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ABSTRACT

We consider N processors communicating unidirectionally over a closed transmission
channel, or ring. Fach message is assembled into a fixed-length packet. Packets to be
sent are generated at random times by the processors, and the transit times spent by
packets on the ring are also random. Packets being forwarded, i.e., packets already on the
ring, have priority over waiting packets. The objective of this paper is to analyze packet
waiting times under a greedy policy, within a discrete Markov model that retains the over-all
structure of a practical system, but is simple enough so that explicit results can be proved.
Independent, identical Bernoulli processes model message generation at the processors, and
i.i.d. geometric random variables model the transit times. Our emphasis is on asymptotic
behavior for large ring sizes, N, when the respective rate parameters have the scaling A/N
and pu/N. Our main result shows that, if the traffic intensity is fixed at p = A/u < 1,
then as N — oo the expected time a message waits to be put on the ring is bounded by
a constant. This result verifies that the expected waiting time under the greedy policy is
within a constant factor of that under an optimal policy.
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1. Introduction

Communication among N processors takes place counterclockwise along a slotted circu-
lar transmission channel, or ring. A processor generates messages, receives messages, and
forwards messages between other processors. Each message is a packet of fixed duration.
One time unit is required for a packet to be sent or forwarded from one processor to its
counterclockwise neighbor. Packets are generated randomly at the processors according to
i.i.d. arrival processes. The integer times spent by packets on the ring, packet transit times,
are i.i.d. random variables. Packets being forwarded on the ring have priority; while a
processor has a packet to be forwarded, it can not place one of its own waiting packets on
the ring. A packet waiting for transmission is held in a queue at the processor where it was
generated.

The details defining a practical implementation of a processor ring are many and var-
ied. Indeed, the applications and analysis of communication rings form a rather large and
growing literature; see van Arem and van Doorn (1990), Barroso and Dubois (1993), and
Georgiadis, Szpankowski, and Tassiulas (1993) for brief surveys and many references. As a
concession to mathematical tractability, we adopt here the simple discrete Markov model
in Fig. 1, where the ring is partitioned into cells, each capable of holding a single packet.
The cells rotate counterclockwise past the processors in discrete steps, one step per unit of
time. Packets are generated at each of the N processors by a Bernoulli process at rate A/N
0 < A < N, per time unit (step); the total arrival rate is then A. The packet transit times
are geometrically distributed with rate parameter u/N, N > p > A. Thus, at any given
step, a packet on the ring departs with probability u/N and stays for at least one more step

with probability 1 — /N, independent of how long the packet has already been on the ring.



We will explain shortly the reason for the scaling of arrival and transit-time parameters by

the ring size.

/

Figure 1: The rotating ring model.

In each step, the ring system undergoes a transition according to the following sequence:

(i) The ring rotates one position while processor queues accept new arrivals, if any (at

most one per queue in each step).

(ii) Packetson the ring that have completed their transit times are delivered, i.e., removed

from their cells.



(iii) Fach processor with a nonempty queue opposite an empty cell then puts a waiting

packet into this cell.

This gives the nonblocking model; reversing (ii) and (iii) would give the blocking model: a
departing packet can not be replaced in the same time step by a waiting packet. As we shall
see, our asymptotic results apply to both models. The above sequence gives the greedy cell
admission policy, placing waiting packets on the ring as soon as empty cells are available.

As discussed in Coffman et al. (1993), the greedy policy has the undesirable effect of
occasionally “freezing out” certain processor queues for long periods of time; long trains
of occupied cells pass by such processors denying them access to the ring. The results of
this paper will show that, for large rings within our probability model, the greedy rule is
remarkably efficient, and that in fact the above behavior is quite rare.

Our specific objective is to analyze packet waiting times under the greedy policy. (Here-
after, unless noted otherwise, waiting times always refer to times spent waiting in processor
queues.) To prepare for the statement of our main theorem on waiting times, we need a
little more notation. For a given admission policy, we denote the joint queue length at
integer time ¢ by Q(t) = (Q1(%), ..., @n(t)), where Q;(t) is the number in the i*" processor
queue at time t. The phrase ‘at time ¢’ means at an instant just after ¢ so that events, if
any, occurring at ¢ have already taken place. Define the N-bit vector R(t) whose i*" bit is
1 if and only if a packet is in the i*" cell at time ¢t. Hereafter, the term state refers to a pair
Q(1),R(1) at some time . It follows from the geometric law for transit times that the ring
process {(Q(t),R(t)),t=0,1,...} is a Markov chain. It was shown by Coffman et al (1993)
that, if A < p, then the ring process under the greedy rule is ergodic. Unfortunately, an
exact analysis of the stationary behavior of this ring process seems quite difficult. Indeed,
attempts to solve the balance equations have so far failed even for the case N = 2. Thus,
we turn to asymptotic estimates for large ring sizes, N, with A and p fixed and A < pu.
That is why we introduced the scalings A\/N and u/N; as we allow N to increase, the traffic
intensity will remain fixed at p = A/pu, the usual product of arrival rate and average service
(transit) time.

With A < p, let @ have the stationary distribution common to all queue lengths Q;(?),

and let W be the waiting time of a packet in the stationary regime.



Theorem 1.1. Fiz A and p with A < p. Then under the greedy policy
E[Q]=6(1/N) .

Thus, by Little’s theorem,

The lower bounds are easy to see, as follows. Consider the entire ring as an N-server
system with a total arrival rate A and maximum departure rate u. Then by Little’s theorem,
the arrival rate A times the average time spent on the ring, i.e., N/u, must be equal to the
expected number of packets on the ring in the stationary regime, i.e., pN. But if a positive
fraction p > 0 of the ring is occupied on average, then there must be a positive average
waiting time F[W] = (1) to get on the ring and hence E[Q] = Q(1/N).

In the usual way, on-line admission policies are those deciding packet admissions solely
on the basis of information currently available about packets already in the system, waiting
or on the ring. Such information can include, for example, queue lengths and the elapsed
times already spent in the system by packets. As we will see later, it is convenient to
extend this class of admission policies by allowing decisions to depend also on the times
and queues of future arrivals. Hereafter, unless stated otherwise, the term policy refers to
a policy in this extended class. Note in particular that policies retain the on-line property
with respect to transit times on the ring; i.e., we do not allow policies that base decisions
on prior knowledge of remaining transit times.

We say that a policy A is optimal if, over any interval [0, 7], the sum of waiting times (in
queue) under A is stochastically no larger than that under any other policy starting in the
same initial state. We prove in the next section that the greedy policy is an optimal policy
(the proof will need the geometric law for transit times). In the proof of Theorem 1.1, this
result allows us to analyze a more tractable policy with the same asymptotic performance as
the greedy rule; the more tractable policy exploits the fact that policies can base decisions
on the times and queues of future arrivals.

Coffman et al. (1993) proved in an earlier paper that the growth of the expected
waiting time in our model was sublinear in N, i.e., E[W] = o(N). Our much stronger

result shows that the expected waiting time is in fact bounded by a constant. So by Little’s



theorem, an important practical implication of our result is that the expected size of a
buffer needed to hold all waiting packets is bounded by a constant uniformly in N. The
proof of Theorem 1.1 requires a much more intricate probabilistic analysis than the one in
Coffman et al. (1993), where the law of large numbers was the basic tool. Here, we will need
more powerful asymptotic bounds (e.g., those of Chernoff type) on the tail probabilities for
sums of independent random variables and the excursions of Lindley processes (see e.g.
Prabhu (1965), p. 66); these appear as lemmas in Section 3. The proof of the upper bound
E[Q] = O(1/N) is given in Sections 4 and 5. The paper concludes in Section 6 with a brief

discussion of extensions and open problems.
2. Preliminaries

Consider the packet at the head of any given nonempty queue. Since transit times are
geometrically distributed with parameter p/N, the probability that this packet is placed on
the ring in the current time step is at least p/N; the conditional probability is precisely p/N
if the cell is occupied on arrival and it is trivially 1 if the cell is empty. Thus, one expects
that, in statistical equilibrium, the i*" queue length Q; is bounded stochastically for each i
by the length of a single-server Markov (i.e., M/M/1) queue in discrete time with arrival and
service rate parameters A\/N and u/N. Moreover, this bound should hold independently
for each queue. Indeed, these observations are but a special case of Theorem 2 in Coffman

et al. (1993). An easy analysis of the discrete-time M/M/1 queue then proves

Lemma 2.1. For each @ independently, (); is stochastically smaller than a non-negative

integer random variable L with P(L =n) ~ (1 —p)p" as N — oo for every n > 0, and with
(2.1) P(L>n)=0(""),
where v =1n1/p > 0.

Hereafter, we take the equivalent point of view that the queues rotate past the ring of
cells, which remains fived. As shown in Fig. 2, in any given time interval [0,7T], the ring
process can be represented by events on a cylindrical lattice cut at some cell position and

laid out as a rectangle. For simplicity, we assume that the cylinder is cut between cell N



and cell 1. Along the top of the rectangle the Q);(0), 1 < ¢ < N, give the initial state of
the queues, and the bullets (o’s) indicate the initial cell states: a cell with a e at time 0
is empty, otherwise, it is occupied. Again for simplicity, we assume queue 1 is at cell 1 at
time 0. Within the rectangle, circles (o’s) and bullets give a random sample of arrivals and
departures, respectively. A e and o can appear at the same lattice point; the probability of
such an event is O(1/N?) and hence relatively low; for simplicity, the figures in this paper
do not show samples where such coincidences occur.

The greedy policy is represented by a suitable assignment of cells to circles (new arrivals)
and to packets in the initial state. An example is shown in Fig. 2. The motion lines drawn
between packets and assigned cells describe the trajectories of the packets in time and space;
their vertical components correspond to waiting times. A motion line is broken into two
pieces when it extends past cell N, one ending at the right boundary, and one beginning at
the same time at the left boundary.

To ensure that an assignment of circles and initial packets to cells is valid, one must
check to see that the cell, say ¢, at which a motion line terminates, at time ¢ say, is indeed
empty at time ¢. Thus, if ¢/, 0 < ' < t, is the time of the last departure (bullet) in cell ¢,
then no other motion lines can terminate at cell ¢ in the interval [¢',1].

We conclude this section with a proof that greedy is optimal in that it minimizes stochas-
tically the sum S of waiting times over any given interval [0, T']. The proof uses the following

simple relation between S and the queue lengths @;(¢) during [0, T

(2.2) 5 = ZZQi(t) :

Theorem 2.1. The greedy rule is an optimal admission policy.

Proof: Consider ring operation over an interval [0,7], and let A be an arbitrary policy.
To compare total waiting times in [0, 7] under A and greedy, both starting in the same
initial state, we compare both to an intermediate algorithm A*, which is artificial in that it
sometimes returns packets to queues before they have completed their transit times. Under
A* an occupied queue places a packet into the first available empty cell, just as with the

greedy policy. But suppose that, under A* at some time t, a cell ¢ occupied by packet ¢ is
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Figure 2: Greedy Assignment




in front of a queue having a packet ¢’ that, under A, would have been in ¢ at time ¢. Then
at time ¢, ¢ and ¢’ change places under A*; ¢ joins the queue and ¢’ enters the cell.

At any given queue, the admissions under A* and greedy implement the same determin-
istic rule except at times when A* exchanges a packet in the queue with the packet in the
cell in front of the queue. But such an exchange does not change the state (any queue length
or the state of any cell) of the ring process; from the point of view of the ring process, the
exchange has the effect of doing nothing, which is just what the greedy rule would do in the
same circumstances. Thus, if A* and greedy start in the same initial state, then the joint
queue-length process over [0, 7], and hence by (2.2) the sum of waiting times over [0, 7], is
stochastically the same under A* and greedy.

It remains to show that the sum of waiting times over [0,7] under A is at least as
large stochastically as it is under A*. In fact, we prove the stronger deterministic result:
For a given initial state, a given sequence of arrivals over [0,7], and a given sample of the
remaining transit times of all packets in the system during [0, 7], the sum of waiting times
under A is at least that under A*. To see this, note first that, although A* may put a
packet ¢ on and off the ring several times, eventually one of three events will occur: ¢ will
depart, T steps will have been taken, or ¢ will be in a queue when the cell assigned to it
under A catches up to it. In the last case, A* places ¢ on the ring making an exchange, if
needed, and leaves it there until it departs or T steps have been made. Thus, every packet
during [0,T] has moved along the ring under A* at least as far as it has moved under A,

and so the sum of waiting times under A* is deterministically at most the sum under A. =

3. Probability Bounds'

We begin with a useful Chernoff bound that combines Theorems A.12 and A.13, pp. 237—
238, in Alon and Spencer (1991).

Lemma 3.1. Let 7 = 71 + ...+ Z,, where the Z; are independent Bernoulli random
variables with P(7Z; = 1) = p;, P(Z; = 0) = 1 —p;. Then for any € > 0, there exists a § > 0

'The reader may wish to skip this section at first reading, referring back to it as needed while reading
Section 5.



such that
(3.1) P(1— ) E[Z] < Z < (14 €)E[Z]) = 1 — O(e PPy |

Next, we consider a Lindley process, starting at the origin and defined by (z* denotes

the positive part of z)
(3.2) =0, (=(G1+U)t,

with U; = X; — V;, where {X;} and {Y;} are independent sequences of i.i.d. random
variables. In our application, Y; is an integer in {0,..., K'} with K a given integer constant
independent of N, and X; is the number of arrivals of a rate-aA/N Bernoulli process in
bN time steps, where ¢ and b are constants independent of N. Thus, for large N, X, is
approximately Poisson distributed with mean abA. Tt is easy to check that X; and hence U;

has an exponential tail probability, i.e., there exists a x > 0 such that
(3.3) PU; >2) < P(X; >2)=0(e"").

