

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND ASSOCIATED AUDIO

ISO/IEC JTC1/SC29/WG11

MPEG98/M2978

San Jose, CA, USA

Title:�
MPEG-4 Integrated Intermedia Format (IIF): Basic Specification

�
�
Source:�
A. Basso†, A. Eleftheriadis ‡, R. L. Schmidt†, H. Kalva ‡ and A. Puri†

† AT&T Research, ‡ Columbia University

�
�
Group:�
MPEG-4 Systems�
�
Date:�
January 16, 1998�
�
1	Introduction

This document specifies an intermedia format that provides for the encapsulation of MPEG-4 content in a set of one or more files. The format allows efficient streaming even in highly demanding environments such as media servers, or, at the user’s choice, introduces various types of access data objects in the file. Random access as well as sequential segment-based data access to objects is supported. Proper extensions to allow streaming without prior processing of the data, referred in this proposal as direct streaming, are supported as well. The different access modes allow users to balance hardware resources against efficient data access for a variety of media and applications. Files intended for streaming applications can be stored with minimum overhead, in a format suitable to the network requirements, while files intended for random access mass storage can provide additional functionality. In particular, taking advantage of the random access characteristics of the underlying physical medium, it can allow direct access to arbitrary points within the scene description or audiovisual object information. Beyond random access for playback purposes, such functionality is also useful in editing operations in which one wishes, for instance, to extract a particular elementary stream from a file.

The file format supports the following features:

Random Access to AV Objects

Sequential Segment-based data access

Editing of AV Objects - insertion, deletion, modification

Editing of Composition Data

Efficient, low overhead Streaming Capability

Direct streaming with minimal processing overhead for large media-server applications

Unified representation of audio, video and systems data files supported by MPEG-4.

The proposed format is portable and independent of the platform or the storage media used (e.g., DVD or hard disk or CD-ROM). All the AV objects and BIFS information stored in an MPEG-4 file are encapsulated in access unit layer (AL) PDUs or alternatively, a multiplex format such as FlexMux [1]. The file format specification enables the storage of multiplexed PDUs (MUX PDUs) that can be streamed directly over a network. In the following discussion, “stored file” refers to an MPEG-4 file that contains AL PDUs and a “streaming file” refers to a file that contains transport level PDUs or MUX PDUs. Here after the term PDU will be used to refer to MUX PDUs when referring to streaming files and Access unit Layer PDUs (AL-PDUs) when referring to stored files. Explicit reference to the type of PDUs in question is made when necessary.

2	Definitions

The definitions of the terms used in the context of this proposal are given below.

Object Access Tables: Tables to support access to object-instances. The entries in these tables index either segments or object instances. The data access tables defined in this specification are:

Physical Object Table (POT)

Extended Physical Object Table (EPOT)

Fat Physical Object Table (FPOT)

Segment Object Table (SOT)

External Object Table (EOT)

Object Descriptor Table (ODT)

Content Descriptor Table (CDT)

Scalable Stream Table (SST)

Stream Configuration Table (SCT).

AL-PDU: Access unit layer PDU. Object instances are encapsulated in AL PDUs. Defined in ISO/IEC JTC1/SC29/WG11 N1901 – CD 14496-1 Systems [1]

Object: A renderable component of a scene (i.e., media object). An elementary stream is an object.

Object-Instance: Instance of an object in time. An MPEG-4 VOP is an object instance. Frames (pictures) are object instances in MPEG-1 and MPEG-2 elementary streams.

Object ID: A unique number identifying an object in a file. This is same as the ES_Id defined in clause 7.3.3.2.2 of [1].

Random access: Ability to access any object-instance in an elementary stream. For example, accessing the 301st object-instance in an elementary stream.

Segment: A sequence of AL-PDUs indexed by means of an object access table (SOT) or FPOT. The AL PDUs in a segment appear in their increasing decoding time order. Typically segments contain AL PDUs that belong to a scene.

MiF: MPEG-4 Intermedia Format.

Meta Data: Includes Object access tables, Private Data and future extension capabilities.

3	Overview

MPEG-4 files use .mp4 as the format-identifying extension. All stored AV Objects related to a session and conforming to MPEG-4 reside in one or more of such files. A session does not need to be contained in a single file; a set of files can be used to form a complete session, with one of them acting as the master file. Other objects (hereafter referred to as ‘External objects’ or ‘remote objects’) are referred to from the master (or other) files using URLs. The use of multiple files for a single presentation is essential to support functionalities such as multiple views and multi-language support.

An MPEG-4 file consists of a file header containing identification of the file, information about the configuration of the file, and global information about the AV objects it contains. The header is followed by an arbitrary number of segments containing the AV objects and BIFS data, as well as the associated descriptors. Each segment contains a header which can be minimally configured for streaming applications, or optionally configured in several ways to make the file format very flexible and capable of satisfying a large set of requirements. The high level structure of the proposed MPEG-4 intermedia format is shown in Figure 1. The intermedia format specification provides a set of tools for indexing objects (and object-instances) in a file. The format specification consists of mandatory and optional tools. The optional elements are shown in figure 2 between the dotted lines. An MPEG4 Intermedia Format (MiF) file simply consists of file configuration headers followed by meta data description of the file content, including one or more object access tables. This is then followed by a set of object data segments.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �1�. MiF File Organization

An MPEG-4 file thus contains PDUs multiplexed and indexed such that random access of individual objects (encapsulated in AL PDUs) is possible. The PDUs are interspersed within file segments. Each segment contains a header describing the PDUs located within that segment. A segment can contain one or more PDUs. Every PDU is indexed in one or more object access tables. Note that more than one instance of an object is allowed in a segment. In such cases, they are placed in the segments in their decoding order.

4	Components of an MPEG-4 file

�EMBED Word.Picture.8���

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �2�. Structure of MPEG-4 Intermedia File Format -Top: Tables positioned at the beginning of the file. Bottom : Tables positioned at the end of the file (controlled by FDT:TPOS Bit)

This section describes the optional and mandatory components of the MPEG-4 Intermedia Format (MiF). In the following description, the field lengths are given in bytes unless otherwise specified. A ‘~’ indicates a variable length field. The gray areas in the diagrams indicate an optional component.

4.1	File Configuration Header (FCH) (mandatory)

1�
1�
1�
1�
1�
1�
1�
1�
1�
1�
~�
2�
�
“M”�
“P”�
“E”�
“G”�
“4”�
VER�
FTD�
CXN�
RES�
PVT�
…�
BIFS ID�
�

Bytes 1 – 5 	: Magic number to identify MPEG4 file type.

VER		: version of the MPEG-4 file

FTD		: File Type Description

CXN 		: Configuration extension bits

RES		: reserved

PVT		: extensible private data

BIFS ID 	: ES_Id for BIFS stream PDUs

The file configuration header is located in the beginning of the file. It first identifies the file as an MPEG4 file and gives the version number. It then presents information about the composition of the MPEG-4 file. The File Type descriptor (FTD) and the Configuration Extension (CXN) fields indicate the presence of optional components. This allows the user to configure an MPEG-4 file to suit a particular application.

The use of private data is supported by means of the PVT byte. This field gives the size of the data in bytes following the PVT byte. The last byte of data indicates the size of additional data if any. A zero value in the last byte of data indicates the end of private data.

A BIFS stream is the most critical part of an MPEG-4 presentation and special handling might be necessary to communicate it to the user terminal. A BIFS stream can be identified in a mp4 file by assigning a unique 2 byte ID for the BIFS stream (this can also be done by decoding the object descriptors and examining the stream types). This can be used to locate the PDUs that correspond to the BIFS stream. A value of 0x0000 indicates either there is no BIFS stream present in the file or the BIFS data is not accessible.

class FileHeader {

	// magic number (the string 'MPEG-4')

	char(8) magic[[0]]=’M’;

	char(8) magic[[1]]=’P’;

	char(8) magic[[2]]=’E’;

	char(8) magic[[3]]=’G’;

	char(8) magic[[4]]=’-’;

	char(8) magic[[5]]=’4’;

	// version number of file format

	char(8) version = 0;

// File Type Definition

FTD FileType;

//Configuration Extension Indicator

CXN Extension;

// Reserved

bit (8) Reserved;

	

//Private data

	unsigned int(8) pvtBytes;

	while (pvtBytes>0) {

		char(8) data[pvtBytes];

		unsigned int(8) pvtBytes;

	}

	bit (16) BIFS_Id;

}

4.1.1	File Type Description (FTD)

The File Type Description (FTD) byte allows a parametric configuration of an MPEG-4 file according to the following semantics: .

Bit 0: Set 	: Data are MUX PDUs

 Reset 	: Data are AL-PDUs

Bit 1: Set 	: A MUX PDU contains data from a single AL PDU.

 The Object_ID (OBID) in the object access tables corresponds to elementary stream IDs.

 Reset	: MUX PDUs contain data from multiple elementary streams.

 Object_ID (OBID) in the object access tables, if used, does not have any significance and corresponds to packet numbers.

 If Bit 0 is reset, bit 1 is not defined.

Bit 2		: POT Indicator

Bit 3		: EPOT Indicator

Bit 4		: FPOT Indicator

Bit 5		: EOT indicator; indicates the presence of external objects

Bit 6		: Content Descriptor Table (CDT) is present in the file

Bit 7	: TPOS; If set POT, FPOT, EPOT and Meta Data(MD) are located at the end of the file in that order. If this bit is set, a unique start code (MDSC) is used to indicate the start

	of the meta data.

If indicated in the FTD, an MiF file may have more than one access tables. In such cases, the access tables follow the order shown in the Figure 2.a. Since the only way of accessing AL PDUs is via access tables, at least one of SOT (SOT in every segment) and FPOT (with all objects indexed) shall be present in a file.

class FTD{

	bit (1) PDU_Type;

	bit (1) PDU_Mode;

	bit (1) POT_Indicator;

	bit (1) EPOT_Indicator;

	bit (1) FPOT_Indicator;

bit (1) EOT_Indicator;

	bit (1) CDT_Indicator;

bit (1) TPOS;

}

4.1.1.1	Expanded POT (EPOT) (optional)

The expanded POT supports a more direct indexing of the AV objects. The EPOT entries point to the entries in the Segment Object Table (SOT) that first refer to that object instance. The SOT structure allows a way to locate the PDU fragments if any. Segment object table is defined in Section 4.8.2. The local object ID (LOBID) is used to distinguish between objects that reuse object IDs. When two different objects assume same object ID at different instances in time, they are mapped to a local object ID that is unique in the current file.

Each entry of EPOT contains:

Number of the objects in the table (COUNT)

an object ID (OBID)

a count of the number of indexable instances the object in the file (ICOUNT)

for each object a list of positions in the file of the SOT entry (ESOT) for that instance.

2�
2�
4�
2�
8�
�
COUNT�
OBID�
ICOUNT�
LOBID�
ESOT1�
�
ESOT2�
�
.�
�
.�
�
OBID�
ICOUNT�
LOBID�
ESOT1�
�
ESOT2�
�

class EPOT_Entry {

	//Object ID

	bit (16) OBID;

	//Number of randomly accessible instances

	unsigned int (32) ICOUNT;

	//Local object ID

	bit (16) LOBID;

	//Instance offsets

	BigInt ESOT[ICOUNT];

}

class ExpandedPOT{

	//Object count

	unsigned int (16) COUNT;

	EPOT_Entry entry[COUNT];

}

4.1.1.2	 Fat POT (FPOT) (optional)

Fat POT is a full indexing mechanism for AV objects. As the name suggests, this adds significant overhead to the MPEG-4 file. However, this indexing is useful in accessing individual AV objects in fewest lookups.

Each entry of FPOT contains:

Number of the objects in the table (COUNT)

an object ID (OBID)

a count of the number of instances of the object in the file (ICOUNT)

a local object instance identifier (LOBID)

for each object instance, a list of positions in the file of the segment offset (SOFF), offsets of the PDU fragments relative to the segment offset (POFF), and the size of the PDU fragments

Fragment count (FC)

2�
2�
4�
2�
8�
1�
4�
3�
4�
3�
~�
�
COUNT�
OBID�
ICOUNT�
LOBID�
SOFF1�
FC�
POFF1�
PFSZ1�
POFF2�
PFSZ2�
…�
�
�
SOFF2�
FC�
POFF1�
PFSZ1�
POFF2�
PFSZ2�
…�
�
�
.�
.�
.�
.�
.�
.�
.�
�
OBID�
ICOUNT�
LOBID�
SOFF1�
FC�
POFF1�
PFSZ1�
POFF2�
PFSZ2�
…�
�
�
SOFF2�
FC�
POFF1�
PFSZ1�
POFF2�
PFSZ2�
…�
�
�
.�
.�
.�
.�
.�
.�
.�
�
.�
.�
.�
.�
.�
.�
.�
.�
.�
.�
�

class Fragment_Offset_Entry{

	unsigned int (32) Offset;

	FragmentSize PDUFragmentSize;

}

class FPOT_Instance_Entry{

	BigInt segmentOffset; //SOFF1

	unsigned int (8) FC;

	Fragment_Offset_Entry offset_entry[FC];

}

class FPOT_Entry {

	//Object ID

	bit (16) OBID;

	//Number of randomly accessible instances

	unsigned int (32) ICOUNT;

	//Local object ID

	bit (16) LOBID;

	FPOT_Instance_Entry Instance[ICOUNT];

}

class FatPOT{

	//Object count

	unsigned int (16) COUNT;

	

	//FPOT entries for the objects

	FPOT_Entry entries [COUNT];

}

4.1.1.3	External Object Table (EOT) (optional)

The External Object Table is also optional. It is used to indicate the presence of External objects and/or External links in an MPEG-4 file. External objects refer to AV objects that are referred to in the current file but are present in a different file, which may be located on the current file system or a remote (networked) system. This feature is necessary to support features like local logo or ad insertion in a presentation.

External objects facilitate the use of a set of files to store an MPEG-4 presentation. An EOT shall be present if multiple files are used to store a single presentation or if there are any URLs present in the scene description or elementary stream descriptors. The object descriptors for External objects can be present in the current file or they can be contained in the referenced file; in either case, the object id present in the current file, if any, is considered the valid one (we should note that the CD [1] specification does not explicitly identify the semantics in such a case of OD indirection). The URL shall point to an MPEG4 file that contains a single AL-packetized elementary stream or if the remote file contains multiple elementary streams, an AL packetized elementary stream with the same ID as the External object ID shall be present in the file. An external object may be indexed in an object access table but the offsets (pointers) are meaningful only in the file pointed by the URL (remote file). Furthermore, the offsets in a SOT are not useful. When a External object ID is encountered in a SOT, the next AL PDU in the remote file is fetched. The offsets in POT, EPOT, and FPOT correspond to offsets in the remote file.

The EOT also lists External links. External links are the URLs used in a presentation that might be activated as a result of user interaction. These are necessary to ensure that the links are available during a presentation and if they are not, the client can be warned prior to the beginning of a session. External links are identified in a EOT with object ID 0x0000 (0x0000 is not a valid ID for any elementary stream).

It is the responsibility of the server (or player in case of local playback) to ensure that resources are available to access External objects and/or External links during a presentation.

The EOT consists of a 2 byte count for the number of External objects and External links. This is followed by a 2 byte AV Object ID, 2 bit URL type, a 14 bit object location string length, and the string indicating the location (URL) of each AV Object in the table. The URL type indicates if the URL is a pointer to the first object descriptor (URL_Type = 01) or if it is a plain URL (URL_Type = 00). In the first case, the OBID is 0, and the object descriptor is the first data of the remote file (followed by the AL-packetized data). In the second case, the OBID is 0 if the remote data is raw (the URL is a BIFS URL, i.e., not a URL contained in an ES_Descriptor). The combination OBID=0 and URL_Type=1 is not meaningful with the current BIFS and ES_Descriptor specifications. It would only make sense, if URLs contained in BIFS nodes are allowed to point to files that have object descriptors.

URL Type value�
�
�
00�
01�
10�
11�
�
OBID=0�
Plain URL (BIFS URL)�
-�
-�
-�
�
OBID>0�
OD is the first data of remote file followed by AL PDUs�
Remote file contains AL packetized data�
Remote file is an MiF file that contains an object with ID = OBID.�
-�
�

Each entry in EOT contains:

the number of objects contained in the table (COUNT)

an object ID (OBID)

URL type (URL TYPE)

URL length in bytes (ULEN)

URL string that points to the location of the External object (USTR)

2�
2�
2�
ULEN�
�
COUNT�
OBID�
URL TYPE (2 bits)�
ULEN (14 bits)�
USTR�
�
OBID�
URL TYPE (2 bits)�
ULEN (14 bits)�
USTR�
�
.�
.�
.�
.�
�

class EOT_Entry{

	//Object ID-- OID of 0x0000 indicates a logical link;

	bit (16) OBID;

	// URL Type

	bit (2) URL_Type;

	//URL length

	unsigned int (14) ULEN;

	// URL string

	char (8) USTR[ULEN];

}

class ExternalObjectTable {

	//External Object count

	unsigned int (32) COUNT;

	EOT_Entry entry[COUNT];

}

4.1.1.4	 Content Descriptor Table (CDT) (optional)

This table makes the object content information (OCI) easily accessible from an MPEG-4 file. For each object (object instance), the location and size of OCI is specified in this table.

Each entry of the CDT contains:

the number of objects contained in the table (COUNT)

the object ID (OBID)

the OCI data offset (OOFF) relative to the beginning of the file

 OCI size (OCISZ)

2�
2�
8�
2�
�
COUNT�
OBID�
OOFF�
OCISZ�
�
OBID�
OOFF�
OCISZ�
�
.�
.�
.�
�

class DT_Entry{

	//Object ID

	bit (16) OBID;

	// offset to the descriptor

	BigInt (64) DOffset;

	FragmentSize DFragmentSize;

}

class ContentDescriptorTable{

	//Object count

	unsigned int (16) COUNT;

	

	// content descriptor table entries

	DT_Entry entries [COUNT];

}

4.1.2	Configuration Extension (CXN) (mandatory)

The Configuration extension is a 1 byte field which signals the presence of an optional set of tables in the file header. These tables provide information relevant to a directly streamed file. The File Configuration Extension provides a server with information about the file in its entirety. The Stream Configuration Extension (SCE) is a table which provides the characteristics of the individual elementary streams in the file.

The Scalable Stream Table (SST) indicates which elementary streams are scalable in the stream configuration table. This indicator requires the presence of the Stream Configuration Table, and it assumes that scalable streams are in the table according to their scaling hierarchy with the base layer stream first.

class CXN {

	bit (1) FCE_indicator;

	bit (1) SCE_Indicator;

	bit (1) SST_Indicator;

	bit (1) MetaData_Extension_Indicator;

	bit (4) reserved;

}

4.1.2.1	File Configuration Extension (FCE) (optional)

If the bit 0 of the Configuration Extension byte CXN is set then the following extension is present. Such extension exposes in a concise form the media specific information needed by the protocol layer. It is oriented to direct streaming.

4�
4�
4�
4�
4�
4�
4�
�
SndDuration�
PlyDuration�
AveMinBandwidth�
PeakMaxBandwidth�
AvgSegSize�
MaxSegSize�
TotalSeg�
�

SndDuration 	Time in milliseconds required to send the file (transport media dependent). The default value refers to 2X CD-ROM speed (300Kb/s)

		

PlyDuration 		: total file play time in milli seconds

AveMinBandwidth 	: min average bitrate at which the file can be streamed; given in bits per second

PeakMaxBandwidth	: peak bitrate that the streamed file can reach; given in bits per second

AvgSegtSize		: average segment size in bytes

MaxSegSize		: maximum segment size in bytes

TotalSeg		: total number of segments present in the file

class FCE{

	unsigned int (32) SndDuration;

	unsigned int (32) PlyDuration;

	unsigned int (32) AveMinBandwidth;

	unsigned int (32) PeakMaxBandwidth;

	unsigned int (32) AvgSegSize;

	unsigned int (32) MaxSegSize;

	unsigned int (32) TotalSeg;

}

4.1.2.2	Stream Configuration Table (SCT) (optional)

If the SCE bit is set the Stream configuration extension is present. The stream configuration extension includes a Stream Configuration Table (SCT) defined as follows:

4�
2�
4�
4�
4�
4�
4�
8�
8�
�
Scount�
type�
starttime�
endtime�
Avgbrate�
maxbrate�
maxSegSize�
totSeg�
SegPtr�
�
�
.�
.�
.�
.�
.�
.�
.�
.�
�

Scount		: Total number of elementary streams in the file.

Type	 	: stream type

Starttime	: start presentation time

		 Presentation time in milli seconds from the beginning of the presentation.

EndTime 	: end presentation time

		 time in milli seconds from the beginning of the presentation.

AvgBRate 	: average stream bitrate

Average bitrate of the elementary stream as given in the Elementary Stream Descriptor.

MaxBRate 	: max stream bitrate

maximum bitrate of the elementary stream as given in the Elementary Stream Descriptor.

MaxSegSize	: maximum segment size

max size of the segment that contains the AL-PDUs that belong to the elementary stream.

TotSeg		: total number of segments in which AL-PDUS that belong to the object appears.

SegPtr	: offset to the first segment of the stream that contains an AL PDU that belongs to the Elementary Stream. The pointer points to the segment header.

// to support 64 bit integers in Flavor

class BigInt {

	unsigned int (32) upper;

	unsigned int (32) lower;

}

class SCE_Entry{

	unsigned int (16) Type;

	unsigned int (32) StartTime;

	unsigned int (32) EndTime;

	unsigned int (32) AveBRate;

	unsigned int (32) MaxBRate;

	unsigned int (32) MaxSegSize;

	unsigned int (32) TotalSeg;

BigInt SegPtr;

}

class SCE{

	unsigned int (32) Scount;

	SCE_Entry entry[Scount];

}

4.1.2.3	Scalable Stream Table (SST) (optional; requires SCT)

The Scalable Stream Table is optionally part of the file header. It is indicated by setting the SST bit in the Configuration extension field. If it is present it requires that the stream configuration table is present. It also assumes that the scalable streams are in ascending order in the table with the base layer first. The purpose of this table is to identify streams that can be ignored for limited bandwidth applications.

2�
2�
1�
�
SCount�
Stream_ID�
NumScaStrms�
�
.�
.�
�

Scount		:Number of Scalable Streams in the Table.

Stream_ID	:Identification of the Base Layer stream in the SCE table.

NumScStrms	:Number of scalable streams for this media object.

Class SST_Entry {

	unsigned int (16) StreamID;

	unsigned int (8) NumScaStrms;

}

class SST{

	unsigned int (16) Scount;

	SST_Entry entry[Scount];

}

4.1.2.4	Metadata Extension

If indicated by the meta data extension indicator, meta data extension is present in the file. Meta data is not fully specified and is expected to include information that could be used to provide advanced object based audio visual services.

4�
Size�
�
Size�
MetaData�
�

class Metadata_Extension {

	Unsigned int (32) size;

	char (8) MetaData[size];

}

4.2	Physical Object Table (POT) (optional)

A Physical Object Table is optional, and when present it is the first access table in the file. A POT lists all the AV objects (encapsulated in PDUs) present in the current MPEG-4 file. It provides easy access to the first occurrence of an object in the file by providing an additional 8 bytes to indicate the offset (from the beginning of the file) to the segment in which the AV Object or BIFS information first occurs in the stream.

Each entry of the POT contains:

the number of objects contained in the table (COUNT)

an object ID (OBID)

the position in the file of the First Segment of Object Instance (FSOI)

2�
2�
8�
�
COUNT�
OBID�
FSOI�
�
OBID�
FSOI�
�
.�
.�
�

class POT_Entry{

	//Object ID

	bit (16) OBID;

BigInt FSOI;

}

class PhysicalObjectTable {

	//Physical object count

	unsigned int (16) COUNT;

	POT_Entry entry[COUNT];

}

4.2	Object Descriptor Table (ODT) (mandatory)

This table contains the information to locate and access the object descriptors in the file. This table is similar to FPOT in that it puts the distributed information in a single table. The OBIDs in the table are not unique. In such a case, the first occurrence of an OBID corresponds to the first object descriptor and the subsequent occurrences correspond to object descriptor updates. Object descriptors are placed at the beginning of a file.

Each entry of the ODT contains:

the number of objects contained in the table (COUNT)

the object ID (OBID)

the object descriptor offset (OOFF) relative to the beginning of the file

Object descriptor size (ODSZ)

2�
2�
8�
2�
�
COUNT�
OBID�
OOFF�
ODSZ�
�
OBID�
OOFF�
ODSZ�
�
.�
.�
.�
�

class ObjectDescriptorTable{

	//Object count

	unsigned int (16) COUNT;

	DT_Entry entries [COUNT];

}

4.3	Segment (SEG) (mandatory)

An MPEG-4 file is organized into segments, with each segment containing one or more PDUs. Every PDU in a segment in indexed by specifying an offset. This allows for non-indexed areas in a segment creating holes (free space). Segments are identified by a unique 32-bit start code (SSC). Following the SSC is one byte Segment header (SEGH). The segment header indicates the presence of additional optional data in the segment.

Each segment (SEG) contains:

a Segment Start Code (SSC = 0x000001B9)

a Segment header (SEGH)

a Segment Size (SSZ) (optional) that gives the number of bytes following the segment size field (SSZ) field in the segment.

a segment extension (optional)

a Segment Object Table (SOT) (optional)

several PDU fragments (PDUF)

4�
1�
4 �
~�
~�
~�
~�
~�
�
SSC�
SEGH�
SSZ�
SegExt�
SOT�
PDUF1�
PDUF2�
…�
�

The SEGH has the following meaning:

Bit 0 Set – Segment size present

Bit 1 Set – Empty Segment

Bit 2 Set – SOT present in the table

Bit 3 Set – Segment Extension bit

Bits 4:7 – segment data type

	0x00 – segment data consists of AL-PDUs from different objects

	0x01 – segment data consists of object descriptors only

	0x02 – segment data consists of OCI only

	0x03 – scene description only

	0x04 – 0xFF – reserved

Classifying the segment data will allow special handling (security, channel reliability etc.) required by some types of data.

Bit 0 of the segment header indicates the next 4 bytes give the size of the current segment (SSZ) in bytes. Bit 1 indicates the segment is empty and does not contain useful information. This area may be overwritten or used to create a new segment during minor editing operations. If a segment is indicated as empty, segment size shall be present and the rest of the segment components shall be absent. Bit 2 indicates the presence of a segment object table. The segment data may be composed of PDUs, Object Descriptors or Object descriptor updates. The segment data also has AV object PDUs (PDUF). A PDU may be fragmented in a segment but it cannot be split over segment boundaries. More than one instance of an object may be present in the same segment. In such a case they are placed in the segment in their decoding order. The PDUs and the Object Descriptors are indexed in a Segment Object Table (SOT).

class SegmentHeader {

	//indicates if segment size present

	bit (1) SegSizeIndicator;

	bit (1) EmptySegmentIndicator;

	bit (1) SOTIndicator;

	bit (1) SegExtensionIndicator;

	bit (4) dataType;

}

4.3.1	Segment Extension (optional)

The role of the segment extension is to minimize the time required by the network packetizer to create the packet and to send it over the network. The services support that the Segment extension is offering to the packetizer are typical for a large variety of network supports. They include timestamping (which in most of the cases should be recomputed on the fly), sequence numbering and a precompiled media specific set of headers used by current multimedia real-time protocols such as RTP.

4�
8�
8�
4�
1�
PE�
�
TimeStamp�
SendTime�
PresentationTime�
SequenceNumber�
PE�
Protocol Extension�
�

Send Time		: time at which the segment should be delivered to the network. This can be used as RTP timestamp rewrite placeholder.

Presentation time	: time at which the segment should be presented

Sequence number	: segment sequence number

PE	: Protocol extension byte; it contains the number of bytes used in the Protocol Extension

Protocol extension 	:expose some data to improve error resilience

class SegmentExtension{

	unsigned int (32) TimeStamp;

	unsigned int (32) SendTime;

	unsigned int (32) PresentationTime;

	unsigned int (32) SequenceNumber;

	unsigned int (8) PE;

	char (8) ProtocolExtension[PE];

}

4.3.2	Segment Object Table (SOT) (optional)

Following the optional segment size field there is an optional Segment Object Table (SOT). The SOT indexes the object-instances (PDUs) in a segment. More than one instance of an object is allowed in a segment. If a PDU is fragmented, it is indicated by the continuity indicator (CI) in the first 2 bits of the fragment size.

The CI has the following meaning:

00 – complete PDU

 	01 – intermediate segment of a split PDU; the 7 bytes following the fragment give the

 offset (4 bytes) and size (3 bytes) of the next fragment.

10 – last segment of a split PDU;

 	11 – first segment of a split PDU

The remaining 22 bits of the PDU size field give the size (in bytes) of the part of the PDU fragment. The fragment offset is given relative to the current position in the segment.

Each entry of the SOT contains:

the number of objects contained in the table (COUNT)

the object ID (OBID)

the fragment offset (FOFF) relative to the current position in the segment (the current SOT entry).

Continuity Indicator (CI) which specify if the object is fully contained in the segment or if the PDU is the fist the last of a middle chunk

PDU fragment size (PFSZ) (max 22 bits)

4�
2�
4�
3�
�
COUNT�
OBID�
FOFF�
CI�
PFSZ�
�
OBID�
FOFF�
CI�
PFSZ�
�
.�
.�
.�
.�
�

The fragments of a fragmented PDU have the following structure:

~�
4�
3�
�
PDU Fragment�
Next fragment offset NFOFF�
Next fragment size�
�
�
�
CI (2 bits)�
PFSZ (22 bits)�
�

Class FragmentSize {

	//Continuity Indicator

	bit (2) CI;

	

	//Fragment data size

	unsigned int (22) PFDSZ;

}

class SOT_Entry {

	//Object ID

	bit (16) OBID;

	//Fragment offset

	bit (32) FOFF;

	//Fragment size

	FragmentSize PFSZ;

}

Class SegmentObjectTable{

	//PDU count

	unsigned int (32) COUNT;

	SOT_Entry entry[COUNT];

}

// PDU Fragment extension

Class PDUFragmentExtension {

	//Next fragment offset

	unsigned int (32) NFOFF;

	

	//Next fragment size;

	FragmentSize NFSZ;

}

Class Segment {

	//Segment start code

	bit (32) SSC;

	SegmentHeader SEGH;

	if(SEGH.SegSizeIndicator){

		//Segment size

		Unsigned int (32) SSZ;

	}

	if (SEGH.SOTIndicator){

		SegmentTable SOT;

	}

	if (SEGH. SegExtensionIndicator){

		SegmentExtension SegExt;

}

	// variable length PDUs

}

5	Random Access Modes

The capability of combining different tools allows for different file configurations with different random PDU access/complexity. The meaningful combination of these access tools is discussed in this section.

5.1	Random Access Mode 1

In this mode AL PDUs are accessed using EPOT and SOT tables. The structure of the file is shown in Figure 2.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �3�. Random Access with EPOT and SOT

The sequence of steps to access an nth instance of an object in a file is shown below.

The data access algorithm becomes:

Lookup EPOT to match the OBID

The offset to the SOT entry is available at n*8 bytes after ESOT::OBID::ICOUNT

NSOFF=SFOFF

Position to NSOFF

Read FOFF, CI, and PFSZ

Position to FOFF and get PFSZ data

If the (CI == end of obj) STOP else go to 8

FOFF = value from the next-4-bytes; read CI and PFSZ from the next 3 bytes

Jump to 6

5.1.1	Number of lookups to access an object at random

Note: lookups include all comparisons, seeks, and data read operations.

Assuming worst case sequential lookup, EPOT::COUNT comparisons to match the OBID;

Then a single seek to: 5 + (n-1) * 8;

A single read to get ESOT

Seek to ESOT

{Two reads to load FOFF, CI, and PFSZ values.

Seek to FOFF

Read PFSZ bytes

Compare CF with end of object.} = 5 lookups

Total lookups in the worst case = EPOT::COUNT + 3 + 5 * number-of-PDU-fragments.

To access the first object listed in EPOT encapsulated in a non-fragmented PDU 9 lookups are necessary.

5.2	Random Access Mode 2

In this mode AL PDUs are accessed using FPOT. The structure of the file is shown below.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �4�. Random Access with FPOT

The sequence of steps to access an nth instance of an object in a file is shown below.

The data access algorithm becomes:

Lookup FPOT to match the OBID

Use FPOT::OBID::FPSZ to locate the nth instance

Read fragment sizes and offsets using the fragment count.

5.2.1	Number of lookups to access an object at random

Note: lookups include all comparisons, seeks, and data read operations.

Assuming worst case sequential lookup, FPOT::COUNT comparisons to match the OBID;

(n-1)*2 (for reading and seeking FPSZ) lookups to get to the nth entry.

i reads corresponding to i fragments.

Total lookups in the worst case = FPOT::COUNT + (n-1)*2 + number-of-PDU-fragments.

To access the first instance of the first object listed in FPOT encapsulated in a non-fragmented PDU 2 lookups are necessary.

5.3	Random Access Mode 3

In this mode AL PDUs are accessed using POT and SOT tables. The structure of the file is shown below.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �5�. PDU Access Using POT and SOT

The sequence of steps to access an nth instance of an object in a file is shown below.

The data access algorithm becomes:

Lookup POT to match OBID

Get the FSOI; set index=0;

NSOFF =FSOI

Position to NSOFF; read SSZ, the segment size.

Lookup the SOT for {LOBID = = OBID; index++;} repeat until end of SOT is reached or index==n;

If index=n, nth instance found. Go to 8; else go to 7

NSOFF=SSZ; go to 4)

Read FOFF, CI, and PFSZ

Position to FOFF and get PFSZ bytes of data

If the (CF = = end of obj) STOP else go to 11

FOFF = value from the next-4-bytes; read CF and PFSZ from the next 3 bytes

Jump to 9)

5.3.1	Number of lookups to access an object at random

Note: lookups include all comparisons, seeks, and data read operations.

Assuming worst case sequential lookup, POT::COUNT comparisons to match the OBID.

Position to FSOI; read segment size; look for OBID matches in the SOT.

(n-1)*2 (for reading and seeking FPSZ) lookups to get to the nth entry.

i reads corresponding to i fragments.

Total lookups in the worst case = POT::COUNT + (SOT(i)::COUNT (i = 1, .. I; I is the number of segments processed before the nth instance is found) + number-of-PDU-fragments.

To access the first instance of the first object listed in 1st segment pointed by FSOI, encapsulated in a non-fragmented PDU 2 lookups are necessary.

5.4	Random Access Mode 4

In this mode AL PDUs are accessed using SOT and segment start codes (SSC). The structure of the file is shown below.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �6�. PDU Access without Using Object access tables

The sequence of steps to access an nth instance of an object in a file is shown below.

The data access algorithm becomes:

Scan for the fist SSC

Get SSZ; set index=0;

Lookup the SOT for {OBID == SOT::entry::OBID; index++;} repeat until end of SOT is reached or index == n;

If index == n, nth instance found. Go to 7; else go to 5

NSOFF=SSZ

Position to NSOFF; read SSZ, the segment size. Go to 3;

Read FOFF, CI, and PFSZ

Position to FOFF and get PFSZ bytes of data

If the (CI == end of obj) STOP else go to 10

FOFF = value from the next-4-bytes; read CF and PFSZ from the next 3 bytes

Jump to 8)

6	Streaming and Direct Streaming Modes

Streaming ALPDU data

�EMBED Word.Picture.8���

Figure 7: minimal streaming configuration. Segment object table can be included to allow error recovery

�EMBED Word.Picture.8���

Figure 8: File recording at the receiver end. Note the table of choice (FPOT, EPOT, POT) is created on the fly while the streamed data is received and added at the end. Note the position at the end of the file to facilitate the processing and storing tasks.

Direct Streaming

�EMBED Word.Picture.8���

Figure 9: Direct streaming uses the segment extension to expose to the protocol layer the media specific information to allow fast packetization. The segment object table can be used for error recovery.

7	References

MPEG-4 Systems CD ISO/IEC 14496-1

 Appendix A

8	AL Packetized Elementary Stream Format

Even though the AL PDU format is specified in the MPEG-4 Systems CD [1], there is no format defined to store such AL packetized streams in a file. Such a format is needed when URLs in the remote object table (inserted because of URLs in ES_Descriptors) point to AL packetized streams. A reference to such a stream format is made in clause 7.3.3.2.2 of the MPEG-4 systems CD, but no specification is provided.

Consequently, we propose here the definition of a simple file format for AL packetized streams. The only additional information is the demarcation AL PDUs, using a ‘size’ field that prepends the AL PDU header structure, and a 6 byte ‘magic’ number that identifies the file as an MPEG-4 AL packetized stream. A similar format is already used informally by members of the WG11 community for the exchange of packetized elementary streams; to ensure interoperability, such a format should be standardized.

The properties of the stream and the AL header configuration are contained in the object descriptor.

// Stream of AL PDUs;

class AL_PDU_Stream {

	// File identification

	char(8) magic[[0]]=’M’;

	char(8) magic[[1]]=’P’;

	char(8) magic[[2]]=’4’;

	char(8) magic[[3]]=’P’;

	char(8) magic[[4]]=’D’;

	char(8) magic[[5]]=’U’;

 	ObjectDescriptor od;

unsigned int (32) size;

	while (size > 0){

		aligned (8) AL_PDU_Header alPDUHeader(od.esd.alConfigDescr);

		char (8) AL_PDU_data[size – lengthof (alPDUHeader)];

		unsigned int (32) size;

	}

}

� PAGE �3�

