

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND ASSOCIATED AUDIO

ISO/IEC JTC1/SC29/WG11

MPEG97/M2873

Fribourg, Switzerland

Title:�File Format for MPEG-4 (Rev. 3.0)��Source:�H. Kalva and A. Eleftheriadis, Columbia University, USA

A. Basso , R. L. Schmidt and A. Puri, AT&T Research, USA��Group:�MPEG-4 Systems��Date:�October 21, 1997��

1.	Introduction

This document specifies a file format that allows efficient streaming of a file, or, at the users choice, introduces various types of access data objects in the file. Random access as well as sequential segment-based data access to objects is supported. The different access modes allow users to balance hardware resources against efficient data access for a variety of media and applications. For stored file applications, in contrast with data streamed across a network, content made available in random access mass storage facilities (stored file) can provide additional functionality. In particular, taking advantage of the random access characteristics of the underlying physical medium, it can allow direct access to arbitrary points within the scene description or audiovisual object information. Beyond random access for playback purposes, such functionality is also useful in editing operations in which one wishes to, for instance, extract a particular elementary stream from a file.

The file format supports the following features:

Random Access to AV Objects

Sequential Segment-based data access

Editing of AV Objects - insertion, deletion, modification

Random Access to Composition Data

Editing of Composition Data

Efficient, low overhead Streaming Capability

Unified representation of audio, video and systems data files supported by MPEG-4.

The MPEG-4 file format is portable and independent of the platform or the storage media used (e.g., DVD or hard disk or CD-ROM). All the AV objects and BIFS information stored in an MPEG-4 file are encapsulated in adaptation layer (AL) PDUs or alternatively, a multiplex format such as FlexMux [1]. The file format specification enables the storage of multiplexed PDUs (MUX PDUs) that can be streamed directly over a network. In the following discussion, “stored file” refers to an MPEG-4 file that contains AL PDUs and a “streaming file” refers to a file that contains transport level PDUs or MUX PDUs. Here after the term PDU will be used to refer to MUX PDUs when referring streaming files and Access unit Layer PDUs (AL-PDUs) when referring to stored files. Explicit reference to the type of PDUs in question is made when necessary.

2.	MPEG-4 File Format

MPEG-4 files can use .mp4 as the format-identifying extension. All stored AV Objects related to a session and conforming to MPEG-4 reside in one or more of such files. A session does not need to be contained in only one file; a set of files can be used to form a complete session, with one of them acting as the master file. Other objects (hereafter referred to as ‘logical objects’ or ‘remote objects’) are referred to from the master (or other) files using URLs. The use of multiple files for a single presentation is essential to support functionalities such as multiple views and multi-language support.

An MPEG-4 file consists of a file header containing global information about the AV objects contained in the file, the data access modes available, followed by an arbitrary number of segments containing the AV object and BIFS data. The segment headers as well as the data structures are optional and can be combined together in several ways in order make the file format very flexible and capable to satisfy a large set of requirements.

File header�Segment�Segment�. . . ��

The AL PDUs or MUX PDUs are optionally interspersed within “file segments.” Each segment contains a header describing the PDUs located within that segment. The MPEG-4 file thus contains PDUs multiplexed and indexed such that random access of individual objects (encapsulated in AL PDUs) is possible. The file format builds a layer on top of the adaptation sub-layer of the FlexMux layer to index the AL PDUs by elementary stream IDs. A segment can contain one or more PDUs. Note that more than one instance of an object is allowed in a segment. In such cases, they are placed in the segments in their decoding order.

3.	Components of an MPEG-4 file

This section describes the components of an MPEG-4 file, both optional and mandatory. Section 4 describes how combinations of these components are used to satisfy file format requirements.

3.1.	File Configuration Header (FCH) (mandatory)

The file configuration header contains information about the composition of the MPEG-4 file. The parameters in the configuration header indicate the presence of optional components. This allows the user to configure an MPEG-4 file to suit a particular application.

1�1�1�1�1�1�1�1�1�~�2��“M”�“P”�“E”�“G”�“4”�VER�FTD�EXT�PVT�…�BIFS ID��

Bytes 1 – 5 	: Magic number to identify MPEG4 file type.

VER		: version of the MPEG-4 file

FTD		: File Type Description; described in section 4.

EXT 		: reserved

PVT		: extensible private data

BIFS ID 	: ES_Id for BIFS stream PDUs

Private data is supported using the PVT byte. This byte gives the size of the data in bytes following the PVT byte. The last byte of data indicates the size of additional data if any. A zero value in the last byte of data indicates the end of private data.

BIFS ID assigns a unique 2 byte ID for the BIFS stream. This can be used to locate the PDUs that correspond to the BIFS stream. A value of 0x0000 indicates either there is no BIFS stream present in the file or the BIFS data is not accessible.

3.2 File Segment (SEG) (optional)

An MPEG-4 file can be optionally organized into segments, with each segment containing one or more PDUs. Segments are identified by a unique 32-bit start code (SSC). Following the SSC is one byte Segment header (SEGH). The segment header indicates the presence of additional optional data in the segment.

Bit 0 indicates the next 4 bytes give the size of the current segment (SSZ) in bytes. Bit 1 indicates the presence of a segment object table. The segment data may be composed of PDUs, Object Descriptors or Object descriptor updates. Object descriptors are typically present in the segment that contains the first instance of that object; Object Descriptor updates can occur at any time, but will precede the associated object in the same segment. When present, the object descriptors are indicated by the Object Descriptor Indicator (ODI). The segment data also has AV object PDUs (PDUF). A PDU may be fragmented in a segment but it cannot be split over segment boundaries. More than one instance of an object may be present in the same segment. In such a case they are placed in the segment in their decoding order. The PDUs and the Object Descriptors are indexed in a Segment Object Table (SOT).

The SEGH has the following meaning:

Bit 0 Set – Segment size present

Bit 1 Set – SOT present in the table

Bits 2:7 – reserved.

Each segment (SEG) contains:

a Segment Start Code (SSC)

a Segment header (SEGH)

a Segment Size (SSZ) (optional)

a Segment Object Table (SOT) (optional)

several PDU fragments (PDUF)

4�1�4�~�~�~�~��SSC�SEGH�SSZ�SOT�PDUF1�PDUF2�…��

3.2.1	Segment Object Table (SOT) (optional)

Following the optional segment size field there is an optional Segment Object Table (SOT). The SOT indexes the instances of objects (PDUs and associated Object Descriptors and Object Descriptor Updates) in a segment. More than one instance of an object is allowed in a segment. If an object is fragmented, it is indicated by the continuity indicator (CI) in the first 2 bits of the fragment size.

The CI has the following meaning:

00 -- complete PDU

 	01 -- intermediate segment of a split PDU; the 7 bytes following the fragment give the

 offset (4 bytes) and size (3 bytes) of the next fragment.

10 -- last segment of a split PDU;

 	11 – first segment of a split PDU

The presence of the Object descriptor or the Object Descriptor Update is given by the next bit:

ODI Set: Object Descriptor or Object descriptor Update present at the beginning of the object fragment

The remaining 21 bits of the PDU size field give the size (in bytes) of the part of the PDU fragment. The fragment offset is given relative to the current position in the segment.

Each entry of the SOT contains:

the number of objects contained in the table (COUNT)

the object ID (OBID)

the fragment offset (FOFF) relative to the current position in the segment.

Continuity Indicator (CI) which specify if the object is fully contained in the segment or if the PDU is the fist the last of a middle chunk

Object Descriptor or Object descriptor Update Indicator bit (ODI)

PDU fragment size (PFSZ) (max 21 bits)

Object Descriptor Size (ODS) 2 byte

4�2�4�3�2��COUNT�OBID�FOFF�CI�ODI�PFSZ�ODS��OBID�FOFF�CI�ODI�PFSZ�ODS��.�.�.�.����

The fragmented PDU has the following structure:

~�4�3�2��PDU Fragment�Next fragment offset NSOFF�CI�ODI�PFSZ�ODS����Next fragment size��

3.3.	Logical Object Table (LOT) (optional)

The Logical Object Table is also optional for a stored file and is not allowed in a streaming file, and when present it is contained in the File Header. A LOT is used to indicate the presence of logical objects in an MPEG-4 file. Logical objects refer to AV objects that are present in a different file, which may be located on the current file system or a remote (networked) system. This feature is necessary to support features like local logo or advt insertion in a presentation. It is the responsibility of the server (or player in case of local playback) to ensure that resources are available to access logical objects during a presentation. Logical objects facilitate the use of a set of files to store an MPEG-4 presentation. It is up to the author to ensure that an object with OBID exists in the location pointed by URL.

It consists of a 2 byte AV Object count indicating the AV Objects that are part of the session, but not physically present in the file. This is followed by a 2 byte AV Object ID (also known as elementary stream ID), a 1 byte object location string length, and the string indicating the location (URL) of each AV Object in the table. The file pointed by the URL shall also be in the MPEG-4 file format (it is up to the author to ensure that the ID used exists in the remote file and is not duplicated in the local file).

Each entry in LOT contains:

the number of objects contained in the table (COUNT)

an object ID (Elementary stream ID as defined in section 3 of the WD [1] (OBID)

URL length in bytes (ULEN)

URL string that points to the location of the logical object (USTR)

2�2�1�ULEN��COUNT�OBID�ULEN�USTR��OBID�ULEN�USTR��.�.�.��.�.�.�� 3.4.	Physical Object Table (POT) (optional)

A Physical Object Table is optional, and when present it is contained in the File Header. A POT lists all the AV objects (encapsulated in PDUs) present in the current MPEG-4 file. It provides an easy access to the first occurrence of an object in the file by providing additional 8 bytes to indicate the offset (from the beginning of the file) to the segment in which the AV Object or BIFS information first occurs in the stream.

Each entry of the POT contains :

the number of objects contained in the table (COUNT)

an object ID (Elementary stream ID as defined in section 3 of the WD [1] (OBID)

the position in the file of the First Segment of Object Instance (FSOI)

2�2�8��COUNT�OBID�FSOI��OBID�FSOI��.�.��.�.��

3.5.	Expanded POT (EPOT) (optional)

The expanded POT supports a more direct indexing of the AV objects. EPOT entries point to the entries in the Segment Object Table (SOT) that first refer to that object instance. SOT structure allows a way to locate the PDU fragments if any. Segment object table is defined in section 3.2.1

Each entry of EPOT contains:

Number of the objects in the table (COUNT)

an object ID (Elementary stream ID as defined in section 3 of the WD [1] (OBID)

a count of the number of indexable instances the object in the file (ICOUNT)

for each object a list of positions in the file of the SOT entry (ESOT) for that instance.

2�2�4�2�8��COUNT�OBID�ICOUNT�LOBID�ESOT1��ESOT2��.����OBID�ICOUNT�LOBID�ESOT1��ESOT2��

3.6.	Fat POT (FPOT) (optional)

Fat POT is a full indexing mechanism for AV objects. As the name suggests, this adds significant overhead to the MPEG-4 file. However, this indexing is useful in accessing individual AV objects in fewest lookups..

Each entry of FPOT contains:

Number of the objects in the table (COUNT)

an object ID (Elementary stream ID as defined in section 3 of the WD [1] (OBID)

a count of the number of instances the object in the file (ICOUNT)

a local object instance identifier (LOBID)

for each object instance, a list of positions in the file of the segment offset (SOFF), offsets of the PDU fragments relative to the segment offset (POFF), and the size of the PDU fragments

an end of object marker (EOO)

2�2�4�2�8�4�3�4�3�…���COUNT�OBID�ICOUNT�LOBID�SOFF1�POFF1�PFSZ1�POFF2�PFSZ2�…�EOO���SOFF2�POFF1�PFSZ1�POFF2�PFSZ2�…�EOO���.

�.�.�.�.�.�.��OBID�ICOUNT�LOBID�SOFF1�POFF1�PFSZ1�POFF2�PFSZ2�…�EOO���SOFF2�POFF1�PFSZ1�POFF2�PFSZ2�…�EOO���.

.�.�.�.�.�.�.��.�.�.�.

.�.�.�.�.�.�.��

3.7.	Global Object Descriptor Table (GODT) (optional)

This table contains the information to locate and access the object descriptors in the file. This table is similar to FPOT in that it puts the distributed information in a single table. The OBIDs in the table are not unique. In such a case, the first occurrence of an OBID corresponds to an object descriptor and the subsequent occurrences correspond to object descriptor updates.

Each entry of the GODT contains:

the number of objects contained in the table (COUNT)

the object ID (OBID)

the object descriptor offset (OOFF) relative to the beginning of the file

 Object descriptor size (ODSZ)

4�2�8�2��COUNT�OBID�OOFF�ODSZ��OBID�OOFF�ODSZ��.�.�.��

3.8.	Content Descriptor Table (CDT) (optional)

This table doesn’t have a well-defined structure. The intention is to make the object content information (OCI) easily accessible from an MPEG-4 file. For each object (object instance), the location and size of OCI is specified in this table.

Each entry of the CDT contains:

the number of objects contained in the table (COUNT)

the object ID (OBID)

the OCI data offset (OOFF) relative to the beginning of the file

 OCI size (OCISZ)

4�2�8�2��COUNT�OBID�OOFF�OCISZ��OBID�OOFF�OCISZ��.�.�.��

4.	File Configuration (FC)

By appropriately modifying the parameters in the file header, an MPEG-4 file may be configured to allow different levels of random access. Several meaningful configurations and examples of random access in those configurations is discussed in this section.

The structure of the file configuration header is repeated below.

1�1�1�1�1�1�1�1�1�~�2��“M”�“P”�“E”�“G”�“4”�VER�FTD�EXT�PVT�…�BIFS ID��

File Type Description (FTD) allows the configuration of the MPEG-4 file by specifying various configurable parameters.

Bit 0: Set 	: Data are MUX PDUs

 Reset 	: Data are AL-PDUs

Bit 1: Set 	: A MUX PDU contains data from a single AL PDU.

 	 The OBID in the access tables corresponds to elementary stream IDs.

 Reset	: MUX PDUs contain data from multiple elementary streams.

 OBID in the access tables, if used, does not have any significance and corresponds to packet numbers.

 If Bit 0 is reset, bit 1 is not defined.

Bit 2	Set	GODT is present in the file

Bit 3	Set	LOT is present in the file indicating the presence of logical objects

Bit 4	Set	CDT, content descriptor table, is present in the file

Bit 5:6 		ACCESS MODE

00 EPOT/SOT (EPOT and SOT are present in the file)

01 FPOT (FPOT present in the file)

10 POT/SOT (POT and SOT present in the files)

11 SOT/SSC/SSZ (SOT is present; POT, EPOT, and FPOT absent)

Bit 7 TPOS	If set POT,FPOT,EPOT are located at the end of the file.

The order of various components, when present in the file, is shown below.

FCH�LOT�POT or EPOT or FPOT�GODT�CDT�SEGMENTS��

4.1.	FC-1 — Random Access Mode 1

In this mode AL PDUs are accessed using EPOT and SOT tables. The structure of the file is shown below.

FCH�EPOT�SEGMENTS��

��SSC�SEGH�SOT�PDUF1�PDUF2�…��

FCH::FTD::5:6 = 0X00	--- EPOT/SOT present

SEG::SEGH::0:1 = 0X00 	--- segment size and LODT absent

SEG::SEGH::2 = 0X01	--- SOT present

The sequence of steps to access an nth instance of an object in a file is shown below.

The data access algorithm becomes:

Lookup EPOT to match the OBID

The offset to the SOT entry is available at n*8 bytes after ESOT::OBID::ICOUNT

NSOFF=SFOFF

Position to NSOFF

Read FOFF, CI, and PFSZ

Position to FOFF and get PFSZ data

If the (CF = = end of obj) STOP else go to 8

FOFF = value from the next-4-bytes; read CF and PFSZ from the next 3 bytes

Jump to 6)

4.1.1.	Number of lookups to access an object at random

 (lookups include, all comparisons, seeks, and data read operations)

Assuming worst case sequential lookup, EPOT::COUNT comparisons to match the OBID;

Then a single seek to: 5 + (n-1) * 8;

A single read to get ESOT

Seek to ESOT

{Two reads to load FOFF, CI, and PFSZ values.

Seek to FOFF

Read PFSZ bytes

Compare CF with end of object.} = 5 lookups

Total lookups in the worst case = EPOT::COUNT + 3 + 5 * number-of-PDU-fragments.

To access the first object listed in EPOT encapsulated in a non-fragmented PDU 9 lookups are necessary.

4.2.	FC-2 — Random Access Mode 2

In this mode AL PDUs are accessed using FPOT. The structure of the file is shown below.

FCH�FPOT�SEGMENTS��

��SSC�SEGH�PDUF1�PDUF2�…��

FCH::FTD::5:6 = 0X01	--- FPOT present

SEG::SEGH::0:1 = 0X00 	--- segment size and LODT absent

SEG::SEGH::2 = 0X00	--- SOT absent

The sequence of steps to access an nth instance of an object in a file is shown below.

The data access algorithm becomes:

Lookup FPOT to match the OBID

Use FPOT::OBID::FPSZ to locate the nth instance

Read bytes until EOO

4.2.1.	Number of lookups to access an object at random

 (lookups include, all comparisons, seeks, and data read operations)

Assuming worst case sequential lookup, FPOT::COUNT comparisons to match the OBID;

(n-1)*2 (for reading and seeking FPSZ) lookups to get to the nth entry.

i reads corresponding to i fragments.

Total lookups in the worst case = FPOT::COUNT + (n-1)*2 + number-of-PDU-fragments.

To access the first instance of the first object listed in FPOT encapsulated in a non-fragmented PDU 2 lookups are necessary.

4.3.	FC-3 — Random Access Mode 3

In this mode AL PDUs are accessed using POT and SOT tables. The structure of the file is shown below.

FCH�POT�SEGMENTS��

��SSC�SEGH�SOT�PDUF1�PDUF2�…��

FCH::FTD::5:6 = 0X10	--- POT/SOT present

SEG::SEGH::0:1 = 0X01 	--- segment size present and LODT absent

SEG::SEGH::2 = 0X01	--- SOT present

The sequence of steps to access an nth instance of an object in a file is shown below.

The data access algorithm becomes:

Lookup POT to match OBID

Get the FSOI; set index=0;

NSOFF =FSOI

Position to NSOFF; read SSZ, the segment size.

Lookup the SOT for {LOBID = = OBID; index++;} repeat until end of SOT is reached or index==n;

If index=n, nth instance found. Go to 8; else go to 7

NSOFF=SSZ; go to 4)

Read FOFF, CI, and PFSZ

Position to FOFF and get PFSZ bytes of data

If the (CF = = end of obj) STOP else go to 11

FOFF = value from the next-4-bytes; read CF and PFSZ from the next 3 bytes

Jump to 9)

4.4.	FC-4 — Random Access Mode 4

In this mode AL PDUs are accessed using SOT and segment start codes (SSC). The structure of the file is shown below.

FCH�SEGMENTS��

��SSC�SEGH�SOT�PDUF1�PDUF2�…��

FCH::FTD::5:6 = 0X11	--- SOT present

SEG::SEGH::0:1 = 0X01 	--- segment size (SSZ) present and LODT absent

SEG::SEGH::2 = 0X01	--- SOT present

The sequence of steps to access an nth instance of an object in a file is shown below.

The data access algorithm becomes:

Scan for the fist SSC

Get SSZ; set index=0;

Lookup the SOT for {LOBID = = OBID; index++;} repeat until end of SOT is reached or index==n;

If index==n, nth instance found. Go to 7; else go to 5

NSOFF=SSZ

Position to NSOFF; read SSZ, the segment size. Go to 3;

Read FOFF, CI, and PFSZ

Position to FOFF and get PFSZ bytes of data

If the (CF = = end of obj) STOP else go to 10

FOFF = value from the next-4-bytes; read CF and PFSZ from the next 3 bytes

Jump to 8)

5. MSDL Syntax

5.1. File Header

class FileHeader {

	// magic number (the string 'MPEG-4')

	char(8) magic[[0]]=’M’;

	char(8) magic[[1]]=’P’;

	char(8) magic[[2]]=’E’;

	char(8) magic[[3]]=’G’;

	char(8) magic[[4]]=’-’;

	char(8) magic[[5]]=’4’;

	// version number of file format

	char(8) version = 0;

// File description type

bit (8) FileType;

//Reserved

bit (8) Extension;

	

//Private data

	unsigned int(8) pvtBytes;

	while (pvtBytes>0) {

		char(8) data[pvtBytes];

		unsigned int(8) pvtBytes;

	}

	bit (16) BIFS_Id;

}

5.2. Segment

Class SegmentHeader {

	//indicates if segment size present

	bit (1) bit0;

	bit (1) bit1;

	bit (6) bit2_7;

}

Class FragmentSize {

	//Continuity Indicator

	bit (2) CI;

	

	//Object descriptor indicator

	bit (1) ODI;

		//Fragment data size

		unsigned int (21) PFDSZ;

}

Class SegmentObjectTable{

	//PDU count

	unsigned int (32) COUNT;

	for (int I=0; I<COUNT; I++){

		//Object ID

		bit (16) OBID;

		//Fragment offset

		bit (32) FOFF;

		//Fragment size

		FragmentSize PFSZ;

	}

}

// PDU Fragment extension

Class PDUFragmentExtension {

	//Next fragment offset

	unsigned int (32) NSOFF;

	

	//Next fragment size;

	FragmentSize NFSZ;

	//Object Descriptor (update) size

	if (NFSZ.ODI)

		unsigned int (16) ODS;

}

	

Class Segment {

	//Segment start code

	bit (32) SSC;

	SegmentHeader SEGH;

	if(SEGH.bit0){

		//Segment size

		Unsigned int (32) SSZ;

	}

	if (SEGH.bit1){

		SegmentTable SOT;

	}

	// variable length segment data

}

5.3. Logical Object Table (LOT)

Class LogicalObjectTable {

	//Logical Object count

	unsigned int (32) COUNT;

	for (int I=0; I<COUNT; I++){

		//Object ID

		bit (16) OBID;

		//URL length

		unsigned int (8) ULEN;

		// URL string

		char (8) USTR[ULEN};

	}

}

5.4. Physical Object Table (POT)

Class PhysicalObjectTable {

		

	//Physical object count

	unsigned int (16) COUNT;

	for (int I=0; I<COUNT; I++){

		//Object ID

		bit (16) OBID;

		// First segment of the object

		unsigned int (64) FSOI;

	}

}

5.6. Expanded POT (EPOT)

Class ExpandedPOT{

	//Object count

	unsigned int (16) COUNT;

	for (int I=0; I<COUNT; I++){

		//Object ID

		bit (16) OBID;

		//Number of randomly accessible instances

		unsigned int (32) ICOUNT;

		//Local object ID

		bit (16) LOBID;

		for (I = 0; I < ICOUNT; I++){

			// offset to the Segment object table entry

			unsigned int (64) ESOT;

		}

	}

}

5.7. Fat POT (FPOT)

Class ExpandedPOT{

	//Object count

	unsigned int (16) COUNT;

	for (int I=0; I<COUNT; I++){

		//Object ID

		bit (16) OBID;

		//Number of randomly accessible instances

		unsigned int (32) ICOUNT;

		//Local object ID

		bit (16) LOBID;

		for (I = 0; I < ICOUNT; I++){

			// offset to the Segment

			unsigned int (64) SOFF;

			while (!EOO){

				//PDU Fragment offset

				unsigned int (32)POFF;

				FragmentSize PFSZ;

			}

		}

	}

}

5.8. Global Object Descriptor Table

Class GlobalObjectDescriptorTable{

	//Object count

	unsigned int (16) COUNT;

	for (int I=0; I<COUNT; I++){

		//Object ID

		bit (16) OBID;

		// offset to the Object descriptor

		unsigned int (64) OOFF;

		//Object Descriptor Size

		unsigned int (16) ODSZ;

	}

}

5.9. Content Descriptor Table (CDT)

Class ContentDescriptorTable{

	//Object count

	unsigned int (16) COUNT;

	for (int I=0; I<COUNT; I++){

		//Object ID

		bit (16) OBID;

		// offset to the Content descriptor

		unsigned int (64) OOFF;

		//Object Descriptor Size

		unsigned int (16) OCISZ;

	}

}

6. References

MPEG-4 Systems WD 5.0 ISO/IEC 14496-1

�PAGE �1�

