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2-D Transform-Domain Resolution Translation
Jae-Beom Lee, Member, IEEE,and Alexandros Eleftheriadis, Member, IEEE

Abstract—The extensive use of discrete transforms in image
and video coding suggests the investigation on filtering before
downsampling (FBDS) and filtering after upsampling (FAUS)
methods directly acting on the transform domain. In this paper, we
describe the “transform-domain resolution translation” technique
that gives flexibility to resize windows of each video conferencing
session for server compositing without explicit decompression,
spatial domain processing, and compression. We generalize trans-
form-domain filtering (TDF) to include nonuniform and multirate
cases to implement the transform-domain resolution translator.
The former is defined as a TDF problem in which the original
transform domain is of different size from the target one, while the
latter considers the implementation of sampling rate conversion
in the transform domain. The implementation architecture is
based on a pipeline that involves matrix–vector product blocks
and vector addition, but is not limited to particular hardware.
Such techniques are particularly useful for fast algorithms for
processing compressed images and video where transform coding
is extensively used (e.g., in JPEG, H.261, MPEG-1, MPEG-2, and
H.263).

Index Terms—Multirate transform-domain filtering (MTFD),
nonuniform transform-domain filtering (NTDF), transform-do-
main filtering (TDF), transform-domain resolution translation
(TDRT).

I. INTRODUCTION

T RANSFORM coding techniques are widely used for com-
pressing digital image and audio signals. In particular, the

discrete cosine transform (DCT) is used as the primary means
for image and video compression and transmission [1]–[4], and
is at the core of several international standards (e.g., JPEG,
H.261, MPEG-1, MPEG-2, and H.263). The large data rates
(more than 100 Mb/s) associated with uncompressed video
necessitate its storage and transmission in a compressed form;
in several instances, however, it is desired that processing op-
erations are applied on the compressed data. Examples include
traditional image and video production facilities, as well as
modern distributed multimedia systems that bring editing and
processing capabilities to end-users.

Typical operations are pixel-oriented and applied in the spa-
tial domain, and include overlays, translation, scaling, linear fil-
tering, rotation, etc. The straightforward approach of decom-
pressing, processing, and recompressing is undesirable due to
the significant computational overhead associated with com-
pression and decompression (particularly for highly asymmetric
codecs like MPEG). This makes it desirable that these opera-
tions are applied directly in the compressed or transform do-
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main. The computational overhead can then be significantly re-
duced, as it only involves parsing of the data up to the point
where transform coefficient data is available, and regeneration
of data based on the new transform coefficient values. As an
example, direct transform-domain manipulation has been em-
ployed in [5] and [6] in order to provide fast video compositing
algorithms, whereas in [7] and [8], it has been used to perform
rate changes.

With respect to transform-domain filtering (TDF), a number
of techniques have been applied to provide convolution-multi-
plication properties to the DCT [9]–[11]. Such “DCT filtering”
approaches successfully reduce the number of multiplications
and additions, but also possess some limitations and imperfec-
tions. For example, the scheme in [10] relies on a distortion
factor which is difficult to implement, while the scheme
in [9] requires that filter coefficients are real and symmetric.
Furthermore, since both schemes are concerned with circular
convolution applied to individual signal blocks, they cannot im-
plement linear filtering or avoid block-edge effects.

In recent work [12], Lee and Lee proposed the concept of
TDF as a technique to get around these problems, taking ad-
vantage of advanced modern VLSI technology. TDF is a block-
based filtering process that is applied to transform-domain data
and that can implement the desired time domain filtering. It is
shown in [12] that the existing DCT filtering approach can be
generalized to TDF, and a pipelining structure was presented
as a means to implement it. TDF has been extended into infi-
nite-impulse response (IIR) structures in [13] by Kim and Lee.
Moreover, Chang and Messerschmitt showed that TDF is still
useful in software architectures since transform data usually
take on immensely compressed form such as DCT [5], [6]; the
compression ratios achieved in practical DCT-based codecs are
50–100 to 1, and only a small proportion of transform data needs
computation in software architecture.

More recently, direct DCT domain image downsampling
problems were investigated in [14]–[16] to provide an alter-
native approach wherein the data stream is processed in the
compressed DCT domain without explicit decompression and
spatial-domain processing, and so that the output compressed
stream, corresponding to the output image, conforms to the
standard syntax of blocks [15]. Beneficial examples
include a multiparty video communication system through a
server. As explained in [15], a videoconferencing session of
several parties requires each one of them to see everybody
else in a separate window on his screen. Every user would
like to have the flexibility to resize windows, move them from
one location on the screen to another, and so on. Since each
workstation is capable of handling one video stream only, the
server must compose the bit streams from all parties to a single
stream whose architecture depends on user’s request. If one
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user wishes, say, to scale down by a factor of two a window
corresponding to another user and move it to a different place
on the screen, the server must support a downsampling. The one
step-size conversion operation directly in the DCT domain will
reduce the computational burden, since the decompression and
compression processes are typically computational bottlenecks.
For example, the inverse DCT (IDCT) for decompression
process requires 38.7% of the overall execution time on a
typical workstation [15].

In this paper, we extend the previous idea of [15] into a gen-
eral case where the size of windows can be changed with arbi-
trary scale (i.e., fractional or even scaling up). In fact, arbitrary
or upscaling modification directly in the DCT domain were not
possible in that approach. To make the generalized work pos-
sible, we introduce the concept of “transform-domain resolution
translation” (TDRT) as a combined form of the transform-do-
main FBDS and FAUS issues, and then propose the solution
with in the context of TDF.

In Section II we review the core of uniform TDF, and extend
it by introducing the concept of non-uniform TDF (NTDF), in
which the two transform sizes need not be the same. A mod-
ified TDF is applied by mapping the nonuniform problem to
a uniform one. As an example of the applications of NTDF,
we show how it can be used to provide a general solution to
the direct computation of transform coefficients in the “sub-ad-
jacent block problem” given in [17]. Section III extends TDF
to include multirate processing as well, resulting to multirate
TDF (MTDF). Again, a modified TDF is applied, by mapping
the multirate problem into a nonuniform one. An example is
given by providing a general solution to the 1-D TDRT problem.
We generalize it in the next section to address the 2-D TDRT
problem, which is actually a 2-D version of the generalized
transform-domain FBDS and FAUS issues given in [14] and
[15]. Finally, in Section V, we discuss implementation consid-
erations and present some concluding remarks.

II. UNIFORM AND NONUNIFORM TDF

A. The Uniform TDF

Lee and Lee defined TDF as an operation which has the same
functionality as a combination of transform, filtering, and trans-
form [12]. The TDF problem for the case where the input and
output transform sizes are equal is depicted in Fig. 1(a) [12]. In
this paper, this will be referred to as uniform TDF, since the orig-
inal transform domain is of same size as the target one. In a tradi-
tional approach, would be the IDCT, would be the DCT,
and would be the desired linear filter. The pipelined im-
plementation shown in Fig. 1(b) involves a set of matrix-vector
multiplication modules ( ), and a vector adder. Denoting by

the transform block size and bythe filter length, we can
define:

(1)

where

otherwise

(2)

and

(3)

with

otherwise

(4)

The multiplying matrices can then be obtained as

(5)

resulting to an output from the vector adder

(6)

where

(7)

VLSI hardware implementation issues have shifted from
computational complexity to interconnection complexity. In
VLSI, memory and processing power are relatively cheap.
Therefore, the main emphasis of design has moved toward
reducing the overall interconnection complexity (i.e., keeping
the overall architecture highly regular, parallel, and pipelined)
[18]. The computational complexity is not a major issue in
TDF, since it is designed to take advantage of modern VLSI
architectures. That is, to reduce interconnection complexity of
the TDF, the proposed structure has a pipelining structure of
matrix-vector product units which are well known to be the
simplest units for localized implementation [12], [18].

For software implementations, on the other hand, recent re-
search [5], [6] concluded that computational complexity is, once
again, not a major issue in TDF; the efficiency of the computa-
tion does not come from the low computational complexity of
TDF, but from the fact that TDF deals with already immensely
compressed data (i.e., DCT).

These arguments also apply to the TDRT, since it is a direct
variant of TDF.

B. NTDF

We define NTDF as a transform-domain filter which has the
same functionality as a combination of transform, filtering, and
transform, where the two transforms are of different sizes. The
block diagram for an NTDF system is shown in Fig. 2(a). Note
that the sizes of the input () and output transform ( ),
and respectively, are not necessarily the same. In the case
where we have the uniform TDF problem discussed
in Section I-A. We can map the nonuniform problem to a uni-
form one by extending the transform matrices. In particular, let

(8)

and

(9)



706 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 5, AUGUST 2000

Fig. 1. Single-stage uniform TDF structure. (a) System model. (b) Pipelined implementation architecture.

Fig. 2. Single-stage NTDF structure. (a) System model. (b) Equivalent uniform TDF model.

where denotes the Kronecker matrix product, and where
is a matrix with ones in the major diagonal and zeros

elsewhere. Note that the transform block sizes forand
are both lcm where lcm denotes the least common
multiple, and hence the uniform TDF results can be applied. As
a result, the pipelining multiplication matrices become

(10)

By defining

lcm (11)

the various parameters of the system are given only if
lcm by (1)–(7). The equivalent system model

is shown in Fig. 2(b).
A concern in terms of implementation complexity is the size
of the expanded transform matrices and . We should
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note, however, that in most typical situations transform sizes are
powers of 2. In this case, would simply be equal to the largest
of and , i.e.

lcm (12)

thus making the hardware requirements equivalent to that of uni-
form TDF.

The following example provides a general solution to the di-
rect computation of transform coefficients for the sub-adjacent
block problem using the NTDF method.

C. The Sub-Adjacent Block Problem

As an example of the use of the NTDF approach, and due to
its importance in practical video-processingapplications,we dis-
cuss the sub-adjacentblock problem. Here we aregiven the trans-
form coefficients of a rectangular array of blocks, and we are in-
terested in obtaining the transform coefficients of a block which
is not aligned perfectly with the original block structure. In the
2-D case, such a block overlaps with up to four adjacent blocks.
In this example, we consider only one dimension for simplicity,
and hence, overlap will occur with only two blocks; generaliza-
tion to2-D isstraightforward.Theobviousmethodofsolving this
problemis to takethe inversetransform,andthencomputethefor-
ward transform for the sub-adjacent block. In recent work, trans-
form-domainmanipulation techniqueshavebeen used to provide
a direct method for the sub-adjacent block problem [19], [20].
The proposed solution in [19] is restricted only to DCT. In addi-
tion, a new block is formed by taking the “halves” of two adja-
cent blocks, so that an offset of only four is allowed between the
input signalandoutputsignals in thecaseofan8-point transform.
The proposed method in [20] gives a particular solution for a spe-
cial kind of transform family, including WH, for which an output
block is formed by taking some fixed pattern (i.e., not halves) of
two adjacent blocks in [21]. The solutions are given based on a
specific fast algorithm so that for practical applications, several
kinds of processors should be designed due to different combina-
tion of transforms and delays. In other words, this is not a general
solution for arbitrary offset patterns and transform pairs. To over-
come these drawbacks, we propose a generalized solution using
the NTDF method. To cast the sub-adjacent block problem in an
NTDF context, we consider a simple delay filter as the offset op-
eration. We can notice that the procedure takes the form “trans-
form-filter-transform” with potentially nonuniform block size.
This is exactly the NTDF structure, and hence can be directly im-
plemented using (8)–(10).

As an example, we give the solution for the sub-adjacent
block problem for the IDCT and Haar transform pair; when the
IDCT block size is four, the Haar transform block size is eight,
and a new block is formed by a shift of two samples. This ex-
ample can be thought of as a DCT-domain edge detector. A shift
of two samples implies a second-order pure delay filter

lcm
lcm lcm

Other parameters, including the offset filter, are given as fol-
lows:

The block diagram structure is exactly the same as Fig. 1.
Note that the matrix product is operation of partition

on filter matrix implicitly. Once an filter coefficient set is
given, we can explicitly write down the partitioned matrices. At
this moment, the above expression is more convenient, but we
use partitioned matrices expression in Section IV, since the filter
coefficient set is fixed.

III. M ULTIRATE TDF

In this section, we generalize NTDF to MTDF in order to con-
sider the case where the input and output rates are different. We
define MTDF as a transform-domain filter which has the same
functionality as a combination of transform, rate-change opera-
tion, filtering, rate-change operation, and transform as shown in
Figs. 3 and 4. Note that this is a general case of NTDF combined
with a decimator and a interpolator. MTDF is applicable to any
combination of appropriate transforms, and also provides arbi-
trary fractional rate change functionality. In order to obtain an
explicit representation in a form similar to the NTDF and uni-
form TDF structures, we divide the definition into two cases,
as shown in Figs. 3 and 4. We define MTDF Case I as the one
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Fig. 3. Definition of MTDF (Case I). (a) System model. (b) Equivalent MTDF model. (c) Equivalent uniform TDF implementation.

Fig. 4. Definition of MTDF (Case II). (a) System model. (b) Equivalent MTDF model. (c) Equivalent uniform TDF implementation.

where the interpolator precedes the decimator, and MTDF Case
II the one where the decimator precedes the interpolator. The
two possibilities of equal or unequal transform sizes (
and ) are considered simultaneously.

A. MTDF Case I

We examine first the structure of MTDF Case I. The purpose
of our derivation is to obtain the equivalent structure in the form
of a uniform TDF. The first step is to exchange the decimator
and the transform in the output. Using the definition of dec-
imation (where out of samples are discarded), we can
easily see that we can exchange the decimator and the transform
just by “upsampling” the matrix both horizontally and ver-
tically. In the horizontal direction, the values of inserted com-
ponents do not affect the system in any way, since their effect
is eliminated by the decimation stage that immediately follows.

In the vertical direction, inserted rows must have the value zero
(an example is given below). Consequently, one such valid ma-
trix can be obtained by setting all inserted elements to zero; the
expanded matrix can then be expressed as

(13)

where

In the second step, we exchange the interpolator and the trans-
form in the input. Again, using the definition of interpola-
tion (where zero-valued samples are inserted after each
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original sample), we can see that we can exchange the inter-
polator and the transform just by upsampling the matrixin
the horizontal and vertical directions. In this case, the role of
inserted rows and columns is reversed. When upsampling hor-
izontally, inserted values must be zero; when upsampling ver-
tically, the precise value of inserted components becomes irrel-
evant. Hence, a valid choice is obtained by setting all inserted
elements to zero, in which the expanded matrixcan be ex-
pressed as

(14)

We can finally combine the interpolation and decimation ex-
changes, as shown in Fig. 3(c). As we see, excluding the up-
sampling and interpolation stages, the end-system has exactly
the structure of a nonuniform TDF. Summarizing, the procedure
for the general solution is the following.

Step 1: Replace .
Step 2: Replace .
Step 3: Replace the transform stages byand as given

above.
The nonuniform TDF problem can be converted to a uniform

one by expanding to the least common multiple of and
. The equations describing the TDF components for the

MTDF problem can then be written as follows:

(15)

lcm
lcm

otherwise
(16)

(17)

lcm
lcm
lcm

otherwise

(18)

(19)

with

(20)

and

(21)

(22)

lcm
lcm

(23)

As shown in Fig. 3, the total structure is given by the com-
bination of the interpolator, the TDF pipeline structure, and the
decimator. As a result, it still has the merits of the conventional
uniform TDF.

B. MTDF Case II

Let us now consider Case II, where the decimator precedes
the interpolator. As in Case I, the purpose of our derivation is
to obtain the equivalent structure in terms of conventional TDF.
Here we will follow a reverse procedure: we will start from the
equivalent TDF structure, and work our way back to the MTDF
architecture. The reason is that, as we are going to see, the re-
duction is not always possible.

...
...

...
...

...
...

...
...

...

...
...

...
...

...
...

...
...

...

(24)
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(25)
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First, we assume that we have a transform pair in
MTDF Case II as shown in Fig. 4(b). We then find the trans-
forms and , as shown in Fig. 4(a), so that we have equiva-
lent functionality to the one in Fig. 4(b). We assume that
and in Fig. 4 are both positive integers. In the same way
we exchanged the transform operations with the decimator and
interpolator in Case I, we can similarly exchange them in this
case as well. One can easily verify that the form of the ex-
changed (“upsampled”) transform matrices will be given by (24)
and (25), shown at the bottom of the previous page, where
and are the elements of and respectively, and “ ” de-
notes “don’t care” values

We see then that the exchange of the interpolator and the dec-
imator is only possible if and have the specific structure
in (24) and (25). This limits the applicability of Case II in prac-
tical situations, but we should note that a configuration with the
interpolator (upsampling) as the last stage is not typical anyway.

Assuming that we are given an MTDF problem where the
transform matrices satisfy the above requirements, we can con-
vert it into an NTDF problem and subsequently to a uniform
TDF one by following the steps detailed in Section II. The trans-
form size of the equivalent uniform TDF will be

lcm (26)

The equations describing the various TDF components can be
easily obtained from (1) to (7) after the matricesand are
expanded according to (8) and (9).

C. 1-D TDRT Problem

As a practical application of MTDF, we examine a general
solution to the TDRT problem. In this problem, we want to con-
vert the rate (or resolution) of a signal that is provided in the
transform domain. The output signal can have the same or dif-
ferent transform size, and it can even be represented in a dif-
ferent transform domain. TDRT is a natural concept for com-
pressed images and video; in this case, the transform is DCT,
and the transform sizes are typically the same (8) for both the
input (inverse) and output (forward) transforms.

To resample a digital signal we perform two operations: low-
pass filtering and sampling rate change. For an MTDF-based
resolution translation system, and in order to avoid the trans-
form structure limitations of Case II, we only consider a design
that follows Case I. The resolution translation operation for the
general case of fractional rate change involves upsampling and
low-pass filtering, followed by downsampling. The filter repre-
sents the combination of the two interpolation and decimation
filters (the ideal filter would have a cutoff at ).
The MTDF system block diagram is identical to the one shown
in Fig. 3. Let us consider, as a specific example, the case where
we use an 8-point DCT transform, a decimation factor of two
(no interpolator), and a 7-tap low-pass filter. The parameters of
the TDF system shown in Fig. 3 can be expressed as follows:

where is the DCT matrix

lcm lcm

otherwise

otherwise

IV. 2-D TDRT

In this section, we apply MTDF in order to find a solution
for 2-D TDRT problem. We follow a restriction to generaliza-
tion procedure. First we obtain the solution under some con-
straints, and later we relax the constraints for more generalized
expression. The problem is shown in Fig. 5 and we consider
only MTDF Case I as a potential solution. We restrict ourselves
in the beginning in following assumptions with little loss of gen-
erality. First, sampling factors for down/upsampled images are
same in and directions. This means the output images are
scaled with same ratio in and directions. Second, the 2-D
digital filter is separable ( ) and its length is
limited in in which lcm .
This filter length is still not short, for at least the filter length of

is guaranteed at .
We first follow same procedures as in MTDF in the previous

section. Fig. 5(a) shows upsampling and downsampling factors
as and , by which both and directions are represented.
Matrices in Fig. 5(b) can be represented by (13), (14), (20), and
(21).
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Then, we define a vertical and a horizontal filter in matrix
forms. Note that we use now explicit expressions for filter ma-
trices and , since the filter coefficient sets are given due to
our limiting filter length in the second assumption as in (27) and
(28), shown at the bottom of the page.

We partition and into [ ] and [ ],
where

(29)

(30)

and

(31)

with similar definitions of , and .

Now, let denote a spatial domain input block of size ,
subdivided into nine blocks as follows:

(32)

The output block that corresponds to the central
input block is given by

(33)

(34)

Since 2-D transforms are given by , the second
transform-domain values are

(35)

If we define as the first transform-domain values,
. Thus, overall representation is given by

(36)

If we define and by

(37)

and

(38)

(27)

(28)
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Fig. 5. Definition of 2-D MTDF. (a) System model. (b) Equivalent 2-D MTDF model. (c) Equivalent 2-D uniform TDF implementation.

then

(39)

We now relax the filter-length constrains for more general-
ized expression. If the filter length is over , we can repre-
sent the vertical and horizontal filter matrices with more parti-
tions, not just three. How many partions we can get just affects
the upper limit of summations. For example, if we get as
the number of partitions, above equation is rewritten by

(40)

A. 2-D TDRT Example

Recently, a direct DCT domain implementation technique for
image resizing was presented in [14], [15]. We have driven that
2-D MTDF can be used a core part of DCT domain image re-
sizing issue, which is called 2-D TDRT in this paper. The reso-
lution translation operation for the general case of fractional rate
change involves upsampling and low-pass filtering, followed by
downsampling. The filter represents the combination of the two
interpolation and decimation filters (the ideal filter would have
a cutoff at ). The 2-D MTDF system block di-
agram is identical to the one shown in Fig. 5. Let us consider,
as a specific example, the case where we use an 8-point DCT
transform, a decimation factor of two (no interpolator), and a
32-tap low-pass filter. The parameters of the TDF system shown
in Fig. 5 can be expressed as follows:

Fig. 6. Software/hardware pipelining structure of 2-D transform-domain
translation. (a) Structure. (b) Sub-routine/sub-processor.

where is the DCT matrix

lcm lcm

The pipeline matrices for columns and rows are

where
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with the same definition of and in (31)–(35) at .
Then

Fig. 6 shows the proposed hardware/software structure of 2-D
TDRT. We believe that this example shows most practical cases;
even though we provide a generalized expression in (40), we
usually do not use very high-order filters in filtering.

V. CONCLUDING REMARKS

In this paper, we defined NTDF, which is a generalized ver-
sion of conventional TDF in terms of allowing differing input
and output transform sizes (as well as different types). We have
analyzed the structure of NTDF systems and shown how they
can be converted to an equivalent TDF one, for which the solu-
tion is readily available. We also showed how to extend NTDF
to MTDF, where the rates of the input and output signals are dif-
ferent, and follow a rational proportionality relationship (frac-
tional rate change). Here we distinguished two different cases,
depending on if the interpolator precedes the decimator (Case
I) or vice versa (Case II). We showed that Case I can be con-
verted to an NTDF problem, while for Case II this is possible
if and only if the transform matrices have a particular structure.
We should note that, for both NTDF and MTDF, extensions to
multiple dimensions are trivial, as long as the transform opera-
tion is a separable one.

As practical examples of the utility of NTDF and MTDF, we
showed how they can be used to provide general solutions to
the sub-adjacent block problem as well as the 1-D/2-D TDRT
(conversion) problem. These solutions sidestep most of the lim-
itations of existing approaches in terms of allowable transform
type or filter structure [19] and generalize the issues in [20],
[14], and [15] to a combined form of transform domain FBDS
and FAUS cases. These two examples are strongly connected
with applications involving coded images and video, since trans-
form coding is a core component of most of the standard com-
pression schemes (JPEG, MPEG-1, MPEG-2, H.261, H.263).

We have shown that the fundamental expression in both
NTDF and MTDF is that of the matrix-vector product, leading
to various advantages for a TDF hardware/software imple-
mentation. After the filter coefficients are determined, we can
precalculate the matrix coefficient blocks that appear in the
TDF analyses; thus, all potential arithmetic (finite precision)
errors disappear, except for the matrix block multiplication.
Note that the same accuracy remains after the original data
is shifted in the course of pipelining. That is, the pipelining
structure itself guarantees a small and uniformly distributed
arithmetic error, which is only due to the individual ma-
trix-vector multiplications.

These results directly generalize those reported in [12]:
NTDF eliminates the limitation of regular TDF in terms of
allowing different transform sizes, whereas MTDF eliminates
the limitation of NTDF by allowing different input and output
signal rates. These two extensions allow the TDF architecture
to be applied to a large variety of relevant applications, such as
2-D image processing and compression.
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