The process {(;} is said to have negative drift if E[Y;] > E[X,] and hence E[U;] < 0.
The next result follows from standard theory (e.g., see Asmussen (1987)). Let the X; and
U; be distributed as X and U, respectively.

Lemma 3.2. If E[U] < 0, then F[(;] is bounded by a constant uniformly in i > 0. The
distributions of the (; converge in total variation to the distribution of a random variable

with moments of all orders.

In addition to Lemma 3.2, we will need certain probability bounds on excursions of {(;}.

These will be derived in terms of corresponding bounds for the unrestricted process
(3.4) Li=ba+ U, i>1,

with the U; defined as before, and with a given initial state £y. Hereafter, we assume a
negative drift F[U] < 0.

The probability bound on excursions of {£;} that we will use in the analysis of {(;} is
developed as follows. Since E[U] < 0, and P(U > 0) > 0, there exists an ag > 0 such that

E[e®U] = 1. Define the process £ = e@& ;> 0, with the property

E[€ | &= Bl | &)= R[] = € .



Together with our assumptions on U, this shows that {£*} is a uniformly integrable mar-

tingale, so we have

P (sup &> w) = P (sup &> ew)
>0 >0
(3.5) < eTOTE[E) = E[em0lrmo)]

where the inequality follows from Doob’s martingale inequality (see, for example, Section 35
in Billingsley (1986)).

We now use (3.5) to get similar bounds for the busy periods of {(;}. In analogy with
queueing applications, we say that steps iy through ¢, i9 > 4y, comprise a busy period if
{¢;} moves away from the origin at step ¢; > 1 and makes its first subsequent return to
the origin at step iy, ie., (;;-1 = 0, 5 > 0, i1 < j < 19, and ¢;, = 0. The process is
idle while it resides at the origin. We want a probability bound on the maximum value of
the process during a busy period B. For this purpose, we make use of the fact that, away
from the origin, {(;} behaves as an unrestricted random walk. In particular, the conditional
probability that, given the first jump U;, > 0, {(;} exceeds level = before its next return to
the origin is the same as the probability that, starting in state U;,, the unrestricted version
{&;} exceeds level x before its first passage to a point at or below the origin. As an easy
consequence of (3.3) and (3.5), we have that, for a randomly chosen busy period B of {(;},
(3.6) P (su}g Gi > w) < BleE=0)|17 > 0] < e B[eX | X > K] = O(e=0),

i€
since X > U > X — K and X is a binomial random variable with a mean bounded
independently of N.

Our primary interest is in the behavior of {(;} over a finite (and large) number of steps.
It is convenient to let N denote the number of steps, since in later applications of the results
below, N will also denote the ring size. For example, a bound on P(SUP1SiSN ¢ > aln N),
a > 0, will be useful. To get such a bound, note that there are at most N/2 busy periods
in the first N steps of {(;}. Then by (3.6)

P ( sup (G > w) < EP (sup G > w) = O(e~c0z+nNy

1<i<N 2 i€B

10



Thus, for any v > 0, we can choose 2 = z(N) = aln N with a = a(y) sufficiently large that
(3.7) P ( sup (; > aln N) =O0(e "INy = O(N 7).
1<i<N

Consider next the duration D of busy period B.

Lemma 3.3. There exists an ng > 0 such that

P(D >y)=0(e™) .

Proof: TLet {U;} be the common sequence generating both {(;} and {{;}, (o = & = 0, and
suppose the first busy period By of {(;} begins at step ¢ > 1. Let Dq be the duration of
By. Tt is easy to check that, for any integer y > 1, the event {(; > 0 for all i,{ < i< (+y}
implies the event {£1, > & }. Busy periods are i.i.d. and P(&4, > &) does not depend on
£, so

P(D >y)=P(D1>y)

(3.3) i P(&oyy > &)

P& >0),
By Lemma 3.1, we obtain that, for any € > 0, there exists an a > 0 such that

(3.9) P(& > (1= OF[E)) = O(e*PB) |

with E[¢,] = yE[U] < 0. To see this, we need only observe that the U; and hence £, can be
expressed as sums of independent 0-1 random variables. Put ¢ = 1 in (3.9) and conclude

that, for some ay > 0,

(3.10) P(&, > 0) = O(exvEU]y

Together with (3.8), this proves the lemma. .
4. Admission Policy

The proof of Theorem 1.1 will use the admission policy of this section. Before presenting
the policy, however, we will briefly review how it is applied in the general argument.

The proof of Theorem 1.1 estimates the expected value of the sum S = S(N,T) of
waiting times under the greedy policy in an interval of length T = ©(N?), assuming that

the state of the queues at the beginning of the interval is a sample from the stationary

11



distribution. For convenience, we take [0,T] as the interval. To make use of the estimate,

observe that in the stationary regime, F[Q;(t)] = E[Q], so by (2.2) F[S]= NTE[Q] and

kS
(4.1) rig) = 220
We will prove that, under the admission policy defined below, the sum S of waiting times
over [0, T satisfies E[S] = O(N?). By Theorem 2.1, E[$] < E[S], so substitution into (4.1)
proves F[Q] = O(1/N), since T = O(N?). Then Theorem 1.1 is proved.

We now discuss the admission policy, algorithm A, shown in Fig. 3, previewing as we
go along the properties of the algorithm that must be proved in the probabilistic analysis
of the next section. The algorithm is based on various constants and structures determined
by A and u, which we describe first. The algorithm takes as input an € > 0 such that
(1 —2¢) > A, and reserves a sequence of 2eN cells of the ring as nearly equally spaced as
possible. (The lengths of adjacent intervals between reserved cells differ by at most 1.) Call
the odd numbered cells of this sequence initialization (1) cells, and the even numbered cells
clean-up (CU) cells. Regular cells are those that are neither I nor CU cells.

To avoid trivialities and to simplify notation, we assume in what follows that (2¢)~! and
€N are integers. The reserved (I and CU) cells partition the (1 — 2¢)N regular cells into
2¢N groups C;, with (2€)™! — 1 cells per group. We also define a partition of the queues
into 2¢N groups G, 1 < j < 2eN, with (2¢)~! per group. The index j is taken mod 2eN
if j > 2eN.

Algorithm A determines the schedule over the time interval [0, N 4+ bN?], which is
partitioned into an initial block By of N steps followed by N? blocks By, ..., By2 of bN
steps each. The parameter b must be chosen sufficiently small; the probabilistic analysis of
Section 5 will give an upper bound in terms of p and A.

The algorithm is preceded by the following process: independently, at every cell and
time step a mark (x) is placed with probability u/N; these marks are superposed on the
input arrival pattern. If, by algorithm A a packet ¢ is placed in cell j at time ¢, then the
first x after time ¢ in column j signals the departure of ¢ from the ring (these particular x’s
correspond to bullets in Fig. 2). By the memoryless property of the geometric distribution
of the times between successive X’s in any column, this rule for determining departures

yields geometric transit times on the ring, as desired.

12



With this set-up, the algorithm is as follows (see Fig. 3). First, the interval [0, N] of
By is devoted solely to the accumulation of empty CU cells, to be used as described later,
starting at time N. No admissions to the ring are scheduled during [0, N]. This is for
convenience only; our asymptotic results would not change if such scheduling were allowed.

At time N, the algorithm partitions the empty CU cells into sequences o, 1 < k <
aln N, as nearly equal in length as possible (see Step 1 in Fig. 3), for a constant a sufficiently
large to be determined by the probabilistic analysis. Apart from their size and number, the
sequences g can be chosen arbitrarily from among the empty CU cells.

The remainder of Step 1 assigns I cells starting at time N to just those packets in the
initial state plus those that arrived in [0, N]. The j-th I cell admits the packets in the e~!
queues of Gg;_1 U Gy, at time N; it serves these queues in a round-robin sequence, i.e., a
(k + 1)-st packet from one of the queues is not admitted until at least & visits have been
made to the other queues (admitting a packet at each visit if one is there).

Note that the I cells work in parallel with the other cells that serve the arrivals in
By,...,Bpn2. The probabilistic analysis will use elementary bounds to show that the ex-
pected total waiting time of packets served by T cells is negligible, i.e., o( N?).

Almost all of the arriving packets in the B;, 1 < ¢ < N2, are assigned by the iterations
of Step 2 to regular cells during the interval [N, N + bN?] (see Fig. 3). Arrivals in B; are
assigned to cells at time N + (i — 1)bN, 1 <4 < N2 At this time, a regular cell is called
available if its column segment in B;_y has at least one X, its column segments in B;_5 and
B;_3 have no x, and the cell has not already been assigned to an arrival in B; (if i = 2,
then the reference to B;_3 is omitted, and if + = 1, the references to both B;_5 and B;_3
are omitted). Examples are given in Fig. 4, which are referenced again at the end of this
section. Step 2 scans the groups G/; in left-to-right order beginning with Gy. Assume for
simplicity that the cell group C; is lined up in front of the queues in G; so that the last
cell of C; is in front of the last queue in G; (recall that C; has one fewer cell than G/; has
queues). This is the alignment assumed in Step 2 of Fig. 3.

For j =1,...,2¢N the arrivals as yet unassigned to GGy, ..., are assigned in any order
to the available cells of ;41 until either the former or latter set is empty, whichever occurs

first. At the end of this process, there may still be unassigned arrivals in B;; these are
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called leftover packets. Also, there may have been instances where an arrival was assigned
to a cell more than bN cells (time units) away. These assignments are discarded and the
corresponding packets are left unassigned throughout [0, N + 6N3]. The restriction to cells
that are both available (in the above limited sense) and not too far from the arrivals assigned
to them guarantees that algorithm A makes valid assignments. We will verify this fact after
we describe the remainder of the algorithm.

The probabilistic analysis will show that, for each block B;, the numbers of available
cells in the C}’s is sufficiently large to ensure a O(N) expected total waiting time for the
arrivals assigned in Step 2. Then for all N? blocks, the total waiting time is O(N?), as
desired. The analysis will then show that the assignment of an arrival to a cell more than
bN columns away is so rare that its effect on total waiting time is negligible.

Finally, Step 3 of the algorithm takes care of leftover packets by assigning them to the
cells of the sequences o;. These assignments are organized so that, foreach k =1,...,aln N,
the leftover packets of Br, BrioainnN, Br+2amm N, ... are all assigned to cells in the same
sequence 0. Thus, for 7 > 0, the leftover packets in Bryramm Ny -5 Bry(r41)alnN—1 are
served in parallel by disjoint regions of the ring.

The probabilistic analysis will show that, except for a negligible fraction of the leftover
packets, all of those admitted by the cells of o1 from Byy,qmny for any r > 0 will have
departed when it is time to start admitting the arrivals in By (,41)s1nn into the cells of
0. In addition, the analysis will show that the expected total wait of the leftover packets
in B; is O(N), and hence the expected total wait for leftovers from all N2 blocks is O(N?),
as desired.

It is easy to see that, if algorithm A always makes valid assignments (loads packets into
empty cells), then it is indeed a valid admission policy; the (future) arrivals in B; are known
when assignments are made at the beginning of B;, but knowledge of future departure times
is not used at any point. (This is obvious for Steps 1 and 3; it is clear for Step 2 as well, since
cell availability at the beginning of B; depends only on departures times in By U---U B;_1.)

It remains to verify that, under algorithm A, whenever an arrival reaches the cell to
which it is assigned by the algorithm, the cell is empty. But suppose that cell j is the

available cell assigned by Step 2(i) to arrival ¢ in B;, and that it remains assigned to cell j

14



Algorithm A

Input: N,a,b,e,an initial state and sets of arrivals and marks (x’s) over [0, N + bN?]

1. (i) At time N, the empty CU cells are partitioned into sequences o, 1 < k < aln N,
whose lengths differ by at most 1.

(ii) Forj =1,...,eN, the j-th T cell admits just those packets appearing in the e=! queues
of G9;_1UGy; at time N. For each j, these queues are served by a round-robin starting
at time N.

Fori=1,...,N? the following two steps are performed.

2. (i) Assume that the queues in G are aligned with the cells of C;, at the time B; begins.
For j = 1,...,2¢N, the as yet unassigned arrivals in the queues of G/y,...,G; are
assigned to the available cells in ;11 until the former or the latter are exhausted,
whichever occurs first (Cacnvi1 = Ch).

(ii) Assignments just made that match an arrival to a cell more than bN columns (cells)
away are removed.

3. Let integer k satisfy 1 < k < @ and © = ma + k for some integer m > 0. Then the leftover
packets, if any, of B; are admitted according to the greedy rule by the empty CU cells of
o1; admissions stop when there are no more leftovers to admit or when the empty cells of
o have been exhausted, whichever occurs first.

Figure 3: An admission algorithm.

after Step 2(ii). (See Fig. 4 for examples.) Then the earliest that cell j can again become
available occurs when assigning arrivals in B;ya; no arrival of B;yq or B;yo can be assigned
to cell j by the definition of cell availability and the fact that B;_; has a X in column
j. If cell 7 is indeed available during the scan of B;i3, then there must be a X in B;4o.
This x must come after the admission of ¢ to cell j; otherwise the motion line of ¢ would
span more than bN columns, and this would contradict Step 2(ii), where such assignments
are removed. Thus, this X in B;y2 guarantees that any packet already in cell j will have

departed before cell j is re-used for an arrival in B;;13 or some later block.

15



5. Proof of Theorem 1.1

Recall the general approach outlined at the beginning of the previous section: we prove
that E[S] = O(N?), where § is the sum of the waiting times in [0, N +bN?] under algorithm
A. Tt is enough to show, as is done below, that the O(N?) bound holds for the packets
considered by each of the three steps individually.

In what follows, when we say that an event occurs with high probability, we mean that it
occurs with probability 1 — O(N™") where v can be made as large as desired by a suitable
choice of (usually hidden) constants. For example, by the geometric law for transit times

V', we have

P(V <dNlogN)=1—(1—pu/N)NleeN

and so P(V < dNlogN)~1— N7# as N — co. Thus, we can say that transit times are
O(Nlog N) with high probability; v = ud can be made as large as desired by increasing
d. Note that m high-probability events occur jointly with high probability if m is at most

some polynomial in N.
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Step 1.

Consider the 't queue length @;(N) at time N and recall that Q;(0) has the stationary
distribution. Algorithm A admits no packets to the ring in [0, N], so Q;(N) is @;(0) plus
the number of arrivals in [0, N] at queue 7. At time N, Q¥(N) counts the packets waiting at
time N in queue ¢ plus the packet, if any, in the I cell that serves queue ¢ in Step 1. We have
Q7 (N) < Qi(N)+ 1, so by Lemma 2.1 and the geometric law of interarrival times, there
exists an 17 > 0 such that P(Q5(N) >k +1) < P(Q;(N) > k) = O(e"*) independently for
all queues. Let SZ»(I) be the total waiting time of the packets counted by @Q;(N), and let C
be the joint event that (i) for some ¢ > 0 the first Q;(N) A cln N packets waiting in queue i
at time N have O(N log N) transit times, and (ii) at time N the packet, if any, in the I cell
serving queue 7 has O(N log N) remaining transit time. By the geometric law for transit
times, C has high probability.

Since each I cell serves a constant number of queues in a round-robin sequence, the kth
packet in any queue must wait k- O(Nlog N) time if C holds and k¥ < ¢In N. Since no
packet can wait more than bN> 4+ N time, we obtain the bound

ESMe] = Y k-O(NlogN) + O(N®)- E(Qi(N)—cln N)*
1<k<cln N
= O(Nlog®? N)+O(N~")-0O(N?)

= O(Nlog® N)

by choosing ¢ large enough. If C does not hold, we use the O(N?) trivial bound for all
packets to obtain E[S»(l)f] = O(N?), since F[Q;(N)] = O(1). But C has low probability so

k3

E[SZ»(I)] = O(Nlog® N). Since C holds simultaneously for all 7 with high probability, we can
conclude that

E[SW] = NE[SM] = O(N?1og® N) = O(N?),
as desired.
Step 2.

We analyze the left-to-right scan of the sets ; in B; and C; in B;_q, and bound first the

expected total waiting time of the packets that are assigned in Step 2(i). Define the Lindley
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where U; = X; —Y;, X, is the number of arrivals in G, and Y; is the number of available
columns in ;4 at the start of the j-th iteration in Step 2. It is easy to see that, among
the arrivals already scanned in Gy,...,G;, (; gives the number as yet unassigned at the
start of the (j 4+ 1) iteration. Thus, (2€)71((; 4 -+ 4 (2en) is the cumulative waiting time
52»(2) of the arrivals assigned in B;, not counting the times spent waiting by these arrivals in

their initial and final blocks. The latter times are bounded by 2(2¢)~! = €71, so

SP < 207G+ Gen) + X+ Xoow):

But F[X;] = Ab(2¢)71, and if E[U;] < 0 then E[(;] = O(1), by Lemma 3.2, so that
E[SZ»(Q)] = O(N) and hence the expected total wait of assigned packets summed over all 7 is
O(N?), as desired. Thus, it remains to prove that E[U,] < 0.

We need to verify that P(Ar) > Ab/(1 — 2¢), where Ay is the event that column k
is available when assignments to arrivals in B; begin; for then, since there are (2¢)~! — 1

columns in the C,

Ab
1-— 2¢

E[Y;] > [(20)71 = 1] = (20)7' A0 = E[X]],

and hence E[U;] < 0. We consider B; for i > 4; the cases ¢ = 1,2,3 are similar. We need
only observe that Ay holds if there is at least one x in a column of B;_; and none in B;_5

and B;_3, so
P(AL) = [1 = (1= /N PVI(1 = /NN (1= )2t

as N — oo. Then for all N sufficiently large

b < Tp(l—2¢) = A
5 (1 —2€e)p?

is enough to ensure that P(Ag) > Ab/(1 — 2e¢).
It remains to estimate the added total waiting time of the packets that were assigned
but then unassigned in Step 2. But by Lemma 3.3 the probability that a packet is assigned

to a x at least bN columns (and hence Q(N) groups C;) away is exponentially small in
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N. Tt follows that the expected added total waiting time of such packets is o(1) since the
number and maximum wait of such packets are both bounded by polynomials in V. Thus,

the expected total wait of all packets examined in Step 2 is E[S()] = O(N?), as desired.

Step 3.

Let k; = (1 —1) mod (aln N)+ 1, and note that, by Step 3, the leftover packets of B; should
go into the cells of oy,.

We argue first that, by an application of Lemma 3.1, at time N there are at least
S(1—e™#)N empty CU cells with very high probability (i.e., with probability 1 —O(e_Q(N));
thus, with very high probability, any existing leftover packets are assigned to the alog N
sequences oy, which have Q(N?) cells each for every 3, 0 < 3 < 1.

For definiteness, choose § = 1/2 and let & be the event that the leftover packets of B;
number fewer than N'/2 and each has a transit time at most 5N -aln N — N. In this event,
the waiting time of each leftover packet is at most N and the leftover packets of B; leave
the CU cells of oy, empty by the time the next set of leftover packets (those in Bitqmmn)
have to be scheduled in the cells of o,. By (3.7) and the geometric law for transit times,
&; holds with high probability for all @ large enough. There are only N? such events, so
the combined event & = ﬂf\fo &; also holds with high probability, where & is the event that
there exist at least §(1 —e™#)N empty CU cells at time N.

Now suppose & holds. Then since a leftover packet waits at most N and there are N?
blocks, the conditional expected total waiting time is O(N?) times the conditional expected

number of leftover packets per block B;, i.e., O(N?) - E[(y|€]. But
E[(vI€] = Elenlon < N7 < E[Gv] = 0(1),

by Lemma 3.2, so the expected total waiting time of leftover packets is O( N?) when &£ holds.

Given that £ does not hold, we use the trivial polynomial bounds O(N*) and O(N?) on
the total number of leftover packets and the waiting time of each. Since & fails with low
probability, @ can be chosen large enough so that P(£) =1 — O(N~*). Thus, the expected

total waiting time of leftover packets is
O(N?) + (1= P(£))O(NT) = O(N?)
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and the theorem is proved. "

6. Final Remarks

A close look at the analysis in Section 5 shows that it is possible to prove a stronger
version of Theorem 1.1 in which the dependence of the hidden multiplicative constant on A

and pu is specified: There exists a universal constant a such that, for NV sufficiently large,

(6.1) FWI S =

The details of a proof of this result have been omitted because no new ideas are needed, and
because the added clutter makes the proof significantly harder to follow. In broad outline,
a proof can begin with the observation that if (6.1) can be proved for the expected waiting
time E[W(Q)] of packets assigned in Step 2, then changing only the constant «, it must also
hold for E[W]. This is not difficult to verify using the probability bounds of Sections 2 and
3, and the arguments in Section 5.

It is then not difficult to verify that, within a constant factor independent of A and p,
E[W®]is the expected waiting time in a G/G/1 queue with arrivals in each time slot having
a binomial distribution with mean Ab and service times having a geometric distribution with

—2ub

rate parameter u/ = (1 — 2€)(1 — e #b)e . For large N, the queue is asymptotically an

M/G/1 queue, so by classical results, we get (Kleinrock (1975), Section 5.7)

1

P = O

)7

where pl = /\’/,u’ and A/ = Ab
/\) and so 1l — !l =
w2z ) p

Q1 — p) and g/ = Qub) = Q1 — p). Thus, E[W 3] and hence E[W] has a bound of the

As in the analysis of Step 2 in Section 5, we again choose b = O(

form (6.1).

Asymptotics in N pose intriguing open problems for transit-time distributions other
than the geometric. The uniform distribution on {1,..., N — 1} is of particular interest;
extensive simulations by Coffman et al. (1993) give convincing evidence that the bounds in
Theorem 1.1 hold for this case as well, but no proof has yet been found.

Finally, keeping with our Markov arrival and transit-time assumptions, it would be

interesting to study asymptotic behavior in the generalization of rings to toroidal arrays
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of processors (see Leighton (1990, 1992)). Much is known about regular (open) arrays, as
can be seen from the recent work of Mitzenmacher (1994) and Kahale and Leighton (1995),
who give references to the earlier work on this problem. But the analysis of toroidal arrays

seems to require different methods.
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