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1 Introduction

In the classical version of the bin packing problem one is given a list L = (ay,...,a,) of
items (or elements) and an infinite supply of bins with capacity C'. A function s(a;) gives
the size of item a;, and satisfies 0 < s(a;) < C, 1 < ¢ < n. The problem is to pack
the items into a minimum number of bins under the constraint that the sum of the sizes
of the items in each bin is no greater than . In simpler terms, a set of numbers is to
be partitioned into a minimum number of blocks subject to a sum constraint common to
each block. We use the bin packing terminology, as it eases considerably the problem of
describing and analyzing algorithms.

The mathematical foundations of bin packing began at Bell Laboratories with the
work of M. R. Garey and R. .. Graham in the early 70’s. They were soon joined by
J. D. Ullman, then at Princeton; these three published the first [49] of many papers to
appear in the conferences of the computer science theory community over the next 25
years. The second such paper appeared within months; in that paper, D. S. Johnson [68]
extended the results in [49] and studied general classes of approximation algorithms. In
collaboration with A. Demers, researchers Johnson, Garey, Graham, and Ullman published
the first definitive analysis of bin packing approximation algorithms [72]. In parallel with
the research producing this landmark paper, Johnson completed his 1973 Ph.D. thesis at



MIT which gave a more comprehensive treatment and more detailed versions of compact
proofs in [72].

The pioneering work in [72] opened an extremely rich research area; it soon turned out
that this simple model could be used for a variety of different practical problems, ranging
from a large number of cutting stock applications to packing trucks with a given weight
limit, assigning commercials to station breaks in television programming, or allocating
memory in computers. The problem is well-known to be NP-hard (see Garey and Johnson
[50]); hence, it is unlikely that efficient (i.e., polynomial time) optimization algorithms can
be found for its solution. Researchers have thus turned to the study of approximation algo-
rithms, which do not guarantee an optimal solution for every instance, but attempt to find
a near-optimal solution within polynomial time. Together with closely related partitioning
problems, bin packing has played an important role in applications of complexity theory
and in the theory of approximation algorithms (see, e.g., the recent book of Hochbaum
62))

Starting with the seminal papers mentioned above, most of the early research focused
on combinatorial analysis of algorithms leading to performance guarantees and bounds on
worst-case behavior. In particular, letting A(L) be the number of bins used by an algorithm
A and letting OPT(L) be the minimum number of bins needed to pack the elements of I,
one tries to find a least upper bound on A(L)/OPT(L) over all lists L (for a more formal
definition, see Section 2 below). Much of the research can be divided along the boundary
between on-line and off-line algorithms. In the case of on-line algorithms, items are packed
in the order they are encountered in the scan of the given list L; the bin in which an item is
packed is chosen without knowledge of items not yet encountered in L. These algorithms
are the only ones that can be used in certain situations, where the items to be packed
arrive in a sequence according to some physical process and have to be assigned to a bin
as soon as they arrive. Off-line algorithms have complete information about the entire list
throughout the packing process.

In the last two decades progressively more attention has been devoted to the proba-
bilistic analysis of packing algorithms; a recent book by Coffman and Lueker [26] covers
the methodology in some detail (see also the book by Hofri [64, Ch. 10]). Nevertheless,
combinatorial analysis remains a central research area and, from time to time, numerous
new results need to be collected into survey papers. The first comprehensive surveys of bin
packing algorithms were by Garey and Johnson [51] in 1981, and by Coffman, Garey, and
Johnson [22] in 1984. The next such survey was written some ten years later by Galambos
and Woeginger [46] who gave an overview restricted to on-line algorithms. Very recently
two new surveys appeared. Csirik and Woeginger [33] concentrate on on-line algorithms,
while Coffman, Garey and Johnson [23] extend the coverage to include off-line algorithms
as well; both worst-case and average-case analysis are surveyed in [33] and [23].

In this paper, we give a broad summary of results in the one-dimensional bin-packing
arena, concentrating on combinatorial analysis; but in contrast to other recent surveys,
we devote considerable space to variants of the classical problem. Important new variants
continue to arise in many different settings and help account for the thriving interest in



bin packing research. We have not attempted to give a self-contained work, e.g., we do
not present all algorithms in detail, nor do we give formal proofs; but we refer to certain
proof techniques which have been used frequently to establish the most important results.
Also, in our coverage of variants, we continue our restriction to partitioning problems in
one dimension. Packing in higher dimensions, e.g., strip packing and two-dimensional bin
packing, is itself a big subject, one deserving its own survey.

In Section 2, we cover the main definitions and notation. For the classical bin packing
problem, we discuss on-line algorithms in Section 3, and off-line algorithms in Section
4. Section 4.4 is a slight abuse of this organization; that section deals with anomalous
behavior as it applies to on-line as well as off-line algorithms. Section 5 concentrates on
special cases and variants of the classical problem.

2 Definitions

In the classical problem, the bin capacity C' is just a scale factor, so we can, without loss
of generality, assume the normalization ' = 1. Unless stated otherwise, this convention is
in force throughout. One of the exceptions will be in the section treating a variant of the
classical problem in which bins have varying sizes; in that section, bin sizes will be denoted
by s(B).

In the algorithmic context, we classify nonempty bins as either open or closed. Open
bins are available for packing additional items. Closed bins are unavailable, and must
remain so, i.e., they are never re-opened. It is convenient to regard a completely full bin
as open under any given algorithm until it is specifically closed, even though such bins can
receive no further items. We denote the bins by By, Bs,.... When no confusion arises, we
may also use B; to denote the set of items packed in the j-th bin, and |B;| to denote the
number of such items.

We always pack items organized into a list L (or a list I; in some indexed set of lists).
The notation for list concatenation is as usual; L = LyL,...... L means that the items of
list L; are followed by the items of list L;;4 for each e =1,2,...,k —1. When the number
of items in a list is needed as part of the notation, we use an index in parentheses; L,
denotes a list of n items.

If B; is nonempty, we define its current content or level as

a;€B;

A bin (necessarily empty) is opened in order to receive its first item. Of course, it may be
closed immediately thereafter, depending on the algorithm and the item size. We assume
without loss of generality that all algorithms open bins in order of increasing index. Within
any collection of nonempty bins, the earliest opened, the leftmost, and the lowest indexed
all refer to the same bin.

In general, we consider lists in which the item sizes are taken from the interval (0, «],
with o € (0,1]. Usually, we assume that o = %, for some integer r > 1, and many of our
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results apply only to r = @ = 1. We can consider two possible measures of the worst-case
behavior of an algorithm. Recall that A(L) denotes the number of bins used by algorithm
A to pack the elements of L; OPT denotes an optimal algorithm, one that uses a minimum

number of bins. Define the set V, of all lists L for which the maximum size of the items is
bounded from above by a. For every k£ > 1, let

Ra(k,a) = sup {M

LeVa



(The Salzer sequence was defined for r = 1.) It was conjectured by Golomb that for r =1
this sequence gives the closest approximation to 1 from below among the approximations
by sums of reciprocals of k integers, the basis of the conjecture being

1 1
Zt»(l) () =1

=1 "

1

Furthermore, it is easily proved that the following expression is valid for the Golomb
sequences:

(r—1) 1 1
+ + =1 for any r > 1
n) T i) v

On the other hand, the following value appears in several results:

hm(r):1+iw%l

The first few values of ho(r) are: hoo(1) & 1.69103, h(2) = 1.42312, hoo(3) &~ 1.30238 .

3 On-line Algorithms

Recall that a bin-packing algorithm is called on-line if it packs each element as soon as it is
inspected, without any knowledge of the elements not yet encountered (either the number
of them or their sizes). We start with results for some classical algorithms, and then
generalize to the Any-Fit and the Almost Any-Fil classes of on-line algorithms. We will
also consider the subclass of bounded-space on-line algorithms: An algorithm is bounded-
space if the number of open bins at any time in the packing process is bounded by a
constant. (The practical significance of this condition is clear; for example, we may have
to load trucks at a depot where only a limited number of trucks can be at the loading
dock). We will conclude this section with a detailed discussion of lower bounds on the
APR’s of certain classes of on-line algorithms, but before doing so, we present the most
recent variations of old algorithms and the current best-in-class algorithms. We remind
the reader that a discussion of the anomalous behavior occurring in on-line algorithms has
been deferred to Section 4.4.

3.1 Classical algorithms

We summarize the conventions to be used in this section as follows: In describing an on-line
algorithm A for packing list I = (aq,...,a,), we assume without loss of generality that

1. All bins are initially empty.
2. Bins are opened in the sequence By, By, .. ..

3. A begins by packing a; into By and thereafter packs items in the order ay,as, .. ..

6



Occasionally, it will be convenient, just before a decision point, to refer to the current item
as the next item to be packed; right after A packs a;, ¢ < n, a;11 becomes the new current
item.

A simple approach is to pack the bins one at a time according to

Neat-Fit (NF): After packing the first item, NF packs each successive item in the bin con-
taining the last item to be packed, if it fits in that bin; if it does not fit, NF closes that
bin and packs the current item in an empty bin.

The time complexity of NF is clearly O(n). Note that only one bin is ever open under
NF, so it is bounded-space. This advantage is compensated by a relatively poor APR,
however.

Theorem 3.1 (Johnson et al. [72]). We have

2 if l<a<i
(1—a)™" if 0<a<i

Rip(a) = {
Fisher [37] discovered an interesting property that NF does not share with other classical
approximation algorithms. He proved that NF packs any list and its reverse into the same
number of bins. The conspicuous disadvantage of NF is that it closes bins that could be
used for packing later items. An immediate improvement would seem to be never to close
bins. But then the next question is: If an item can be put into more than one open bin,
which bin should be selected? One possible rule drawn from scheduling theory (where it
is known as the greedy or largest-processing-time rule) is the following:

Worst-Fit (WF): If there is no open bin in which the current item fits, then WF packs the
item in an empty bin. Otherwise, WF packs the current item into an open bin of smallest
content in which it fits; if there is more than one such bin, WF chooses the lowest indexed
one.

Although we might expect WF to behave better than NF, it does not.
Theorem 3.2 (Johnson [70]). We have for all a € (0,1]
Ryyp(a) = Bp(a)

To achieve smaller APR’s, there are many better rules for choosing from among the open
bins. One that quickly comes to mind is:

First-Fit (FF): FF packs the current item in the lowest indexed nonempty bin in which it
fits, assuming there is such a bin. If no such bin exists, FF packs the current item in an
empty bin.



A natural complement to WF packs each item into a bin that minimizes the space left
over.

Best-Fit (BF): If there is no open bin in which the current item fits, then BF packs the
item in an empty bin. Otherwise, BF packs the current item into an open bin of largest
content in which it fits; if there is more than one such bin BF chooses the lowest indexed one.

By adopting appropriate data structures for representing packings, it is easy to verify
that the time complexity of these algorithms is O(nlogn). The analysis of the worst-case
behavior of the packings they produce is far more complicated. The basic idea of the
upper-bound proofs is the weighting function technique, which has played a fundamental
role in bin packing theory. So, before proceeding with other algorithms, we describe this
technique, which was introduced in [49, 72] and subsequently applied in many other papers
(see, e.g, [T, 8, 42, 70, 83]).

3.2 Weighting functions

To bound the asymptotic worst-case behavior of an algorithm A, we can try to find a
function Wy : (0,1] — IR with the properties: (i) There exists a constant K > 0 such
that for any list L
> Wala) > A(L) — K (1)
acl
and (ii) there exists a constant K* such that for any set B of items summing to no more
than 1
> Wala) < K* (2)
a€B
The value Wy (a) is the weight of item a and Wy is a weighting function for A. Note that
(1) requires that for large packings (large A(L)), the average total weight of the items in a
bin must satisfy a lower bound close to 1 for all lists L. On the other hand, (2) says that
the total weight in any bin of any packing is at most K™, so for an optimal packing

OPT(L)
Z%WA(a): ; Z];WA(a)gK*OPT(L) (3)

Together, (1) and (3) obviously imply the bound A(L) < K*OPT(L) 4+ K, and hence
RY < K*. We remark that the technique above is only representative; it is easy to find
weaker conditions on the weighting function which will produce the same upper bound for
the APR.

The proof of the NF upper bound is not appreciably simplified by a weighting function
argument, but it does offer a simple example of such arguments. Consider the case o = 1
and define Wyxp(a) = 2s(a) for all a. We need but one observation about NF when
NF(L) > 1: Since the first item of B;4; did not fit in B;, 1 < j < NF(L), the sum



of the item sizes in B; U B, exceeds 1 and hence the sum of the weights of the items in

B; U B4y exeeds 2. Then

NF(L) [NF(L)/2]
Z Z WNF(CL) > Z Z WNF(G)
=1 a€B; 1=1 a€B2;_1UBy;

> 2|NF(L)/2] > NF(L) -1

so (1) holds with K = 1. The inequality (2) with K* = 2 is immediate from the definition
of W, so Ry < 2, as desired.

There is no systematic way to find appropriate weighting functions, and the approach
can be difficult to work out. For example, consider the proof of the following result.

Theorem 3.3 (Johnson et al. [72]). We have

17 if%<oz§1

00 o] 10
RFF(Q):RBF(Q):{ 1+ Llj—l if 0<a<?
o — 2

The proof of the % upper bound consists of verifying that the following weighting function
suffices

6 . 1
=T 1f0§:1;§g
9 1 e 1 1
S+ 45 if F<a<i
5 10 3 =3
6 2 i 1
=T+ £ 1f§<:1;§1

and it requires a substantial effort. (The argument reduces to several pages of case analy-
sis.) Moreover, despite a few hints that emerge in this effort, a clear understanding of how
this function was obtained in the first place requires still more effort.

Theorem 3.3 for a < 1 can be proved without weighting functions (see [72]), but the
reader may find it instructive to prove the 1 + &J ~1 upper bound with the weighting
function

WFF(CL) =

sla), a=—, r>2

Sequences of specific examples establish lower bounds for RY («). In particular, one

seeks a sequence of lists Ly, y, Ln,), . . . satisfying Li,,y € Vo (k= 1,2,...), limp_oc OPT(L(,,))

oo, and for some constant K,

A(L
lim ( (nk))

— =K,
k—o00 OPT(L(nk))

Then RY (o) > K., and if K, is equal to K* of the upper bound analysis, we have the
APR for the algorithm considered. Finding worst-case examples can be anywhere from
quite easy to quite hard. For example, the reader would have little trouble with NF, but
would probably find FF to be quite challenging.
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3.3 Any-Fit and Almost Any-Fit algorithms

The algorithms described so far belong to a much larger class of on-line heuristics satis-
fying similar worst-case properties. It is clear that FF, WF, and BF satisfy the following
condition:

Any-Fit constraint: If By,..., B; are the current non-empty bins, then the current item
will not be packed into Bjiy unless it does not fit in any of the bins By, ..., B;.

We denote the class of on-line heuristics satisfying the Any-Fit constraint by AF. The
following result shows that FF and WF are best and worst algorithms in AF, in the APR

sense.
Theorem 3.4 (Johnson [70]). For every algorithm A € AF and for every o € (0, 1]
Rgp(a) < B3 (a) < Ryp(a)

By a slight tightening of the Any-Fit constraint, we can eliminate the high-APR algorithms
like WF and define a class of heuristics all having the same APR.

Almost Any-Fit constraint: [f By,..., B; are the current non-empty bins, and By, (k <
J) is the unique bin with the smallest content, then the current item will not be packed into
By, unless it does not fit in any of the bins to the left of Bj.

Clearly, WF does not satisfy this condition, but it is easy to verify that both FF and
BF do. We denote the class of on-line algorithms satisfying both constraints above by
AAF.

Theorem 3.5 (Johnson [70]). RY(a) = Rpp(a) for every A in AAF and o € (0,1].

Almost Worst-Fit (AWF) is a modification of WF whereby the current item is always
placed in a bin having the second lowest content, if such a bin exists and the current item
fits in it; the current item is packed in a bin with smallest content only if it fits nowhere
else. Interestingly, though it seems to differ little from WF, AWF has a substantially better
APR, since it is in AAF and hence Ryp(a) = Rig(a).

3.4 Bounded-space algorithms

An on-line bin packing algorithm uses k-bounded space if, for each item, the choice of
where to pack it is restricted to a set of at most k£ open bins. We obtain bounded-space
counterparts of the algorithms of the previous section by specifying a suitable policy for
closing bins.

As previously observed, NF uses only 1-bounded space; the only algorithm to use less is
the trivial algorithm that puts each item in a separate bin. To improve on the APR of NF,
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yet stay with bounded-space algorithms, Johnson [69] proposed an algorithm that packs
items according to the First-Fit rule, but considers as candidates only the & most recently
opened bins; when a new bin has to be opened and there are already k open bins, then
the lowest-indexed open bin is closed. We expect that the APR of the resulting algorithm,
which is known as Next-k-Fit (NF}), tends to % as k increases. Finding the exact bound
was not an easy task, although Johnson did give a narrow range for the APR. Later, Csirik
and Imreh [30] constructed the worst-case sequences, and later still, Mao was able to prove
the exact bound.

Theorem 3.6 (Mao [87]). For any k >2, Ry, = 1g+ ﬁ.

In general, we define a bounded-space algorithm by specifying the packing and closing
rules. An interesting class of such rules is based on FF and BF as follows.

- Packing rules: the elements are packed following either the First-Fit rule or the
Best-Fit rule.

- Closing rules: the next bin to close is either the the lowest indexed one, or the one
of largest content.

The algorithm that uses packing rule X, closing rule Y, and k-bounded space is denoted
by AXY}, where X = F or B for FF or BF and Y = F or B for the lowest-indexed (First)
open bin or the largest-content (Best) open bin. With this terminology NF} can also be
classified as AFFj. Note that, independently of the chosen rules, if & =1 then we always
get NF.

Algorithm ABF} was first analyzed by Mao, who called it Best-k-F'it. He proved that,
for any fixed k& > 2, this algorithm is slightly better than NF.

Theorem 3.7 (Mao [86]). For any k > 2, Rigp, = 1 + 1o

The tight asymptotic bound for AFB; was found by Zhang.
Theorem 3.8 (Zhang [105]). For any k > 2, Ripg, = Ry, -

Finally, consider the algorithm ABBj whose asymptotic behavior is, rather surprisingly,
independent of £ > 2, and equal to that of FF and BF.

Theorem 3.9 (Csirik and Johnson [31]). If k > 2 then Rypp, = 1t

10°

Since all of the above algorithms fulfill the Any-Fit constraint with respect to the open
bins, the overall bound R} > % is to be expected from Theorem 3.4. A better on-line
algorithm can only be obtained without the Any-Fit constraint. In the remaining part of
this section, we show how the fruitful idea of reservation techniques (introduced by Yao
[102] for unbounded-space algorithms and discussed in the next section) led to on-line
algorithms which are neither in class AF nor in AAF.

Yao’s idea appeared in the work of Lee and Lee [83] who developed the Harmonic-Fit
algorithm, which will be denoted by HF}, since, for the case a = 1, it uses at most k open
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bins. The algorithm divides the interval (0, 1] into subintervals [; = (]ﬁ, %] (1<5<k-1)

and I = (0,1]. An element is called an I;-element if its size belongs to interval I;.
Similarly, there are k different types of bin: an I;-bin is reserved for I;-elements only. An
I;-element is always packed into an [;-bin following the Next-Fit rule, and so at most k

bins are open at the same time. Galambos [42] extended the idea to general a. Observe
that, if we choose o € (ﬁ, H, then the number, say M, of bin types exceeds the space
bound k by r —1; this is because I;-bins for j < r are never opened. Instead of our notation
HF} with & the space bound, the literature often uses HFy; with M = k£ +r — 1 being the
number of bin types.

The general APR can be formulated as follows. (See the end of Section 2 for the

definitions of the quantities #,(r) and hs(r).)

Theorem 3.10 (Lee and Lee [83], Galambos [42]). Suppose that L € V, with a € (Hl_l, 1]

for some positive integer r, and choose any sequence kg, s > 1, such that ty(r) < ks +1 <

tsy1(r). Then

) ~ L i 1 ke +r—1 B
Jim By, (o) = lim (1 LT =T T i = 1)) = hoolr)

The results in [83, 42] gave tight bounds only for the cases k = t;(r) —r 4+ 1 and k =
tiy1(r) — r for integers j > 1. Also, considering only the o = 1 case, one can see that, to
obtain an APR better than %, at least 7 open bins are needed. These observations raised
two further questions:

- For the case a = 1, is there an on-line, bounded-space algorithm that uses fewer than
7 bins and has an APR better than % ?

- What are tight bounds on HF} for specific k7

An affirmative answer to the first question was given by Woeginger [100]. Using a more
sophisticated interval structure, one based on the Golomb sequences, the performance of his
Simplified Harmonic (SHy) algorithm undershot the % bound with 6 open bins; precisely,

o0

S, ~ 1.69444. Moreover, Woeginger proved the following deeper, more general result.

Theorem 3.11 (Woeginger [100]). To achieve the worst-case performance ratio of heuris-
tic HFy with k open bins and o = 1, heuristic SHy only needs O(loglog k) open bins.

The second question was investigated by Csirik and Johnson [31] and van Vliet [97, 98].
They gave tight bounds for the case a = 1 with £ = 4 and 5. Tight bounds for further &
remain open problems.

Similarly, the general case has not been discussed exhaustively, and some questions
raised by Woeginger [100] are still open:

- What is the smallest £ such that there exists an on-line heuristic using k-bounded
17 9

space and having an APR strictly less than 5
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2 || 2.00000 | 1.85000 | 1.70000 | 2.00000* | 2.00000 || 1.70000
3 || 1.85000 | 1.80000 | 1.70000 | 1.75000* | 1.75000 || 1.75000
4 11 1.80000 | 1.77500 | 1.70000 | 1.71429* | 1.72222 | 1.70000
5 || 1.77500 | 1.76000 | 1.70000 | 1.70000* | 1.70000 || 1.70000
6 || 1.76000 | 1.75000 | 1.70000 | 1.70000* | 1.69444 | 1.69444
7 || 1.75000 | 1.74286 | 1.70000 | 1.69444* | 1.69388 || 1.69388
8 || 1.74286 | 1.73750 | 1.70000 | 1.69388 | 1.69106 || 1.69106
9 || 1.73750 | 1.73333 | 1.70000 | 1.69345 | 1.69104 | 1.69104
10 || 1.73333 | 1.73000 | 1.70000 | 1.69312 | 1.69104 || 1.69104
42| 1.70732 | 1.70714 | 1.70000 | 1.69106* | 1.69103 || 1.69103
~+oo || 1.70000 | 1.70000 | 1.70000 | 1.69103 | 1.69103 || 1.69103

Table 1: APR values for bounded-space algorithms, rounded to five decimals. The values
in column HF; < are upper bounds, and are tight if starred. Note that 42 = #,4(1) — 1.

- What is the best possible APR for any on-line heuristic using 2-bounded space?
(ABB; achieves a worst-case ratio of %)

- If we consider only algorithms that pack the items by the Next-Fit rule according
to some fixed partition of (0,1] into & subintervals, which partition gives the best
APR 7 (It is known that for k£ < 2 the best possible APR is 2 (see Csirik and Imreh
[30]), but for & > 3 no tight bound is known.)

Tables 1 and 2 show the best results known for bounded-space algorithms. Note that
the worst-case ratios of all algorithms in Table 1 are never smaller than h..(1) ~ 1.69103.
As pointed out by Lee and Lee [83] for the @ = 1 case, bounded-space algorithms cannot
do better. The result holds for general o too, as shown by Galambos, i.e.,

Theorem 3.12 (Lee and Lee [83], Galambos [42]). Fvery bounded-space on-line bin pack-

ing algorithm A satisfies RY () > heo(r) for all o, ﬁ <a<li

—

We note finally that none of the known bounded-space algorithms achieves the lower bound
using a finite number of open bins. We will later show (see Section 5.1) that the bound can
be achieved with three open bins if repacking among the open bins is allowed, but without
such a relaxation the question remains open.

3.5 Variations and the best-in-class

Chronologically, Yao [102] was the first to break through the h..(1) barrier with his Refined
First-Fit (RFF) algorithm. RFF classifies items into types 1, 2, 3, or 4 according as their
sizes are in the respective intervals (0,1], (3, 2], (2,1] and (1,1]. RFF packs 4 sequences
of bins, one for each type. With one exception, RFF packs type-z items into the sequence

of type-7 bins using First Fit. The exception is that every sixth type-2 item (with a size
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Ellr=1 r =72 r—3 r—4 r—=>5 r—=6
2 { 2.00000* | 1.50000* | 1.33333* | 1.25000* | 1.20000* | 1.18888*
3 || 1.75000* | 1.44444* | 1.31250* | 1.24000* | 1.19444* | 1.16326*
4 || 1.71429* | 1.43750 | 1.31000 | 1.23888 | 1.19387 | 1.16294
5 1.70000* | 1.43333 | 1.30833 | 1.23809 | 1.19345 | 1.16269
6 || 1.70000* | 1.43055 | 1.30714 | 1.23750 | 1.19312 | 1.16250
71 1.69444* | 1.42857 | 1.30625 | 1.23703 | 1.19285 | 1.16233
8 | 1.69388 | 1.42708 | 1.30555 | 1.23666 | 1.19264 | 1.16220
9 || 1.69345 | 1.42592 | 1.30500 | 1.23636 | 1.19246 | 1.16208
10 || 1.69312 | 1.42499 | 1.30454 | 1.23611 | 1.19230 | 1.16198
+oo || 1.69103 | 1.42307 | 1.30238 | 1.23441 | 1.19102 | 1.16102

Table 2: APR values for HF,(1). Starred values are tight.

in (%,2]) is thrown in with the type-4 items, i.e., packed by First Fit into the sequence of

type-4 bins. It is easily verified that RFF uses unbounded space and has a time complexity
O(nlogn). Yao proved that Ripp = % = 1.666.... We remark that Yao did not use the
usual weighting function technique, but based his proof on enumeration of the elements in
each class. Also, the APR remains unchanged if the special treatment given every sixth
type-2 item is instead given every mth type-2 item, where m is taken to be one of 7, 8, or
9.

It was immediately clear that this reservation technique was a promising approach, a
fact supported by the Harmonic-Fit algorithm discussed in the previous section. The main
disadvantage of the latter algorithm is that each [i-element, even with a size slightly over
%, is packed alone into a bin. An immediate improvement is to try to add other items to

these bins. In their algorithm Refined Harmonic-Fit (RHF), Lee and Lee [82, 83] modified

HFyg by subdividing intervals I; and I into two subintervals:

]1 -
]2 -

L s U,

Iy s Uy

with 5, = (%, %], Iy, = (%, %], L= (%, %] and I, = (%, 1]. This brought the number
of bin types to M = 22. The packing strategy for [;-elements (3 < 7 < M —2 = 20),
I p-elements and I, j-elements is the same as in Harmonic Fit, but the I; ;-elements and the
15 s-elements are allowed to share the same bins in certain situations. We omit the details
and simply point out that the time complexity of RHF is O(n), but that the algorithm is
no longer bounded-space. Tts APR is given by

Theorem 3.13 (Lee and Lee [83]). B < 22 a0 1.63596.

— 228

It is not known whether this bound is tight.
In 1989 several improved algorithms were presented by Ramanan et al. [91]. The first
one, called Modified Harmonic-Fit (MHF), applies Yao’s idea in a more sophisticated way.
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Instead of choosing % as the point dividing (%, 1], the problem is handled in a more general
fashion. Let the number of bin types satisfy M > 5, and consider the subdivision of (0, 1]:

M—2
0,11=U I
7=1

with Iy = I ;U I, and I, = I, , U I as earlier, but now

L, = (%71 - y] L = (%

Ly = (1—y1] Ly = (y,
for some y satisfying % <y < % Initially, the set of empty bins is divided into M
infinite classes, each associated with a subinterval. All [y -bins, I ,-bins, I3 ;-bins and
I;-bins (3 < j < M — 2) are only used to pack elements from the associated interval (as
in Harmonic Fit). [ -bins on the other hand can contain [ s-elements and some of the
I, s-elements and [;-elements (j € {3,6,7,..., M —2}). The algorithm also includes more
complicated rules for packing and for deciding when items with sizes in different intervals
can share the same bin. For this algorithm with M = 40, we have the following bounds.

Theorem 3.14 (Ramanan et al. [91]).

3 1 1 1 3 1 1
16156146 < = 4+ — 4+ — — —— < R S 4 —=1.615615....
6156 6<2+9+222 987012—RMHF<2+9+222 615615

The above algorithm was further generalized by Ramanan et al.[91] who introduced a
sequence of classes of on-line linear-time algorithms, called C'"); an algorithm A belongs
to C", for a given h > 1, if it divides (0,1] into disjoint subintervals including

]175 = (1 _ylvl]v ]2,17 = (yhvé]v

Ly = 1=y, 1 =yl Ly = Wn—jsyn—jyr], 1=<5 <0,
and

]/\,1 = (07 )‘]7 ]/\,2 - ()‘7 %]7 0<A S %

Where%:y0<y1<---<yh<yh+1:%7

as usual, according to the intervals in which their sizes fall.

Note that algorithm MHF belongs to C''). Ramanan et al. [91] developed an algorithm
(Modified Harmonic-2, MH2), which is in C®, and proved that R{%, < 1.612.... The
algorithm is quite elaborate and beyond the scope of this survey. The authors discussed
further improvements aimed at reducing the APR to 1.59. They also proved the lower

and o =0 if A = % Elements are classified,

bound result

Theorem 3.15 (Ramanan et al. [91]). There is no on-line algorithm A in C") such that
RY <54 {; =1.58333....

The HARMONIC+1 algorithm of Richey [92] subdivides intervals (1,1] and (3, 1] very
finely (using 76 classes of subintervals!) in order to allow a precise item pairing in these
two intervals. Tt also allows items of size (§,%] to be mixed with larger items of various

sizes and not just with those of size at least % This algorithm has the current best APR.
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Theorem 3.16 (Richey [92]). 1.5874 < RF\pvontcyr < 1.587936.

Richey also introduced a class of algorithms which differs from C'*) in the way items with
sizes at most % are packed. Richey’s main result is that the above lower bound remains
valid for any algorithm A in this new class.

3.6 APR lower bounds

In previous sections we mentioned some results concerning lower bounds on the APR, but
we have yet to consider the fundamental problem: What is the best an on-line algorithm
can do in the asymptotic worst case? In this section, we discuss lower bound results in
chronological order.

Most of the existing lower bounds come from the same idea. To obtain a good packing,
it seems advisable to first pack the large elements so that either a bin is ‘full enough’ or its
empty space can be reduced by subsequent small elements. Therefore, if we want to force
bad behavior on a heuristic algorithm A, we should challenge it with a list in which small
items come first. If A adopts a policy that packs these small items tightly, then it will
not be able to find a good packing for the large items which may come later. If instead,
A leaves space for large items while packing the small ones, then the expected large items
might not appear in the list. In both cases the resulting packing will be poor.

To give a more precise description, let us consider a simple example involving two lists
Ly and Ly, each containing n identical items. The size of each element in Ly is % — &,
and the size of each element in [y is % + e. We investigate the asymptotic behavior of
an arbitrary approximation algorithm A on two lists: Ly alone and the concatenated list

LiLy. Tt is easy to see that OPT(Ly) = Z, and OPT(L1Ly) = n. Let us examine the

b
behavior of our algorithm on Lq: it will padz some elements alone into bins (say « of them)
and it will match up the remaining n — 2. Hence A(L;) = £
Ly Ly, when processing the elements of Ly, the best that A can do is to add one element
of Ly to each of = bins containing a single element of L, and to pack alone the remaining

n — x elements. Therefore, A(L1L,) = ?’”T_“’ Since n may be arbitrarily large,

A(Ly) A(L1Ls) n+x 3n—=x
OO > —
iy 2 maX{OPT(Ll)’ OPT(L,Ls) maX{ : }

. For the concatenated list

n 2n

for which the minimum is attained when x = £, implying a lower bound of % for the APR

of any on-line algorithm A. ’

The above idea can be easily generalized by taking a carefully chosen series of lists
Ly, ..., Ly, and evaluating the performance of a heuristic on the concatenated lists Ly ... L;,
(1 < j < k). The first step along these lines was made by Yao [102]. He proved a lower
bound of % based on three lists of equal-size elements, the sizes being % + ¢, % + ¢ and
+ — 2e. Using Salzer’s sequences, Brown [13] and Liang [85] independently gave a further
improvement to 1.53634577.... (The largest sizes in their sequences were: % + e, % + e,

14+e 55+, and = 4 ¢.) Galambos [42] used the Golomb sequences to extend the
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r || Lower bound | R Rew RR% Best known
1| 1.54015 1.69103 | 1.70000 | 2.00000 | 1.58872
2 || 1.38965 1.42307 | 1.50000 | 2.00000 | 1.42307
3| 1.29144 1.30238 | 1.33333 | 1.50000 | 1.30238
4 1| 1.22986 1.23441 | 1.25000 | 1.33333 | 1.23441
5 || 1.18888 1.19102 | 1.20000 | 1.25000 | 1.19102
6 || 1.15891 1.16102 | 1.16667 | 1.20000 | 1.16102

Table 3: Lower bounds and RY for various algorithms.

idea to general a. The proof in [42] was considerably simplified by Galambos and Frenk
[43]. Van Vliet gave an exhaustive analysis of the lower bound constructions with a linear
programming technique applied to all a: his lower bound is the best so far.

Theorem 3.17 (van Vliet [96]). For any on-line algorithm A, RY > 1.540.

Table 3 gives a comparison for several values of o = % between the best lower bounds and
the corresponding upper bounds for various algorithms. It is interesting to note that the
gap between the lower and upper bounds becomes rather small for r > 2.

Chandra [17] has examined the effect on lower bounds when randomization is allowed
in the construction of on-line algorithms, i.e., when coin flips are allowed in determin-
ing where to pack items. The performance ratio for randomized algorithm A is now
E[A(L)]JOPT(L), where E[A(L)] is the expected number of bins needed by A to pack
the items in L. Chandra has shown that there are lists such that this ratio exceeds 1.536
for all randomized on-line algorithms, and so from this limited standpoint, results suggest
that randomization is not a valuable tool in the design of on-line algorithms.

4 Off-Line Algorithms

An off-line algorithm has all items available for preprocessing, reordering, grouping, etc.
before packing. We have seen that most of the classical on-line algorithms achieve their
worst-case ratio when the items are packed in increasing order of size (see, e.g., FF and BF),
or if small and large items are merged (see, e.g., NF). Thus, one is led to expect improved
behavior by a sorting of the items in decreasing order of size. Note that O(nlogn) sorting
steps puts us outside the class of linear-time algorithms.

We start with results for approaches that sort the items before executing one of the
on-line algorithms. We then consider linear-time heuristics. We conclude this section with
approximation schemes and a discussion of the anomalous behavior that is exhibited by
many bin packing algorithms, including both on-line and off-line algorithms.
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4.1 Algorithms with presorting

When the sorted list is packed according to the Next-Fit rule, we obtain the Next-Fit
Decreasing (NFD) algorithm. This heuristic was investigated by Baker and Coffman, who

proved by a weighting function argument that its APR is slightly better than that of FF
and BF:

Theorem 4.1 (Baker and Coffman [8]). If a € (==, 1] (r > 1) then Rep(a) = hoo(r).

7’-|—17;

Packing the sorted list according to First-Fit or Best-Fit gives the algorithms First-Fit
Decreasing (FFD) and Best-Fit Decreasing (BFD), with much better asymptotic worst-
case performance.

Theorem 4.2 (Johnson et al. [72]). RfSp = Rfp = &

o

The original proof was based on the weighting function technique but subsequent proofs
introduced dramatic changes; the giant case-analysis of Johnson [69] was considerably
shortened by Baker [6], and recently Yue [104] presented the shortest proof known so far.
In parallel, the additive constant was also improved; Johnson had proved that FFD(L) <
%OPT(L) + 4, but Baker reduced the constant to 3, and Yue reduced it to 1.

The behavior of BFD for general « is not known, but that of FFD has been intensively
investigated. Johnson et al. [72] analyzed several cases, showing that

oe 1
5 if 5 <a< 1
R (a) = g—é if % <a< %
FED ) = T oif 1 ocq< &
6 M3 a> 3
23 e 1 1
20 if 5 <a< 1
and conjecturing that, for any integer m > 4,
1y _ o 1 2
R%OFD(E) - Fm =1 + m+2 m(m+1)(m+2)

Twenty years later, Csirik [28] proved that the above conjecture is valid only for m even,
and that, for m odd,

R%OFD(%) =Gmi=14 m}I—Z - m(m-l—ll)(m-I—Q)

In the same year, the complete analysis of FFD for arbitrary values of o < i was published
by Xu [101]. He showed that if m is even, then [, is the correct APR for any « in (mL_H, <],
while for m odd the interval has to be divided into two parts, with

F,, if mL_l_l<oz§dm
G, if dm<a§%

R%OFD(O‘) = {
where d,,, :== (m + 1)2/(m3 +3m2+m+ 1).
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Recall that, after a presorting stage, all of the above algorithms belong to the Any-Fit
class (see Section 3.3). Johnson showed that, after a presort in increasing order, Any-Fit
algorithms do not perform well in the worst case; e.g., their APRs must be at least ho (1)
when a = 1. But presorting in decreasing order is much more useful.

Theorem 4.3 (Johnson [69, 70]). Any algorithm A € AF operating on a list presorted in
decreasing-size order must have

—

1

IN

k(1)

1 2 1
m+2 m(m+1)(m+2) S R?(O{) S m+2°

IN

3
4

o

where m = Lij and o <1

For a long time, the FFD bound was the smallest proved APR. Johnson [69] made
an interesting attempt to obtain a better APR. His Most-k-Fit (MFy) algorithm takes
elements from both ends of the sorted list, packing bins one at a time. At any step, after
trying to place the largest unpacked element into the current bin, the algorithm attempts
to fill up the remaining space in the bin using the smallest & (or fewer) as yet unpacked
items. As soon as the available space becomes smaller than the smallest unpacked element,
the algorithm starts packing a new bin. The algorithm has time complexity O(n* logn),
so it is practical only for small k. Johnson conjectured that limy_.. Ryjp, = 19—0, but almost
twenty years later the conjecture was contradicted by Friesen and Langston [40], who gave
examples for which Ryjp > 2 k>2.

Yao [102] devised the first improvement to FFD. He presented a complicated O(n'® log n)
algorithm, called Refined First-Fit Decreasing (RFFD), with worst-case ratio Rippp <
% — 1077, Following this result, further efforts were made to develop better off-line al-
gorithms. Garey and Johnson [52] proposed the Modified First-Fit Decreasing (MFFD)
algorithm. The main idea is to supplement FFD with an attempt to improve that part of
the packing containing bins with items of sizes larger than %, by trying to pack in these bins
pairs of items (to be called S items) with sizes in (g, £]. The non-FFD decisions of MFFD
occur only during the packing of S items. At the time these items come up for packing,
the bins currently containing a single item larger than % are packed first, where possible, in
decreasing-gap order as follows. In packing the next such bin, MFFD first checks whether
there are two still-unpacked S items that can fit into the bin; if not, MFFD finishes out
the remaining packing just like FFD. Otherwise, the smallest available S item is packed
first in the bin; the largest remaining available S item that fits with it is packed second.
The running time of MFFD is not appreciably larger than that for FFD, but Garey and
Johnson proved that

71— 1.18333....

Theorem 4.4 (Garey and Johnson [52]). Rijprp = &5

Another modification of FFD was presented by Friesen and Langston [40]. Their Best
Two-Fit (B2F) algorithm starts by filling one bin at a time, greedily; when no further
element fits into the current bin, and the bin contains more than one element, an attempt
is made to replace the smallest one by two unpacked elements with sizes at least é. When
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all the unpacked elements have sizes smaller than =, the standard FFD algorithm is applied.
Friesen and Langston proved that Rg,p = Wthh is worse than . However, they further
showed that a combined algorithm (CFB) Wthh runs both B2F and FFD and takes the
better packing, has an improved APR.

Theorem 4.5 (Friesen and Langston [40]). 1.16410... = 22I < R&p < $=1.2.

4.2 Linear time, randomization, and comparisons

The off-line algorithms analyzed so far have time complexity at least O(nlogn). It is also
interesting to see what can be obtained in linear time — in particular, without sorting. The
first such heuristic was constructed by Johnson [70]. His Group-X Fit Grouped (GXFG)
algorithm depends on the choice of a set of breakpoints X, defined by a sequence of real
numbers 0 = 2o < 2y < ... < 2, = 1. For a given X, the algorithm partitions the items,
according to their size, into at most p classes, and renumbers them in such a way that
items of the same class are consecutive and classes are ordered by decreasing maximum
size. The bins are also collected into p groups according to their actual gap, defined as
the maximum z; such that the current empty space in the bin is at least z;. The items
are packed using the Best-Fit rule with respect to the actual gaps. The algorithm can be
implemented so as to require linear time, and has the following APR.

Theorem 4.6 (Johnson [70]). For all m > 1, if X contains —— and L, then

—|—2’ m-+1
RExpa(a) = Z—ﬁ for all o <1 such that m = EJ

For o = 1 the above theorem gives R&xpa = 2, a bound subsequently improved by Martel.
His algorithm, Hy, uses a set X = {i, %, %, 3} but it does not reorder the items. It instead
inserts them into heaps, and uses a linear search for the median-size item. The packing
strategy makes use of an elaborate pairing technique.

Theorem 4.7 (Martel [88]). Rff = 2.

3

Very recently, Bekesi and Galambos [11] applied the Martel idea to a set X = %, i, %, %, %,
3, 5} and improved the bound to 5. Making experimental comparisons, they further
showed that this linear-time algorlthm is faster than the less complicated FFD rule even
for small problem instances. They also mentioned that, by using more breakpoints, one
can further improve the above result, but the resulting algorithms would be linear-time
with a constant term so large that they would not be useful in practice.

To this point, if we consider the established tight bounds, the best is MFFD. However,
very recently Kenyon [76] presented an algorithm that could be the new best-in-class,
assuming randomization is allowed; her Best-Fit Randomized (BFR) algorithm produces a
series of packings by applying the Best-Fit strategy to random permutations of the items.

If we measure the efficiency by the expected number of bins, F(A(L)), then we have

227 E(A(L)) _
105 = < lim sup {maxm :OPT(L) = k} <

DO | W

k—o0
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Algorithm || Time RY(1) | RY(2) RY(3) RY(4)
NFD O(n) 1.691... | 1.424... 1.302... 1.234
FFD O(nlogn) | 1.222... | 1.183... 1.183... 1.15
BFD O(nlogn) | 1.222... | 1.183... 1.183... 1.15
GXFD | O(n) 1.5 1.333... | 1.25 1.2
MFFD O(nlogn) | 1.183... | 1.183... 1.183... 1.15
Hy O(n) 1.333... | NA NA NA
H- O(n) 1.25 NA NA NA
B2F O(nlogn) | 1.25 NA NA NA
CFB O(nlogn) | 1.2 < 1.83... | <1.183... | < 1.15

Table 4: Worst-case ratios of off-line algorithms. NA means “not analized”.

Although this is worse than Ryjppp, no example has been found so far such that the
expected ratio is greater than 1.144.

Table 4 summarizes the best worst-case ratios of off-line algorithms (H; denotes the
algorithm of Bekesi and Galambos [11]).

As a final note on fast off-line algorithms, we direct the reader to the work of Anderson,
Mayr, and Warmuth [3] for the implementation of approximation algorithms on parallel
architectures. They show that, with n/logn processors in the EREW PRAM model, a

packing can be obtained in parallel in O(logn) time which has the same asymptotic 1

9
bound as FFD.

4.3 Asymptotic approximation schemes

In 1980, Yao [102] raised an interesting question: Does there exist an ¢ > 0 such that every
O(n)-time algorithm A must satisfy the lower bound RY > 1+ &7 Fernandez de la Vega
and Lueker [36] answered the question in the negative by constructing an asymptotic linear
approximation scheme for bin packing. In their important paper, LP (linear programming)
relaxations were first introduced as a technique for devising bin packing approximation
algorithms. (See Section 5.2 for an integer programming formulation of the bin packing
problem.) In this section, we first discuss their result and then mention some improvements
proposed by Johnson and by Karmarkar and Karp. Further discussion can be found in
[23, 63].

The main idea in [36] is the following. Given an ¢, 0 < ¢ < 1, define &; so that
5 < &1 < 7. Instead of packing the given list L, we pack a concatenation of three lists
L1Ls L5 determined as follows.

- L4 contains all the elements of I with sizes smaller than ¢;.

- Ly is a list of (m — 1)h dummy elements with “rounded” sizes, corresponding to the
4 |ZAL1 |

(m —1)h smallest elements of L\ Ly, where m = [E—J and h = {TJ The elements

of Ly have only m — 1 different sizes, and, for each size s, the list has h elements; the
sizes of the corresponding h elements in L\ L; are no greater than s.
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- L3 contains the remaining elements of L \ Ly, i.e., those not having a corresponding
rounded element in L,. We have |Lz| < 2h — 1.

By construction, for each group of h elements of L, having the same size s, there exists a
distinct group of h elements of L\ Ly having sizes at least s. It follows that OPT(Ly) <
OPT(L\ Ly).

It is first proved that for a given e, one can construct, in linear time via an LP relaxation,
a packing for the elements of Ly that requires no more than OPT(L \ Ly) + 2 bins. The
next step is to pack each element of L3 into a separate bin, so the number of open bins at
this point is bounded by

2

4 4 4
OPT(L\L1)+2+2h—1< OPT(L\L1)+E+|L\L1|% g()PT(L\Ll)(lJrz-:)Jrg

(using the fact that OPT(L \ Ly) > 5|L\ L4]).

Finally, the items of [; are added to the current packing, one bin at a time, using the
Next-Fit rule. If no new bin is opened in this phase, the resulting packing has the desired
performance. If at least one new bin is opened, we know that all the bins, except possibly
the last one, are filled to at least (1 — &1), and hence the total number of bins is bounded
by

OPT(L 4
17() +1<OPT(L)(1+e)+1<OPT(L)(1+¢e)+ -
— &1 &

Combining this with an analysis of the time to pack Ly, Fernandez de la Vega and

Lueker proved the following result.

Theorem 4.8 (Fernandez de la Vega and Lueker [36]). For any ¢ > 0, there exists a
bin packing algorithm A with asymptotic worst-case ratio RY < 1 + e, requiring time
C. 4+ Cnlog %, where C. depends only on ¢ and C' is an absolute constant.

Although the time complexity of the above approximation scheme is polynomial in the
number of elements, it is exponential in %

The first improvement was given by Johnson [71], who observed that, if ¢ is allowed
to grow suitably slowly with OPT(L), one can use the above approach to construct a
polynomial-time algorithm A such that A(L) < OPT(L) 4 o(OPT(L)); incorporating a
scheme suggested by Karmarkar and Karp, he achieved A(L) < OPT(L)+O(OPT(L)'~%),
where ¢ is a positive constant. Thus, as a corollary to Theorem 4.8, there exists a
polynomial-time approximation algorithm for bin packing with an APR equal to 1.

Karmarkar and Karp [74] made further improvements and produced an asymptotic fully
polynomial-time approximation scheme. They brought several new techniques into play.
The ellipsoid method applied to an LP relaxation drove the approach; a feasible packing
was determined by an extension of the approach of Fernandez de la Vega and Lueker. A
function T, estimated below, describes the time complexity of the LP problem in terms of
properties of the problem instance. Let ¢(L) denote the total size of the itemsin L and recall
that & denotes the number, perhaps infinite, of possible item sizes. The main results are
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several different forms of asymptotic optimality and their associated running-time bounds.
Recalling that the absolute error for an algorithm A is simply A(L) — OPT(L), we have
the following

Theorem 4.9 (Karmarkar and Karp [74]). For each row in the table below, there is an
approximation algorithm with the given running-time and absolute-error bounds; the ap-
prozimation parameters in the last two rows satisfy o € [0,1] and ¢ > 0.

running-time bound | absolute-error bound
O(T,(c(L))) O(log®> OPT(L))
O(T, (1)) Oflog? I)
O(T(e(L)'=") O(OPT(L)")
O(T.(c7%)) eOPT(L) + O(e™?)

where

T,(v) = O(v®log vlog® n + v'nlogvlogn)

The bound on T,(v) is not especially attractive, so this approach as it stands is not
likely to be very practical, although the authors mention that a mixture of their technique
with a column generation method [53, 54] may be very efficient in practice.

4.4 Anomalies

For a given algorithm A, one usually expects that if a list is made shorter, or its items
made smaller, then the number of bins needed by A to pack the list could not increase;
and if the reductions were large enough, then the number of bins required would actually
decrease. This is certainly true of optimal algorithms, but as this section shows, it is not the
case for many of the better on-line and off-line approximation algorithms. This anomalous
behavior can explain the difficulty in analyzing algorithms; with such behavior, inductive
arguments can not normally be expected to work. The following instances illustrate bin
packing anomalies. Define

L = (0.7, 0.68, 0.5399, 0.3201, 0.15, 0.14, 0.08, 0.08, 0.08, 0.08, 0.08, 0.07)
L' = (0.7, 0.68, 0.5399, 0.32,  0.15, 0.14, 0.08, 0.08, 0.08, 0.08, 0.08, 0.07)

and note that the two instances differ only in the fourth element, which is slightly smaller

in L'. BF and BFD produce the same packing of L:

o(B) = 0.740.15+0.08+0.07
o(B;) = 0.68+ 0.08+0.08 + 0.08 4 0.08
0.5399 + 0.3201 + 0.14

o
—~
oy
w
NG
|
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BF and BFD also produce the same packing of I, which is larger by one bin:

(By) = 0.740.1540.14

o(B;) = 0.68+0.32
(Bs) = 0.5399 4 0.08 4 0.08 + 0.08 + 0.08 + 0.08
(By) = 0.07

We say that a list L,y = (a1,as,...,a,) dominales a list le) = (ay,dl, ... a ) if
n > m and s(a;) > s(al) for e =1,2,...,m. An algorithm A is monotonicif A(L) > A(L')
whenever [ dominates L. An anomalous algorithm is one that is not monotonic.

Graham [58] and Johnson [69] observed that algorithms FF and FFD are anomalous.
However, our current insights into the anomalous behavior of bin packing algorithms are
due mainly to Murgolo. In the notation of Section 3.4 (with W meaning Worst-Fit), he
proved

Theorem 4.10 Murgolo [90]: Algorithms NF and N Fy are monotonic but each of BF,
BED, WF, WFED, ABF,, AWF,, and AFFy with k > 3 is anomalous.

Murgolo also obtained upper and lower bounds on the behavior of anomalous algo-
rithms. An algorithm is called conservative if it never opens a new bin unless the current
element can not fit into an open bin. For conservative algorithms, the following bound
applies.

Theorem 4.11 Murgolo [90]: If L’ dominates L and A is conservative then A(L') <
2A(L). In addition, if A€ {FFD,BFD} then A(L') < L A(L) 4 4.

He also proved the following complementary results.

Theorem 4.12 Murgolo [90]: There exist arbitrarily long lists L; and L., with L. domi-
nating L;, (¢ =1,2,3), such that

if Ac {BF,BFD} then A(L\) > AL,
if Ae {FF} then A(Ly) > ZA(LY),
if Ae {WF,WFD} then A(Ls) > {SA(LY).

5 Variations and Special Lists

In this section, we discuss problems in which special types of lists, alternative objective
functions, or any of various constraints on items or packings are considered. We will see
that in some cases the problem becomes easier, in the sense of approximability, while in
others it becomes harder. Similarly, adaptations of classical heuristics give more or less
attractive results depending on the new problem.
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5.1 Semi-on-line algorithms

We know that the APR of on-line algorithms cannot be less than 1.540. .. (see Section 3.6).
For almost twenty years only the pure on-line and off-line algorithms were analyzed, and no
attention was paid to algorithms lying between these two classes. In a more general setting,
we can consider giving the algorithm more information about the list and/or more freedom
with respect to the pure on-line case. Here, we will consider semi-on-line algorithms that
can

- repack elements;
- look ahead to later elements before assigning the current one;
- assume some preordering of the elements.

We first consider the case where repacking is allowed. We have seen in Section 3.4 that
no known on-line bounded-space algorithm reaches the bound h.. (1) using finitely many
open bins. We will see that this is possible with semi-on-line algorithms.

In 1985, Galambos [41] made a first step in this direction. His Buffered Next-Fit (BNF)
algorithm uses two open bins, say By and B,. The arriving elements are initially packed into
By, until the first element arrives for which B; does not have enough space. This element
and those currently packed in B; are then reordered by decreasing size and repacked
in By and B, following the Next-Fit rule. B; is now closed, B, is renamed By, and a
new bin B, is opened. Using a weighting function approach, Galambos [41] proved that
hoo(1) < R < 1o

Galambos and Woeginger [45] generalized the above idea, adopting a better weighting
function. Let w(B) be the sum of the weights associated with the items currently packed
in bin B. Their Repacking algorithm (REP3) uses three open bins. When a new item a;
arrives, the following steps are performed: (i) a; is packed into an empty bin; (ii) all the
elements in the three open bins are repacked by the FFD strategy, with the result that
either one bin becomes empty or at least one bin B has w(B) > 1; (iii) all bins B with
w(B) > 1 are closed and replaced by new empty bins. In [45], it was proved that this
repacking in fact helps, since Rggp, = hoo(1). It is not known whether the same result can
be obtained with two bins.

Gambosi, Postiglione and Talamo [47] were the first to beat the 1.540 on-line bound
via repacking. They gave two algorithms. In the first one, Ay, the interval (0, 1] is divided
into 4 subintervals, and the elements are packed into bins in a Harmonic-like way. As each
new item is packed, groups of small elements can be repacked so as to fill up gaps in bins
that are not full enough. By using appropriate data structures, this repacking is performed
in constant time. The algorithm has linear time and space complexity, and it has an APR,
Ry < % In the second algorithm, A,, the unit interval is divided into 6 subintervals, and,
as each new item is encountered, the elements are repacked more carefully, in O(logn)

time, by means of a pairing technique analogous to that introduced by Martel (see Section
4.2). The time complexity of A3 is O(nlogn) and its APR is Ry, < 2.
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Ivkovic and Lloyd [65] gave a further improvement achieving a 2 worst-case ratio. Their
algorithm is much more complicated than the previous ones, as it was designed for handling
the dynamic packing case (see Section 5.4). They also proved a lower bound for the special
class of semi-on-line algorithms that only use atomic repacking moves; such a move is

limited to the transfer of a single item from one bin to another. Then

Theorem 5.1 (Ivkovic and Lloyd [66]). For any semi-on-line algorithm A that makes
only a bounded number of atomic repacking moves at each step, the APR satisfies R > %.

Quite recently, Ivkovic and Lloyd [67] presented approximation schemes for their dy-
namic, semi-on-line model, applying the techniques of Fernandez de la Vega and Lueker
and those of Karmarkar and Karp cited in Section 4.3.

We now consider the case in which the algorithm is allowed to look ahead, in the
sense that, when an element arrives, it is not necessary to pack it immediately; one is
allowed to collect further elements whose sizes can effect the packing decision. In order
to avoid degeneration to an off-line algorithm, we will consider the case of bounded look-
ahead. Grove [59] proposed a k-bounded algorithm which had, in addition, a capacity
(or warehouse) constraint W. The algorithm can delay the packing of item a; until it
has collected all subsequent elements a;41,...,a; such that Zi:i a, < W. For any fixed
k and W the h(1) lower bound (see Theorem 3.12) remains valid, but Grove’s Revised
Warehouse (RW) algorithm reaches the bound if W is sufficient large. In his proof, Grove
uses a weighting function argument.

Finally, we examine the rarely considered class of algorithms in which it is assumed
that the input list is presorted. Because of the lower bound constructions, it is easy to
see that, if the list is presorted by increasing size, the on-line lower bounds remain valid.
Moreover, the Johnson result holds: if the list is preordered by decreasing item size then
L < RY < 2 for any algorithm A € AF (see Theorem 4.3). This begged the broader
question of lower bounds: how good can an arbitrary algorithm be? A partial answer is
given by the following result.

Theorem 5.2 (Csirik, Galambos and Turan [29]). If the list is preordered by decreasing
size, then R > % for all algorithms A.

This is the best lower bound known.

5.2 TItem-size restrictions

Perhaps the simplest (and most practical) restriction is simply that we have a finite number
k of item sizes, say sq,..., Sk, and thus a finite number N of feasible item configurations
in a bin. This class of problems arose in the work on approximation schemes [36, 74], and
was considered in its own right by Blazewicz and Ecker [12]. Let the ith configuration be
denoted by p; = (pi,...,pix) where p;; is the number of items of size s; in p;. By the
definition of feasibility, Z?Zl pi;s; < 1 for all 2. Let b; be the number of bins in a packing
of a given list L that contain configuration p;, and let n; be the number of items of size
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s; in L. Then a solution to the bin packing problem for L is a solution to the integer
programming formulation

b; >0 and integer (i = 1,..., N)

Note that, if % lower bounds the item sizes, then N = O(k"~'), so the constraint matrix
above has k rows and O(k"™!) columns. This problem can be solved in time polynomial
in the number of constraints (see Lenstra [84]), which is a constant independent of the
number of items. The optimal overall packing can then be constructed in linear time.

If we do not need the exact solution, then we can use the classical approach of Gilmore
and Gomory [53, 54]) and compute LP relaxations (see Section 4.3); this method gives
solutions that are at most k off the optimal in significantly less time.

We consider next the classical problem restricted to lists I of items whose sizes form
a divisible sequence, i.e., the distinct sizes s(ay) > s(az) > ... taken on by the items are
such that s(a;41) divides s(a;) for all ¢ > 1. The number of items of each size is arbitrary.
Given the bin capacity C, the pair (L,C) is weakly divisible if I has divisible item sizes
and strongly divisible if in addition the largest item size s(aq) in L divides C.

This variant has practical applications in computer memory allocation, where device
capacities and memory block sizes are commonly restricted to powers of 2. It is impor-
tant to recognize such applications when they are encountered, because approximation
algorithms for many types of NP-hard bin packing problems generate significantly better
packings when items satisfy divisibility constraints. We emphasize here the cases where
the restriction leads to algorithms that are asymptotically optimal. The problem was stud-
ied by Coffman, Garey and Johnson, who proved the following result for classical off-line
algorithms.

Theorem 5.3 (Coffman, Garey and Johnson [20]). [If (L,C) is strongly divisible, then
NED and FFD packings are optimal.

Indeed, the residual capacity in a bin is always either zero or at least as large as the
last (smallest) item packed in the bin. The last packed item is at least as large as any
remaining (unpacked) item, so either the bin is totally full or it has room for the next item.
Therefore the FFD and NFD algorithms have the same behavior: they initialize a new bin
only when the previous one is totally full, so the packings they produce are identical and
perfect.

The optimality of FFD holds in the less restrictive case of the following theorem as
well.

Theorem 5.4 (Coffman, Garey and Johnson [20]). If (L,C) is weakly divisible, then an
FFED packing is always optimal.
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For strongly divisible instances, we can also obtain optimal performance without sorting
the items.

Theorem 5.5 (Coffman, Garey and Johnson [20]). If (L,C) is strongly divisible, then an
FF packing is always optimal.

It would be interesting to examine how approximation algorithms behave with other
special size sequences (e.g., Fibonacci numbers), as mentioned by Chandra, