channel capacity during 

the session. We prove the lower bound on channel capacity required in Theorem 2 below. 

 

Theorem 2: For a presentation of duration Dp, the lower bound on channel capacity 

required for a startup delay-optimal schedule is:  

C C where C
V

D
d

p

≥ min min = , and the bound is tight. 

Proof: 

s k

D T n T n

d
j k

j

p
j

j
d

j
j

j
d

j

=

= -

Â
,

( )

max{ ( )} min{ ( )}
 

For a presentation of length Dp, the data pipe volume at the given pipe capacity is 

C Dp p= *  

Assuming that the buffers are filled up at a rate C, the startup delay due to Vres is 

T V V Cs
res

d p= -( ) /  

To minimize the startup delay, 

 T V V C V Vs
res

d p p d= - = fi =( ) / 0  

Since C Dp p= * , substituting p we get the lower bound on the channel capacity 

C
V

D
d

p
min =  
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From constraint (1)    

T T d T T s Cj
s

j
d

j j
s

j
d

j( ) ( ) ( ) ( ) ( ) ( ) /1 1 1 1 1 1£ - fi £ -      

From constraint (2)   

T T s Cj
s

j
s

j( ) ( ) ( ) /1 0 0≥ +  

Assuming that the presentation starts at time 0  

T T s Cj
s

j
s

j( ) , ( ) ( ) /0 0 1 0= fi ≥    

From constraints (1) and (2),  

 

T T s C T s C s C

T T s C T T s C

T s C s C s C

j
s

j
s

j j
s

j j

j
s

j
d

j j
d

j
s

j

j
d

j j j

( ) ( ) ( ) / ( ) ( ) / ( ) /

( ) ( ) ( ) / ( ) ( ) ( ) /

( ) ( ) / ( ) / ( ) /

2 1 1 2 0 1

2 2 2 2 2 2

2 0 1 2

≥ + fi ≥ +

£ - fi ≥ +

fi ≥ + +

        

        

                                              

 

Similarly,  

T n s C s C s n Cj
d

j j j j j( ) ( ) / ( ) / ... ( ) /≥ + + + 0 1  

Since the AUs are transmitted on a single channel, 

D T n s C s C s n C

D
C

s k

D
C

C D

C C

p j
d

j j j j j

p j
j k

p p

= ≥ + + +

≥

fi ≥

fi ≥

Â

Â

max{ ( )} ( ) / ( ) / ... ( ) /

( )

* *

,

min

min

 

                          

                     

                    

j

0 1

1

1

  

 

We can show that the bound is tight by considering the example as shown in the Figure 3. 

Object 1 has 2 AUs and object 2 has 1 AU. The decoding times and sizes of AUs in bytes 

are: T T T s s sd d d
1 1 2 1 1 21 4 2 10 1 8 1 10 2 5 1 10( ) , ( ) , ( ) , ( ) , ( ) , ( )= = = = = =     .  

With these values the send times and channel capacity are:  

T T Ts s s
1 1 21 0 2 8 1 4( ) , ( ) , ( )= = = ,  and  

C C bytes= =min . / sec2 5 . 

A (1)  A (1) A1(2) 

10 8 4 0 

Figure 3. Example to prove the tightness of the bound 
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The actual channel capacity required to minimize startup delay may be higher depending on the 

timing constraints of access units. Note that irrespective of the channel capacity, the minimum 

startup delay remains non-zero and is equal to Ts
0 . 

 

Thus for any given presentation with resource constraints: 

the minimum startup delay is, T T Ts s
res

s
min max{ , }= 0  

the minimum buffer capacity required is, B T Csmin
min *=  

the presentation is schedulable only if the available buffer is at least equal toBmin . 

4. Scheduling Algorithms 

In this section we describe a family of scheduling algorithms for AV object scheduling. Given an 

AV presentation, the scheduling algorithms compute a delivery schedule according to the selected 

criteria. We assume that the terminal buffer is fixed and compute startup delay-optimal or 

bandwidth-minimizing schedules. The algorithms can also be re-purposed to compute the 

Presentation Resources 

Is this 
Schedulable? 

Find 
schedule 

YES NO 

Acquire 
resources?  

YES NO 

Relax 
Constraints? 

NO 

No schedule 

END 

YES 

Use priorities. 
Drop AUs 

Find the best 
schedule 

Acquire 
bandwidth?  

YES 

Find the bandwidth 
optimal schedule 

END 

NO 

Find delay 
optimal schedule 

END 

Figure 4.  Determining the Schedulability of a Presentation 
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minimum terminal buffer required for a given channel capacity. Figure 4 shows the flowchart for 

selecting an appropriate scheduling algorithm. The choice of the algorithm depends on the 

applications, resource availability, and constraints. 

4.1. Algorithm FullSched 

This algorithm is based on the last-to-first idea mentioned in [20] for scheduling jobs on a single 

machine. The main principle behind this algorithm is scheduling an AU with latest deadline first 

and scheduling it as close to the deadline as possible. The algorithm computes the schedule 

starting with an AU with the latest decoding time in the presentation. This algorithm computes 

the schedule, the required startup delay, and any channel idle times. The channel idle times 

computed are used in the gap-scheduling algorithm described in Section 4.2. 

 

Let S be the set of current AUs to be scheduled. Initialize S to contain the last AU of each of the 

objects to be scheduled. Let xj be the index of the next AU of object j to be scheduled. 

x n j Nj j= £ £,             1  

Initialize S A x j Nj j= £ £{ ( )},            1  

S j( )   is the AU of object j to be scheduled next.  

S contains at most one AU for every object j. 

G is the set of channel idle times. Idle time is given by a tuple <t, d>, i.e, the channel is idle for 

duration d starting at time t. Initialize G = { }f  

Set current time i = •  

Sort AU of objects in the decreasing order of their decoding times. 

 

BEGIN 
 while ( )S π f { 

  i = min{i, max{T kj
d ( ) }},     T k A k Sj

d
j( ) ( )' Œ     

  T xj
s

j( )= i - d xj j( ) ; //send time for A xj j( )  
                        // Update i 
  i -= d xj j( ) ; 

  xj--; 
  // Update S by removing S j( )from S 
  S S j- = ( );  
  // add A xj j( )to S 
  if( x j π 0)  

   S AU j x j+ = ( , )     
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  if i T kj
d( max{ ( )})> ,                T k A k Sj

d
j( ) ( )' Œ  

   // there is a gap on the channel 

   G T k i T kj
d

j
d + = -({max{ ( )}, {max{ ( )}) 

 } 
 if Tfirst

s < 0 

 then T Ts first
s=  

 T k T j kj
d

s( ) , ,                  + = "  

 END 
 

The process begins with S initialized with the last AU of each of the objects in the presentation 

and G initially empty. In each of the iterations, the AU with the latest decoding time is scheduled 

as close to the decoding time as possible. Ties are broken arbitrarily. Once the AU of an object is 

scheduled, the next AU of that object is added to S as long as there are AUs to be scheduled. The 

current time is given by i. A value of i greater than the largest decoding time of AUs in S 

(max{ ( )}T kj
d ) indicates idle time on the channel (gaps or slots). The channel is idle because 

nothing can be scheduled between max{ ( )}T kj
d  and i. This is illustrated in the example below. 

 

EXAMPLE:  Consider two objects O1 with two AUs and object O2 with one AU with duration on 

channel, d, and decoding time stamp, T given as a set of tuples <d,T>. O1 ={<7,7>, <10, 21>} 

and O2 = {<5, 6>}. After A1 2( )  is scheduled, at time T s
1 2( ) = 11, nothing can be scheduled 

between T d
1 1( )  = 7 and current time i=11 resulting in a gap on the channel. A negative value of 

the send time indicates that the AU has to be transmitted before the presentation starts giving rise 

to a startup delay. 

 

When S becomes empty, i.e., all AUs are scheduled, a negative value of i indicates the required 

startup delay for the presentation and G gives the set of gaps on the channel. Since the decoding 

times, T kj ( ), are all non-negative, once i becomes negative, there are no gaps on the channel 

indicating that the AUs are tightly packed. A gap is not an indication of the sub-optimality of the 

d1(1)=7 d1(2)=10   d2(1)=5 

 T d
1 2 21( ) =  

0 

gap 

 T d
2 1 6( ) =  

 T d
1 1 7( ) =  

Figure 5. Applying FullSched to a two-object Presentation 

 T s
1 2 11( ) =   T d

1 1 0( ) =   T d
2 1 5( ) = -  
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schedule. However, it may indicate the sub-optimality of the bandwidth-optimized schedule; i.e, 

it may be possible to schedule the presentation at a lower bandwidth. When N=1, this algorithm 

can be used to determine the schedulability of individual objects and determine the un-

schedulability of a presentation. This is especially useful during the content creation process 

where objects are added to create presentations. When an object is added during an editing 

operation, it is faster to determine the un-schedulability of a presentation by computing the 

independent schedules of objects and adding the startup delays of the independent schedules. 

However, a full schedule should still be computed after the editing operations to determine the 

schedulability of the presentation under given resource constraints. This algorithm is not efficient 

in computing the schedulability during the content creation process, as the full schedule needs to 

be re-computed every time an object is added. We next present a gap-scheduling algorithm that 

computes incremental schedules to determine the schedulability of a presentation and is well 

suited for the content creation process. We also prove that FullSched and gap-scheduling 

algorithm compute startup delay optimal schedules. 

 

Theorem 3:  Algorithm FullSched produces a startup delay-optimal schedule. 

 

Proof: The algorithm selects an AU with the latest decoding time and schedules it as close 

to the deadline as possible. i.e., the algorithm schedules the AUs in non-increasing order 

of their decoding times. On a conceptual timeline, with time increasing from left to right, 

we are stacking the AUs as much to the right as possible. Gaps occur only when there is 

nothing to be scheduled in that gap. Any (or part of) AUs that appear to the left of the 

origin (time = 0) give the startup delay. Since the algorithm always moves the AUs to the 

right whenever possible, the startup delay is minimized. A smaller startup delay is not 

possible because, it would mean moving the AUs to the right implying that there is a usable 

gap on the channel. This cannot be the case because the algorithm would have scheduled 

an AU in that gap! 

4.2. The GapSched Algorithm 

The gap-scheduling (GapSched) algorithm schedules AUs in the available gaps on a channel. It 

starts with available gaps on a channel and tries to fit an access unit or a partial AU using the 

SplitAndSchedule procedure. The initial set of gaps may be obtained by using FullSched to 

schedule a single object. The algorithm looks for the first available gap starting at a time less than 

the decoding time of the AU to be scheduled. Since G is already sorted in the decreasing order of 
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gap-times, the look up can be done very efficiently. If the gap duration is not long enough to fit 

an AU, the AU is split, with one part scheduled in the current gap and the other added to S to be 

scheduled next. The AUs in the presentation are iteratively scheduled until S becomes empty. 

 

S contains all the AU of the object j 

S A k k n j Nj j= £ £ Œ{ ( )}, , { }           1  

Sort AUs in S in the decreasing order of their decoding times 

G = πset of available slots { }f . 

G(l), is the l th tuple in G with start time G(l).t and duration G(l).d. 

k n j=  

BEGIN 
 while ( )S π f { 

  find a slot l, G(l), such that T k G l tj
d ( ) > ( ).  

  if G l d d kj( ( ). ( ))≥ { 

   T k G l t d kj
s

j( ) ( ). ( )= -    //send time for A kj ( )  

   k--; 
   // update the gap 

   if G l d d kj( ( ). ( ) )- > 0  

    G l d G l d d kj  ( ). ( ). ( )= -  

   else 
    G G l - = { ( )};  

                        // remove AU from the set 
   S A kj- = ( );  

  } 
  else{ 
   PROCEDURE SplitAndSchedule ( A kj ( ) ,G(l)); 

  } 
 } 
END 
 

Split the AU into two parts, one part that is scheduled in G(l) and the other that is placed back in 

S. 

PROCEDURE SplitAndSchedule ( A kj ( ) ,G(l)){ 

 

Create a sub - AU of length  containing the last  bytes of the AU

 

G l d G l d C

t k G l t

d k d k G l d

G G l

j

j j

( ). ( ). *

( ) ( ). ;

( ) ( ) ( ). ;

{ ( )};

' =

= -

- =

 

} 
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4.3. The IncSched Algorithm IS  

The incremental scheduling (IncSched) algorithm computes the schedule for a presentation by 

considering one object at a time. This is a typical content creation scenario where objects are 

composed to create a presentation. Instead of re-computing the full schedule with FullSched 

algorithm each time an object is added, this algorithm computes the schedules incrementally by 

scheduling the AU in the available gaps. Note that not all the gaps are schedulable. A gap is un-

schedulable if there are no AUs with decoding times greater than the gap time. An un-schedulable 

gap indicates unused bandwidth, which is either due to the structure of the presentation or due to 

a sub-optimal schedule. The IncSched algorithm uses FullSched and GapSched algorithms to 

schedule a presentation. This algorithm appears to be more efficient than FullSched as it 

schedules parts of AUs and fills all the gaps. However, this is only as efficient as FullSched as far 

as startup delay is concerned. Splitting the AUs in order to pack the gaps is not going to decrease 

the startup delay, as the available channel capacity is the same. The startup delay, like in other 

cases, is given by the send-time of the first AU transmitted. 

 

OBJ is the set of objects in the presentation. 

 

BEGIN 
Apply FullSched and compute schedule for object 1. 
//LRG is a sufficiently large number to accommodate startup delay. 

 G LRG i LRG + = < - - >{ , } 
 for j OBJŒ - { }1 , apply gap scheduling GS to j. 
 for j OBJŒ , find t first , the send time of the first AU to be transmitted (smallest t kj ( ) ) 

 if Tfirst
s < 0 

 then T Ts first
s=  

 T k T j kj
d

s( ) , ,                  + = "   

END 
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Theorem 4: The IncSched algorithm is startup delay-optimal. 

 

Proof: The first object is scheduled using FullSched producing a startup delay-optimal 

schedule for that object. GapSched, when applied iteratively to the remaining objects, 

packs the AUs tightly; i.e., an access unit is scheduled if the gap time is less than the 

decoding time for that AU. The resulting startup delay is optimal because the algorithm 

would reduce the startup delay by moving the AU to the right on the timeline if any 

schedulable gap is available.  

 

EXAMPLE:  Consider two objects O1 with two AUs and object O2 with one AU with duration on 

channel, d, and decoding time stamp, T given as a set of tuples <d,T>. O1 ={<7,7>, <10, 21>} 

and O2 = {<5, 6>}. The top part of the figure shows the schedule computed using FullSched and 

the bottom half shows the schedule computed with IS, with object 2 scheduled first using 

FullSched. The figure also shows un-schedulable gaps in both the schedules. 

 

There may be cases where splitting the AUs is necessary, for example, the underlying transport 

layer may not be able to handle large AUs. This result shows that AUs can be split while 

maintaining the optimality of the schedule. Although the IncSched algorithm produces an optimal 

schedule and is useful in determining the schedulability of a presentation in applications such as 

content creation, the schedule generated by FullSched may be more efficient when the overhead 

due to splitting and packetizing is significant.  

d1(1)=7 d1(2)=10   d2(1)=5 

0 

Split A1 (1) 

d1(2)=10   d2(1)=5 

0 

   

Startup delay = 5 Un-usable gaps 

Figure 6. Schedules Computed Using FullSched and IS 

 T d
1 2 21( ) =   T d

1 1 7( ) =  

 T d
2 1 6( ) =  
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4.4. Algorithm MinC 

In scheduling audio-visual objects, we have so far answered two questions: 1) is the given 

presentation schedulable under the given resource constraints and 2) what is the minimum startup 

delay required for this presentation. If the answer to question 1 is negative (or if bandwidth 

consumption needs to be minimized), the question we need to address is: what are the minimum 

amounts of resources required to schedule the presentation. Since we cannot make assumptions 

about decoder buffers in order to keep the schedules player-independent, the only resource that 

can be acquired is the bandwidth (C). We next present the MinC algorithm that computes the 

minimum bandwidth (CBR) required to schedule a presentation. 

 

This algorithm is based on the premise that there is a gap on the channel only when everything 

else after the gap-time has been scheduled. Otherwise an un-scheduled AU would have taken up 

the gap. The presentation is not schedulable because there is not enough channel capacity until 

the first gap time, Tg (smallest gap time). Consider the case in Figure 7. Tg is the first gap-time, 

Ts
max, is the maximum allowable startup delay with the current channel capacity, and Ts is the 

current start-up delay. The channel capacity should be increased to accommodate Ts -Ts
max in the 

duration Tg -Ts
max. The new value of C then is C C T T T Tg s g snew = − −*(( ) / ( ))max . The 

additional bandwidth necessary is therefore equal to C T T T Ts s g s*(( ) / ( ))max max− − . The 

algorithm also outputs the bandwidth profile (BP) for the presentation in the form of 3-tuples 

<capacity, start, end>. Note that the increased channel capacity is not going to affect the schedule 

from Tg to Tlast. A finer bandwidth profile can be obtained by initializing C with Cmin and 

increasing C by a small value in each iteration. 

 

BEGIN 
 G Gc =  = gap count, number of gaps on the channel. 
 BP = { }f  
 Tlast is the decoding time of the first AU scheduled (= duration of the presentation)  

    

  Ts max T   Ts 

Scheduled AUs       

  Tg   Tlast 

Figure 7. First gap-time and startup delay of a presentation 
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 C = Cmin, computed using the results of theorem 2.  
SCHEDULE: compute schedule using FullSched 
If schedulable goto END 
if  (Gc == 0) 
 Tg = Tlast   
else { 
 Tg-old = Tg    
 Find the smallest gap time, Tg  
 BP += {<C, Tg, Tg-old >} 
} 
 

C C C T T T Ts s g s = + − −*(( ) / ( ))max max   

goto: SCHEDULE 
END 

 

The channel capacity output by the algorithm is in the form of a set of 3-tuples forming a 

bandwidth profile. The minimum CBR channel required is given by the maximum value of C in 

the bandwidth profile. This profile may also be used to reserve session bandwidth efficiently. 

Since the schedule is computed from last to first (right-to-left on the timeline), the bandwidth 

profile will always be a step function with possible steps (decreasing) from left to right. Figure 8 

shows some sample profiles. This algorithm does not give the best profile to reserve variable 

session bandwidth since the algorithm does not reduce the bandwidth when it is unused. Consider 

the example shown in the Figure 8. At Tg, a capacity increase is necessary. Suppose the increase 

in C at Tg is sufficient to schedule the presentation. It is possible that the presentation from 0 to Tb 

could have been scheduled with a much smaller capacity. 

4.5. Algorithm BestSched 

When a presentation cannot be scheduled with the given resources, and additional resources 

cannot be acquired, the only way to schedule the presentation is to drop some access units. AUs 

cannot be dropped arbitrarily as they have different effects on the presentation. Content creators 

should assign priorities to objects and possibly AUs of objects to help a scheduler in determining 

0 Tlast Tg Tb 

Figure 8. Typical shapes of bandwidth usage generated by MinC 
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the AUs to be dropped. The following algorithm schedules a presentation by dropping lower 

priority objects. 

 

BEGIN 
SCHEDULE: Compute schedule using FullSched. 

 if (B <= Ts * C) { 
  Remove A kj ( )of lower priority objects such that,  

  R A k d k T C Bj j s= ' ≥ -Â{ ( )} ( ) *             C*   
  A R - = { } 
  goto: SCHEDULE 
 } 
END 

5. Discussion and Results 

Determining the schedulability of a presentation is of O(n) complexity, where n is the number of 

AUs in the presentation. Both FullSched and GapSched fall under this category. These algorithms 

are used to determine the schedulability, compute an optimal startup delay for the given channel 

capacity, and for computing incremental schedules. The MinC algorithm, used to compute the 

minimum channel capacity required to schedule the presentation, calls FullSched iteratively with 

channel capacity incremented in each iteration. The number of iterations depends on the structure 

of the presentation and the initial value of C. The complexity of this algorithm is O(Kn) = O(n), 

where K is a constant determined by the structure of the presentation and the initial channel 

capacity. The proposed algorithms are fast enough to determine the schedulability of the 

presentations in real-time.  

 

I1 

I2 

I3 

I4 

S1 

O1 

I5 

I6 

I7 

I8 

I9 
I10 

I11 

I12 

0  
10  15 16 122  

Time in seconds 

Figure 9. Structure of the presentation in the example 
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The structure of the presentation has significant impact on the performance of MinC algorithm. 

To aid the discussion, we consider a relatively complex MPEG-4 presentation with structural 

overview as shown in Figure 9. The properties of the objects in the presentation are tabulated in 

Table 1. 

Table 1: Properties of objects in the example 

Object 

FileName (ID) 

Size (KB) Start 
Time 

AU 
Count 

Scene.od (O1) 0.5 0 1 

Scene.bif (S1) 1 (1025 Bytes) 0 4 

Main1.jpg (I1) 25 0 1 

Main2.jpg (I2)  22 0 1 

Main3.jpg (I3) 19 0 1 

Main4.jpg (I4) 20 0 1 

main_ui.jpg (I5) 39 10 1 

Advent_logo.jpg (I6) 7 10 1 

CU_logo.jpg (I7) 9 10 1 

Lm_logo.jpg (I8) 6 10 1 

Xbind_logo.jpg (I9) 8 10 1 

geo_pict.jpg (I10) 23 15 11 

dance_pict.jpg (I11) 29 15 1 

next_page.jpg (I12) 51 16 1 

clip01.h263 (V1) 552 16 974 

clip01.g723 (A1) 64 16 3233 
 

In the following discussion we refer to objects by the codes shown in the first column of the table. 

The presentation is made up of 16 objects including scene description, object description, images, 

audio, and video. A screenshot of the presentation as seen in an MPEG-4 player is shown in 

Figure 10. The presentation is composed of three scenes. Before the scenes are loaded, the scene 

description and object description streams are received and decoded by the terminal. The first 

scene consists of four jpeg images (I1 - I4) animated to give a breakout effect. The scene is 

encoded to animate the images for 10 seconds and then load the second scene. The second scene 

consists of a background image (I5), four logos with animation effects (I6 - I9), and two images 

(I10 and I11) with descriptive text of the following audio-visual scene. The last scene consists of 
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a background image, an audio stream, and a video stream. The temporal layout of the presentation 

is shown in Figure 9. The times indicated are the decoding times of the first AUs of the objects 

starting at that time. Thus the first four images (I1-I4), the scene description (S1) and the object 

descriptor stream (O1) should reach the decoder before anything is displayed on the screen. This 

amounts to the minimum startup delay for the presentation. The objects I5 - I9 should reach the 

decoder by the time t = 10, I10 and I11 by 15, and the first AU of V1 and A1, and the object I12 

should reach the terminal by the time t = 16. The video ends at t = 80 while the audio stream 

continues until the end of the presentation. The total length of the presentation is 122 seconds. 

This temporal ordering of objects in the presentation results in higher data rates toward the 

beginning of the presentation (object data to be delivered in the first 16 seconds: 261 KB ~= 130 

Kbps).  

 

 

 

 

Figure 10. Snapshot of the Player with the Scheduled Presentation 
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Figure 11. Computing min capacity using MinC 

5.1. Startup Delay and Capacity Computation 

Figure 11 shows the plot of the minimum channel capacity required for a given startup delay. 

This is a scenario with variable buffer at the terminal. We assume a work-conserving transport 

layer that delivers the objects at the minimum required capacity. The amount of buffer available 

at the terminal should be at least sufficient to store the data during the startup. For a startup delay 

of Ts , if Cmin  is the min capacity required, then the buffer at the terminal B T Csmin min> * . This 

curve is useful to determine the amount of buffer (delay) required based on the available network 

capacity, especially with terminals such as PCs with sufficient memory. As mentioned earlier in 

the discussion of the MinC algorithm, the MinC algorithm also computes the bandwidth profile 

for presentations. Figure 12 shows the bandwidth profile computed for a startup delay of 5 

seconds. The minimum capacity in the profile is 59 Kbps even for the segment (80 - 120 secs) 

that only has low bit rate audio (6 Kbps). This is because MinC starts with an initial value of C 

computed using the residual data volume as described in Section 3. This starting point is 

acceptable for computing a CBR channel required; for a profile to be used in reserving variable 

network resources, a lower initial value of C should be selected. The final bandwidth jump in the 

profile gives the minimum channel capacity required for the given delay or buffer. 
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Figure 12. Computing the bandwidth profile using MinC 
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5.2. Buffer and Capacity Computation 

The available buffer at the terminal determines the amount of startup delay a terminal can 

support. The available channel capacity imposes a lower limit on the buffer required. Lower 

channel capacity implies higher startup delays and hence larger required buffer.  Figure 13 gives 

the required buffer at various channel capacities. This can be directly converted to the startup 

delay at that capacity. Computing the capacity for a given buffer is bit more computationally 

intensive. Unlike the previous case where we assumed enough capacity to support the required 

startup delay, the buffer capacity is fixed in this case. This typically the scenario when using 

dedicated devices such as set-top-boxed with fixed receiving buffers. Since the buffer is fixed, the 

supported startup delay decreases as channel capacity increases. For MinC algorithm to complete, 

the reduction in startup delay due to increased channel capacity should be greater than the 

reduction in startup delay supported by the buffer. 
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Figure 13. Minimum required buffer 

Figure 14. Partial profile for low terminal buffer 
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Figure 14 shows a case with terminal buffer < Bmin . For the given presentation, B KBmin = 85 , 

the size of objects to be decoded at time 0. As discussed in Section 3, for a presentation to be 

schedulable, the available buffer should be greater than Bmin , the lower bound on the required 

buffer capacity for the presentation. Since the terminal buffer is less than the required buffer, at 

any given capacity C, the supported startup delay 
B

C

B

C
term < min , the required startup-delay. The 

presentation is hence un-schedulable with terminal buffer capacity of 84 KB. This is depicted in 

Figure 14, which shows the presentation is un-schedulable even at 3323 Kbps. The plot shows 

that no matter how much the channel capacity is increased, the presentation cannot be scheduled 

because of limited terminal buffer. To avoid infinite loops in MinC, the scheduler should first 

examine the available and required buffer capacities.  
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6. Conclusion 

We presented the problem of scheduling object-based audio-visual presentations under resource 

constraints. The problem is NP-complete in the strong sense. We explored similarities with the 

problem of sequencing jobs on a single machine and used the idea of last-to-first scheduling to 

develop heuristic algorithms to determine schedulability and compute startup delay-optimal 

schedules. The proposed algorithms are applicable in optimizing the delivery of any generic 

object-based audio-visual presentations and also mixed media presentations described with 

formats such as SMIL[31]. The algorithms can be applied in scheduling object-based MPEG-4 

presentations. 

 

We introduced the notion of residual data volume to compute lower bounds on buffer, channel 

capacity and startup delay. Determining the schedulability of presentations online is important for 

applications like content creation where an additional object may make the presentation un-

schedulable. We presented an algorithm that computes incremental schedules and produces a 

startup delay optimal schedule. The incremental scheduling is very useful in application such as 

content authoring where authors add and remove objects to presentations during creation. The 

IncSched algorithm computes the incremental resources required to schedule the additional 

object. Starting with a lower bound on the channel capacity for scheduling a presentation, the 

MinC algorithms minimizes the CBR channel capacity required to schedule the presentation. The 

proposed algorithms are of low complexity and can be implemented efficiently.  
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