Polling Systems with Zero Switchover Times:
A Heavy-Traffic Averaging Principle

E. G. Coffman, Jr.,T A. A. Puhalskii,#* and M. I. Reiman!

TAT&T Bell Laboratories, Murray Hill, NJ 07974

#Institute for Problems in Information Transmission, Moscow, Russia 101447
ABSTRACT

In polling systems, M > 2 queues are visited by a single server in cyclic order. These
systems model such diverse applications as token-ring communication networks and cyclic
production systems. We study polling systems with exhaustive service and zero switchover
(walk) times. Under standard heavy-traffic assumptions and scalings, the total unfinished
work converges to a one-dimensional reflected Brownian motion, whereas the workloads of
individual queues change at a rate that becomes infinite in the limit. Although it is impossible
to obtain a multidimensional limit process in the usual sense, we obtain an ‘averaging principle’
for the individual workloads. To illustrate the use of this principle, we calculate a heavy-traffic

estimate of waiting times.
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1 Introduction

A polling system consists of M > 2 queues visited by a server in cyclic order. In the tradi-
tional system studied here, the server remains at a queue serving customers in FIFO order until
none remain, the case of exhaustive service. When a queue is empty on the server’s arrival, or
when it becomes empty after the server finishes the last waiting customer, the server moves in-
stantaneously to the next queue in sequence, i.e., we assume zero switchover (walk) times, thus
confining ourselves to applications (e.g., certain of those arising in computer/communication
settings) in which this is a useful approximation.

In the stochastic model studied here, independent arrival processes are assumed for the M
queues. Each arrival process consists of a sequence of i.i.d. interarrival times drawn from a
given general distribution that may vary from one queue to the next. Service times comprise a
sequence of i.i.d. random variables independent of interarrival times and with a given general
distribution, the same for all queues.

The analysis of polling systems and its many variants has a large and growing literature,
e.g., see Takagi (1986) and Boxma and Takagi (1992). Polling problems have attracted wide
interest not only because of their practical importance, but also because they couple an ele-
gantly simple structure with challenging analysis. The chief obstacle to explicit results is the
interdependence of queueing processes that holds even under simplifying distributional (e.g.
exponential) assumptions. A classical Markov-chain approach must adopt a state that car-
ries jointly the states of the M queues. An attempt at explicit formulas for queue-length or
waiting-time distributions eventually founders, culminating typically in a system of equations
that must be solved numerically.

In these circumstances, one naturally resorts to asymptotic estimates. The touchstone for

the success of such techniques lies in the existence of limit laws which show that the estimates
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are asymptotically exact. Here, we study diffusion approximations in which the asymptotic
regime is that of heavy traffic. Reflected Brownian Motions (RBMs) approximate the total
number in system and the total unfinished work, under the usual heavy-traffic scalings. The
theory that can be called upon to support such approximations is well developed. However,
for the polling system we consider, in the time scale of the RBM limits the individual queue-
length and unfinished work processes change at an infinite rate. As a result, the problem of
formulating and proving useful limit theorems for the joint distributions seems to be much
more difficult.

To illustrate the limit processes analyzed in later sections, consider the symmetric, two-
queue (M = 2) system and let (V;,V3) denote the limiting unfinished work in the two queues
under the heavy-traffic normalization. Figure 1 represents the motion of the limit process
(V1,V3) by a component along the constant-work lines V- = V5 + V5, and an orthogonal compo-
nent along the diagonal where V' varies. While V varies as RBM along the diagonal, (V, V3)
moves back and forth along the cross diagonal at an infinite rate, the direction being determined
by which of the two queues is being served.

We estimate normalized waiting times as follows. Informally, given V = V; + V5 a random
arrival finds the process (V7,V2) at a point uniformly distributed over the constant-work line V'
and moving in either direction with equal probability. Thus in the heavy traffic normalization,
the state seen by a randomly chosen arrival is taken to be (UV,(1—-U)V'), where U is a uniform
random variable on [0, 1] independent of V; with probability 1/2 the arrival’s queue is being
served, in which case the waiting time is UV in distribution; and with probability 1/2 the other
queue is being served, in which case the waiting time is UV +(1-U)V/(1—p/2) in distribution,
where p is the overall traffic intensity. Setting p = 1 for the heavy traffic approximation, the
normalized waiting time is thus uniform on [0, V] with probability 1/2, and uniform on [V, 2V]
with probability 1/2, which is distributionally equivalent to being uniform on [0,2V]. Thus we
can write

(1.1) 7 =20V

for the normalized waiting time.

In Section 2, a general averaging principle is formalized for the case M = 2, arbitrary
arrival rates, and a general service-time distribution, the same for each queue. Appropriately
specialized, this principle underlies the discussion above. Several preliminary results also ap-

pear in Section 2. Section 3 prepares for the proof of the averaging principle by analyzing a



single-server threshold queue; Section 4 completes the proof. Extensions to the case M > 2
and different service-time distributions at each queue are discussed in detail in Section 5, but

no proofs are given. Calculations of waiting times are illustrated in Section 6.
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Figure 1: The limit process.

2 The Heavy Traffic Limit, M = 2

Consider a sequence of polling systems, each consisting of two queues, with the following
parameters for the n'? system:
lth

{€l;,i > 1}, 1= 1,2, are the (independent) sequences of i.i.d. interarrival times at the

queue,

n= (BT, (o)? = Varél, | = 1,2, are the rate and variance parameters of generic

interarrival-time random variables, &},

{n?,i > 1} is the sequence of i.i.d. service times, assumed to be independent of the arrival

processes, and

" = (En™)~1, (¢7)? = Varn™ are the rate and variance parameters of a generic service

time, n".
We assume that the following heavy-traffic conditions hold:

(2.1) nlLrgoAf:Al>0,l:1,2, JLI%OM”:;L:/\l—I—AQ,



(2.2) lim /(A + A0 — ") =c,

n—oo

for some finite constant ¢, and
(2.3) nh—>I%o o =01, 1=1,2, nh_{gO ol =0, 02 = Mol +Njos + pPol> 0.

We also assume that the Lindeberg condition holds:
Tim B(EPUE > e/n) =
lim E(n™)?1(n" > ey/n) =

for all € > 0. For later use we define p; = A\;/u, i = 1,2, as the limiting traffic intensity in

[=1,2,

0,
2.4
(24) ).

queue 2.

Let Q7(t), t > 0,1 = 1,2, be the I'' queue length and let Q™(¢) = Q7 (¢) + Q%5(t) be
the total queue length at time ¢. Define the normalized processes X" = (X"(¢),t > 0) with
X"(t) = ﬁ@”(nt) If X"(0) L) (n — o), then conditions (2.1)-(2.4) imply that, in the
Skorohod space D[0,00), X™ converges in distribution to Reflected Brownian Motion with drift
¢ and diffusion coefficient o (see Iglehart and Whitt (1970)). The limit process is denoted by
X = (X(t),t > 0) = RBM(c,0?%). The central result of this paper is the following averaging

principle for the normalized, individual queue length, X['(t) = ﬁ@f(nt), I=1,2.

Theorem 2.1 If X"(0) L0 and if conditions (2.1)-(2.4) hold, then for any continuous func-

tion f on Ry and any T > 0,
T q [T/t
/ FOXP(1)dt 2 / (/ f(uX(t))du) di, 1=1,2 as n— oo .
0 0 0

Remark. The integrals above are well defined since X*(¢) and X (¢) are P-a.s. bounded on
[0,T].

Section 3 and the remainder of this section prepare the ground for the proof of Theorem 2.1,
which appears in Section 4. Section 3 proves an averaging principle for a special single-server
queue; this result plays a key role in the proof of Theorem 2.1. The five lemmas concluding this
section are either well-known or easily proved. We give them here for ease of future reference.
In what follows the notation % will apply both to sequences of random variables and to

sequences of stochastic processes; the usage will be clear in context.

Lemma 2.1 Let X™ = (X"(1),t > 0) be a sequence of right-continuous processes with left
limits and suppose that X™ has paths unbounded above. Assume that, for b > 0, X"(t) LA

bt (n — o0) uniformly on finite intervals.



(1) Denoting first passage times by F"(t) = inf(s > 0 : X"(s) > t), we have F"(t) it

t/b (n — oo) uniformly on finite intervals.

(ii) Let (t",n > 1) be a sequence of times with t" — to (n — o) and define F™ = inf(s > 0:
X7(s) > t"). Then F* £ 15/b (n — ).

If the X™ are increasing, the local uniform convergence in probability of X™(t) to t can be

replaced by convergence at every t > 0.

Result (i) can be found in Iglehart and Whitt (1970) and Whitt (1980). The version
dealing with increasing X" appears in Krichagina, Liptser, and Puhalskii (1988). Result (ii)
is an obvious consequence of (i).

In the next lemma, bear in mind that, if F denotes a metric space, then convergence in

distribution in F'*° is finite dimensional convergence.

Lemma 2.2 Let X" = (X7, X7,...), n = 1,2,..., be a sequence of random elements of
D[0,00)>, where X]! = (X (t),t > 0), k = 1,2,..., are real-valued increasing right-continuous
processes. Let 7" = (1", 78,...), n > 1, be a sequence of R -valued random elements defined
on the same probability space. If ™" 4 7 and X7 5 Xk, where 7 = (1,7T2,...), and where
X = (Xp(t),t > 0), k = 1,2,..., are deterministic and continuous, then X"(1") 4 X(1),
where X (1) = (X1(71), Xa(72),...).

Proof. By Theorem 4.4 in Billingsley (1968) we know that (X", 7") it (X,7)as n — oo, with
convergence being in D[0,00)*x RT®. By the Skorohod embedding we may assume that
(2.5) (X", ") — (X,7) P-as.

Then fore >0,6>0,T7>0,k=1,2,..

*

POXE(TE) = Xp(mi)| > €) < P — 7| > ) + P( > T)

(2.6)
€ €
+P | sup [Xp(H) = Xp(D)] > 5 | +1| sup [Xi(t) = Xi(s)| > 5
t<T+6 2 |tt—STI; 2

The X} are increasing and X} is continuous, so by (2.5) the first and third terms on the
right of (2.6) tend to 0 as n — oo. The fourth term is also 0 for § small enough, by the

continuity of Xj. Finally, P(rx > T) — 0 (T — o0) takes care of the second term, so



by (2.6) X[(7]) 5 Xi(mk) (n — o0). By the definition of the topology on R, we have
X™(r") 1A X (7). The lemma then holds since convergence in probability implies convergence

in distribution (Theorem 4.3 of Billingsley 1968). [

Lemma 2.3 Fore > 0, let real-valued random variables o™ (¢€), "(€), andy™, n = 1,2, ..., sat-

isfy a”(e) <A™ < [7(€); " (€) 4 a(e), f"(e) 4 B(e) (n — 00); and a(e) 4 v, B(¢€) 4 v (€ —

0). Then 4" LN (n — o).

Proof. Let = be a continuity point of the distribution of . Then

m P(y" <) < Tm P(a”(e) < 2)

n—oo n—oo

Pla(e) < 2) — P(y < ) (¢ = 0),

IN

A

so lim P(y" < ) < P(y < z). On the other hand,

n—oo

lim P(y" <) > lim P(3"(c) < 2)

n—oo n—oo

P(pe) <z)— P(y<z)(e—0).

v

The lemma follows. [ |

Lemma 2.4 Let {z",n > 1,i > 1} be a triangular array of random variables. If, for any

€> 0,
17’L
lim — ) P(|lz?|>€¢) =0,
nggon; (la7] > €)
and
lim lim Y P(|2"| > k) =
kggonggo; (le] > k) =0,
then

1 n
— Zw? L
n =1
In particular, if {x7,i > 1} are identically distributed, the above conditions are reduced to

$7f£>0 (n — o),

and

lim lim nP(]2}|>k)=0.

k—o00 n—



Proof. The result follows either from general theorems on the law of large numbers for sums

of random variables (e.g., see Petrov (1975)), or directly, since if § > 0 then for arbitrary k& > ¢

1o
P(‘;;xf >6) < ( Z|w”|1< <|x”|<k> )
—|—P(Zl|x”|>k 21)
i=1

< ( Zn: <”|>5) )+§:P|xn|>k
i= i=1

< Tkli <| 7> 6)—|—ZP (|27 > k),

and this last goes to 0 as n — oo and k — oo by the assumptions of the lemma. [ |

The next lemma deals with the continuity of ‘penetration’ times (cf. Jacod and Shiryaev

(1987), Section VI.2.11).

Lemma 2.5 Let Gy and G5 be open subsets of R with nonintersecting closures, and let G
and G5 denote their open e-neighborhoods, € > 0, with GY = Gy, GY = G4. For x = (x(t),t >
0) € D[0,0), define (o(x,GS) =0 and, for k> 1, T >0, (inf ¢ = 00)

(2, GY) = inf(t > (1 (2, GS) 1 2(t) € GY), k> 1,
Ce(z,G5) = inf(t > mp(z, GY) r 2(t) € GY), k> 1.

If & = (2(t),t > 0) € D[0,00) is continuous and, for k> 1,T >0,

11{18 (2, GO)NT = (2, G1) AT, li{g (2, GHNT = (2, G2))NT

then, as maps from D[0,00) to Ry, v — mp(2,G1) AT and v — (p(x,Go)ANT, k> 1, T >0,

are continuous at .

Proof. We begin by proving that @ — 7(2,G1) AT is continuous at . Let G7° consist of
those a € G1 whose e-neighborhoods belong to G1; this set is nonempty for ¢ small enough.

Our first observation is that, for € D[0, ),
(2.7) li{g m(z,G7) = i (z,Gh).

Indeed, since G7¢ C Gy, we have that 7 (z,G7°) > m(2,Gy). In particular, this proves
(2.7) if m(z,Gy) = oo. If 7(2,G1) < oo, then, for some § > 0, a(m(z,G1) + §) € Gy
and, since (.50 G7° = G1, we have that a(rm(z,Gq) + 6) € G7° if € is small enough, so



T (z,G1)+6 > T (2, GT). Since § can be chosen arbitrarily small, we conclude that 7 (2, Gy) >
lim,jori (2, G7°). The limit (2.7) is proved.

Now let 2™ = (2™(t),t > 0) converge to Z, as n — oc; in particular, since Z is continuous
9 - 9 b 9 9

lim sup |2"(t) — &(t)| = 0.

Let € be arbitrary but small enough so that G is nonempty, and let n be such that

(2.8) §1<1¥ |z"(t) — #(t)] < e.

Then, since & € (7 ° implies 2" € G,
T1($n,G1) AT S Tl(i,Gl_E) A T,

and, by (2.7),
H T1($n,G1) AT S Tl(f,Gl) ANT.

On the other hand, under (2.8), 2" € Gy implies & € G, and hence (2™, G1)AT > 7 (&, G{)A

T, and by the conditions of the lemma,

li_m T1($n, Gl) AT Z Tl(i, Gl) AT.

n—oo

The continuity of 7 (2, G1)AT at & is proved. Replacing G by G2 and z(t) by 2(t+7 (2, G1)A
T),t >0, we get that  — (1(z,G2) A T is continuous at Z.

The proof is concluded by induction if we note that, for 2 € D[0,00) and k > 2,

Tk($,G1)/\T = (Cl($,G2)/\T—|—Tk_1($1,G1)/\T)/\T,

Gz, Go)) AT = (G2, G2) AT+ Cpo1(21,G2) NT)AT,

where

$1(t) = $(t 4 Cl($,G2) A T) .

3 The Threshold Queue with Exceptional Arrivals

In this section we prove an averaging principle for a single-server queue, called the threshold
queue, which provides a critical element in our analysis of polling systems. The threshold queue

is basically the standard FIFO single-server queue except that, for a given parameter h > 0,



busy periods of the threshold queue begin only when the queue length first exceeds h; busy
periods terminate in the normal way, whenever the queue becomes empty. We say that the
server switches on when the busy periods begin and switches off when the busy periods end.
Those periods during which the server is switched off are called accumulation periods; such a
period includes the usual idle period plus a period during which arrivals are accumulating in
the queue. An accumulation period and its following busy period make up a cycle.

Threshold queues correspond in the obvious way to the queues in our two-queue polling
system; for example, the accumulation periods of the threshold queue representing queue 1
correspond to the busy periods of queue 2. In our general approach to the proof of the main
result (cf. Theorem 2.1), the time interval [0,7] is divided into subintervals sufficiently small
that the total number in the system remains approximately constant during each. Then,
during a subinterval, the behavior of each queue is approximated by that of a threshold queue.
The main result of this section (Theorem 3.1) shows that a threshold queue also obeys an
averaging principle; the averaging principle for the polling system is derived as a consequence
of the averaging principles of the threshold queues defined for the subintervals.

Consider a sequence of threshold queues indexed by n. With the exception noted below,
interarrival and service times form independent i.i.d. sequences, where generic interarrival
and service times are denoted by " and 7™ respectively. The threshold for the n*® queue is

h™ = |v/na™|, where a” is a given constant. Assume that
(3.1) sup E(£")? < oo, sup E(n")? < o0 ,
and, letting A" = (E¢™)~! and u™ = (En™)~1, assume that

(3.2) lim A" =A>0, lim p"=p>0, lima"=a>0, A<p.

n—oo

For technical reasons to be made clear later, we will need a slight generalization of the
renewal arrival process determined by £” for the n' threshold queue: within each busy period,
at most one of the interarrival periods is allowed to be exceptional, i.e., have a distribution
other than that of £". We make no specific assumptions about the dependence of exceptional
interarrival periods on other quantities, but we assume they are bounded, as follows.

For each ¢ > 1, we define a nonnegative random variable Ef and an integer-valued random
variable Y7 that correspond to the i*" cycle. Specifically, if the i*h busy period has at least x”

arrivals, then the x7th arrival is exceptional and the duration of the latter is taken to be Ef



There are no exceptional arrivals if the busy period has fewer than x? arrivals. We assume that
there exists a family of sequences {("(r),7 > 1}, r > 0, of identically distributed nonnegative

random variables such that,

B t/7]

ﬁq(r) 20 as m—oo, 7>0, lim Tim ; PE > M) =0, t>0,

and that the joint distribution of (), the normal interarrival times, and the service times in

(3.3)

the i*P cycle does not depend on i. We also assume that the time of the first arrival, which we
denote by Ff, may have a distribution different from that of the generic interarrival time, and

that

Introduce X™(t) = Q™(nt)//n, t > 0, where Q"(¢) is the queue length at ¢, and assume
that X™(0) = 0.

Theorem 3.1 Let f(z), * € Ry, denote a bounded continuous function. If conditions (3.1)-
(3.3) hold, then for any T > 0

/OT FX(t))dt LA T/O1 flau)du as n — oo .

Proof. The proof consists of suitably applying the law of large numbers given by Lemma 2.4.
This would be almost straightforward if the cycles were identically distributed and we could
apply the identically-distributed version of Lemma 2.4. However, since the threshold queue
being considered does not follow exactly the same probabilistic law during each cycle (because
of exceptional interarrival times), we have to apply Lemma 2.4 in all its generality; and this
creates quite a few technical difficulties.

Define the times illustrated in Fig. 2,

% = 0,
(3.4) a! = inf(t>4",:Q"(nt)=1),1>1,
' Br = inf(t >, :Q™(nt) > h"), i>1,

o= inf(t > 8 Q" (nt) =0), 1>1.

Note that the 87 start and the 47 terminate busy periods.

We prove that
1 1

n P
(35) ’}/LﬁtJ—>a<X—|—M_—A)t as n — oo,

10



and

1

(3.6) /waﬁtj F(X"(s))ds LA (% + m) /Oa flu)du as n— oo,

which immediately give the assertion of the theorem.

o

W= L]

t—=

0 f 1
ay By aih
|=— ] | ol |
7 =0

Figure 2: Notation for Theorem 3.1 (sample paths shown are rough sketches).

For i > 2, denote by EZL the time between 4 ; and the first arrival after v ,, i.e., EZL =al—
v/ 4, and denote by {fg;j,k > 1} and {fgf,k > 1} the i.i.d. sequences, with generic random
variable ", from which normal interarrival times on [af, 5]'] and [B]', o ], respectively, are
taken. Similarly, let {nf;,k > 1}, i > 1, be service times on [BF',4F']. Note that, by the
conditions of the theorem, the distribution of {{"(r), fﬁ}j, nigs I =1,2,k > 1} does not depend
on:=1,2,....

Define for ¢ > 1

00 k
(3.7a) AT =1E& <)+ 01 (Z? +> e < t) ,
k=1 7=1

11



xi =1 xPr=1
Brn= 2.1 (Zﬁif ét) +1 (Z £Zf+£?gt)

k=1 j=1 7=1
(3.7b) N ~
S ED IR DI RN I
k=x7 Jj=1

(3.7¢) St(t) = i 1 (Zk: ni; < t)
k=1 \j=1

A? = (AI(t),t > 0) is the arrival process on [y, ], B = (BF(t),t > 0) is the arrival
process on [37,~]'], and S? = (SF(t),t > 0) is the service process on [, v/].

In a sense, the E?, 1 > 2, also represent exceptional interarrival times, since they are
distributed differently from £7. We prove that they satisfy conditions similar to those imposed

on Ef

Lemma 3.1 Forr > 0 let

ag n,2 .
Gi(r) L g 12
Then, as n — oo, B
i (r) 30, 1> 2,
N
and
N Y/
Tim Tm Y PE > T =0, 150,
1=2

Proof. The first limit follows by (3.1). For the second, note that if £ > ¢, (), then the
number of arrivals in [8],,7/] is at least |[ry/n|, which can only happen if the time needed
for B ,(t) to reach |[ry/n| is not greater than the time taken by S ,(¢) to become equal to

|7/n] + k™ + 1. Therefore, accounting for the possibility of an exceptional arrival in [8, /],

we have
[tv/n] I, [tv/n] [rv/n] -1 , [rv/n]+h"+1
YOPE >G) < D P Y &< D> by
=2 =2 k=1 k=1
LTﬁJ_l ny—1 ny—1
n2 _ (A7)
< tvn P(kZ:jl & < . rv/n

[rv/n] +h"+1 ny—1 ny—1
+ P( S o> YT rﬁ)]

k=1

12






below)

00 k
AL = WG <+ 1 (f?(T)Jr Yo < t) :
k=1 7=1
00 k
Af(t) = 1+ 1 (Zfﬁf < t) ,
(3.10) ’“:01 f‘?
Bi(t) = 1+> 1 (Zg;ff < t) ,
k=1 7=1

s
LN
e
o~
S—
[
[~]#
—_
Y
s~
<3
S
=
S—
+
[~]=
I
< 3
[N}
IA
o~
~—

= inf(t>0: A (nt) > h"),
u = inf(t>0:A%nt) > h"),
(3.11) B = inf(t > 0: 57 (nt) - Bl (nt) > "),
v = inf(t > 0:S%(nt) — B} (nt) > h"),
and : :
(3.12) 71— Z;(ﬂ;? +77), 7= Z;(@? +of), i>1, Fp=70=0.
= i=

Since & < (1 (r), € < ¢P(r), 1 < i < ty/n, on I"(r), we have by (3.7) and (3.10) that, on
(),

(3

AT < AP() < AM(1)
(3.13) B
Bi(t) < B <BI(1),

and hence by (3.8) and (3.11), for 1 <7 < ty/n,
(3.14)

and then by (3.9) and (3.12), for 1 < ¢ < t\/n,

(3.15) 1 =2y S ST =T on T7(r)

Now we prove (3.5) for Tl and lﬁﬁtj; this will imply (3.5) for V[ O0 I'"(r). Consider
the lower bound process. The proof for V’Eﬁﬂ is similar.

First note that, by (3.10) and (3.7¢),

k
APty = inf [k:> &n >t
7=1
k+1
BI(t) = inf [k:(M(r)+ Y &7 >t ,
7=1

14



k+1
St(t) = inf k:Zan>t

7=1
Since {£ k,k >1},1=1,2,areii.d., we have by (3.1) and (3.2) that
1 L\/Z_:ﬂ5 L 1 Z .
A - 7 7 \/_ 772

and hence, with the use of the first relation in (3.3), Lemma 2.1 and (3.11) yield

o~
—
jl
[l

w’
(
1 P
—A?(\/ﬁt) 3 A, —ﬁ?(\/ﬁt) — MM, —Sn(\/_t) —> ut
(3.16) Vi ) Vi NG
\/ﬁ@? - Xv\/ﬁﬁ?ﬁlu_Avlzlv

and then, by (3.12),

P 1 1 )

. [—— — — 4 >1.
(3.17) V(e =4 Q(A+M_A), i>1
Since

1 [v/nt]
lL\/ﬁtJ = \/ﬁ kZ: \/ﬁ(lk B lk_l) )
=1

and since (l? - 12> 1) are identically distributed by construction, we would have, in view

of Lemma 2.4,

3.18 (LAY T
(3.18) YWom — X
provided
(3.19) h—{go nh—{%o\/_P (\/ﬁ(l? —75) > k) =
By (3.12), this would follow from

hm lim /nP(vVnuj > k) = 0,
(3.20)

hm lim vnP(v/nol > k) = 0.

ke— 00 N—00

We prove only the second of these limits; the proof of the other is similar and somewhat easier.

By (3.11) we have

P(y/avy > k) = P(sup(S?(x/ﬁt)—ﬁ?(ﬁt))gh”)

t<k

P(SE(y/h) = BY(v/k) < h)
P (B > SO0+ k)
+ P (ST < 17 SO0 + @ )Vak)

IN

(3.21)

IN

15



Since by (3.10)

) |2 ik
P(BiaR > Sorswviak) < P S g vak)

and by (3.7¢)

L*nfg—“"\/ﬁth"H

P Z 77?,] > \/ﬁk )

J=1

IN

PSPk < 7+ SO0+ k)

we have by (3.21), in analogy with the proof of Lemma 3.1, that for some C' > 0, k > 4a/(p1—X)
and n large enough, \/nP(y/nv} > k) < C/k, thus proving (3.20), and hence (3.18). This ends
the proof of (3.5). Note that the proof for V’E\/HJ also invokes Lemma 3.1 to get analogues of
(3.16).

To prove (3.6) on I'"(r), we apply the part of Lemma 2.4 dealing with nonidentically

distributed summands, i.e., we prove that

Lv/ni]

JL%O—ZP({‘WA = (54 ) ) S

>€}QF”(7‘)) =0,e>0,

(3.22)
and
L\/_tJ
(3.23) klim lim ({ / ))ds| > k} N F”(r)) =0.
00 =00 ’V

Note that (3.23) is easy: by the right mequahty in (3.15) and the boundedness of f, we have,
letting || - || denote the sup norm,

L] e Lt

T P ({ﬁ [ e (syas| > k} n r”(r)) <Tm S PG - T > b)

i=1 i1 i=1

which tends to 0 as k — oo by an analogue of (3.19) for 7 and by the fact that the (77 —77_,),
1 > 2, are identically distributed.
By (3.9), (3.22) would follow if

Nl

thZP({‘\/_/ FX™ (s +v2y) ds——/ w)du

> 6} ﬂF”(r)) =0,
> 6} ﬂF”(r)) =0.

and

LVt
(3. 24)%1_{&% Z P({‘\/_/ F(X"(s+ 57)) ds— /\/ w)du

These limits have similar proofs; we prove only (3.24).

16



First, by the second set of inequalities in (3.14) and the fact that {z7,7 > 1} and {v/,i > 1}

each consist of identically distributed random variables, for 6 > 0, 1 < i < t/n,

p({vir - > b ar) < p (v - | )4 (Vi - )

W= A
and hence
1 L\/_tJ
lim — ({‘\/_v — ‘ > 5} N F”(r))
(3.25) X —A
gtlimPQ\/ﬁWf— /\‘>6)+th<‘\/5@7{— QA‘>6):0,
n—o00 — n—o00 Iu_

where the last equality follows since \/no} LA %5 (see (3.16)) and /no} 5 725 (the latter is
proved analogously to (3.16)). Next,
1 a
({‘f / (s + 87 )ds = — [ swydu

= > 6} ﬂF”(r))
<r ({/f V= ‘f (x (%w)) ~ fla— (= Au)|du > 5} mrnm)

w2 ({1 v - 5] > $hare)

By (3.25) the sum divided by /n of the second term on the right as ¢ varies from 1 to |t\/n]

tends to 0 in probability as n — oo, so the proof of (3.24) will be finished by proving

Tim % Lj:f:jj P ({/Oﬁv’ﬂAﬁ (X” (% + ﬂf)) ~ fla= (= Nu)|du > %} N F”(r)) =0.

(3.26)
> 77} N F”(r)) =0.

, u€f0,v7],

> 77} N F”(r))

We prove first that for n > 0

@%ngp({ sup ‘Xn<%_|_ﬂf)—(a—(,u—/\)u)

ug\/ﬁvln/\ﬁ
(3.27)

By construction,
h™+1 N B (nu) — SP(nu)

Xt 1) = N

and so, since h" = |/na"|,

P({ o \X“(%+ﬂ?)—(a—<u—x>u>

<P ({uiupTA B?(\/\/EEU) Au| > g} mrn(r)) 4P (u?inA % N g)
lv/na"] + n
' 1(‘ v ke 5) -

17



Since the distributions of (B?(t),t > 0), (B, (t),t > 0) and (S7(t), > 0) do not depend on 1,
we conclude from (3.2) and (3.13) that the left-hand side of (3.27) is not greater than

1 n
- >_
3)
n
>_
3)

t lim P | sup
n—00 USMiA
1

N

St (vnu)

NG

+ ¢ lim P sup
n—00 uSMiA

Bi(v/au) - M

n
> =
) 3)

which is zero by (3.16) (the same relation obviously holds for both By and B7); (3.27) is

+t lim P| sup
n

proved.

Now on the event

we have that X" (\/Lﬁ + ﬁf) < a+n,u € [0,y/nv A—25], and therefore for u € [0, /nv} A uiAL

n—A

£ (x (G5 + ) = a=te= 2

where ws(6,T) is the modulus of continuity of f on [0,7] for partitions of diameter §. This

<ws(n,a+n),

implies by the continuity of f that for all 5 small enough and for all ¢

{ugﬁ&% . \X” (%W) —(a = (u— M) Sn}

c{/f




only thing that matters is that interarrival times within each busy period and each accumula-
tion period be independent (except, perhaps, for exceptional interarrival times). The theorem
still holds under this milder condition. This observation will be exploited in the proof of
Theorem 2.1.

The limiting behavior of virtual waiting times W"(¢) in the threshold queue is given as
follows. (Note that W"(¢) is not the unfinished work at time ¢ unless the server is switched on

at that time.)

Theorem 3.2 Under the conditions of Theorem 3.1
T W”(nt)) P L /au
dt T/ (—) du .
/0 / ( vn U / A

Proof. For a proof similar to that of Theorem 3.1, one uses the relations

Wt +ny!) = (nul —t)+inf(u: ST (u) > AX()), 0<t<nul,

Wt +np?) = inf(u: S7(u)>h"+14+ B 1t)—t, 0<t<nv].

= v = %

By the above and Lemma 2.1

W(y/nt+ny) p a a W'y/nt+npl) p M+a , a
— = —: = — .
Vn A A Vn i ’ = A

Continuing as in the proof of Theorem 3.1, we get

/OTf (Wj/(gt)) dt & T/01 [(1 - Nuw)f (a (1_7“ + %)) + (M) f C%)] du .

Changes of variables on the right-hand side then yield the theorem. |

A
— 4+t 0<t<
W

4 Proof of Theorem 2.1

For convenience, we consider the first queue (I = 1) throughout. Also, we assume initially
that fis bounded and nonnegative. The general case will be handled by a localization argument
after the result is shown for bounded f. Our first observation is that it is sufficient to prove

that, for all 6, K, with 0 < 6 < K,
T d T 1

(4.1) / FOXT()-1(6 < X™(t) < K)dt — / (/ f(uX(t))du) 16 < X () < K)dt .
0 0 0

To see this, note that

T - d T -
(4.2) /0 [1(0 < X™(t) < 6) + 1(X™(t) > K)]dt = /0 [1(0 < X (1) < §) + 1(X(¢) > K)]dt
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since X" % X, and since the right-hand side of (4.2) is continuous in D[0, co) almost every-

where with respect to the measure induced by RBM. Since

T T
| I 16 < X700 < Kyai— [ ()

T
<141 [/ [1<osxn<t><6>+1<X”<t>>ﬁ'>]dt] ,

we thus obtain, for any constant n > 0,

(3) i TP ( [ o1 < x < e [ x> n) ~o,
and o

lim P ( /OT (/01 f(uX(t))du) dt /OT (/01 f(uX(t))du) (8 < X(1) < K)di| > n) 0.
(4.4)

By Theorem 4.2 in Billingsley (1968), the assertion of Theorem 2.1 follows from (4.1), (4.3),
and (4.4).

It remains to prove (4.1). We follow the approach outlined at the beginning of Section 3.
The heart of the argument below uses the threshold queue of Section 3 to construct bounds
for individual queue lengths.

Let €,0 < € < §/2, be such that N = (K — §)/e is an integer, and let r(¢) < €/2; we specify
r(€) later in Lemma 4.1. Let a;(¢) = 6 + 1,0 < i < N, and denote, for 0 <7 < N,

Br(e)(€7 Z) = (ai(€) - T(G)v ai(G) + T(€))7
C'T(E)(g7 i)=(0,a;(e) — e+ r(€)) U (ai(e) + € — r(€),00).
Introduce the times
(led) = 0,0<i<N,
(4.5) me(ei) = inf(t > (fq(6,4) : X™(t) € Byo(ed)), k> 1,0<i <N,
(rled) = inf(t > rf(e,4) 1 X™(1) € Cr(g(6,7)), k> 1,0<4 <N,
and for the limit process
CO(€7i) = 07 OSZSNv
(4.6) Tr(e,1) = inf(t > (16, 0) 1 X(1) € By(o)(6,7)), k> 1,0<7 <N,

Cr(e,i) = inf(t > mp(e,d) 1 X(1) € Cro(e,1)), k> 1,0 < i <N,
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Note that

(4.7) [ri(e. 1), CE(e. D)) N [rfi(e, i), Cli(e, i) =0, (ki) # (K.i")

and

c© N
L6 < X™(t) < K) =Y Y 1t € [7i(60), (f(e.i)))
(48) k=1 1:=0

<Ub—e<X")<HF UK < X"(t) < K +e),
and that these properties hold for the limit process X () as well, i.e., with 7]'(¢,7) and ((¢, 1)
replaced by 71(¢€,7) and (x(¢€,7) in (4.7) and (4.8).

Lemma 4.1 (i) With probability 1
Tr(€,1) < Cr(e, 1) on {(e,1) < 00},

and

lim P( mm Ck(€ i)<T)=0.

k—o00

(ii) The parameter r(¢) can be chosen so that
no(ong ne d . .
(X ) (Tk (67 Z) A Tv Ck (67 Z) A T)kZl,OSiSN) - (Xv (Tk(€7 Z) A Tv Ck(€7 Z) A T)kZl,OSiSN) ’

where convergence is in D[0, 00) X R*.
Proof. The first part follows by the continuity of X.

For the second, note that, in the notation of Lemma 2.5,

T]?(Gv 7/) = Tk(Xnv BT(E)(€7 Z))v C]?(Q 7/) = Ck(Xnv CT(E)(€7 Z))v
Tr(€6,1) = Th(X, Bro(6,4),  Crled) = G(X, Cro€,7)).
Therefore, by the continuous mapping theorem, since the X converge in distribution to X, the
desired result would follow if the maps @ — 7(x, By(¢)(€,1)) AT and z — (p(2z, Cro)(6, 1)) AT,

x € D[0,0), were continuous almost surely with respect to the distribution of X. Since X is

continuous, by Lemma 2.5 this is implied by

P(li%l Tk(X, BT(E)+77(€7 Z)) ANT = Tk(X, BT(E)(G, Z)) A T) =1
n

P(%{% Ck(Xv CT(E)+77(€7 Z)) AT = Ck(Xv CT(E)(€7 Z)) A T) =

And the existence of r(¢) satisfying the latter follows by the fact that if £(r),r > 0, is an
increasing process, then the number of different r’s such that P(A&(r) > 0) > 0, where A&(r)
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is the jump of £ at r, is at most countable; the argument is standard (see, e.g., Billingsley
(1968), §15, and Jacod and Shiryaev (1987), Section VI.3.12). [ |

In the sequel, we assume that 7(¢) is chosen as required by Lemma 4.1. Our next step is
to construct approximations of XJ" on each interval [7]'(¢,7), (J(€,4)), that are derived from
the threshold queue of Section 3; one will serve as a lower bound and one as an upper bound.

Fixing 7, k, and ¢, we define the first passage times (see Fig. 3)

Ry = inf(t> (e d): X{(1) = 0),
67 = inf(t> w1, Xp(H)=0), j > 1,
(4.9) KPo= inf(t> 07 XT(1) = 0), 5> 1,
Vi = 1nf(t>m 1 XT(t) > ai(e)—€), > 1,
¢ = inf(t> 07 VT XT(1) < ai(e) — e+ 1/v/m), 5 > 1.

Note that nx? is a service completion time for the first queue, nf7 is a service completion

[
Ko o 0 of K1 vy 03 ¢ K3

Figure 3: First passage times.

time for the second queue, and if k7 < (p(€,1) < oo, then nii is an arrival time for the
first queue, ng? is a service completion time for the first queue, and X{(¢7) = X{(¢7) =

[[vV/n(ai(e) —€)] + 1]/y/n. We also set

(4.10) v =min(j: k] > e, ) AT); v" =0if kg > (F(e,0) AT.
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Let the arrivals on [nkf,o0) be numbered successively starting from 1. Let €7 denote the
time period between nk{ and the first arrival. Denote by ff,l > 2, the times between the
(1—1)™ and I of these arrivals. Obviously, {ff,l > 2} is a set of i.i.d. random variables with
the distribution of the generic interarrival time for the first queue.

Let )Z?’l be the index of the arrival occurring at or just before ny)?,j > 1, and let )Z?’z be
the index of th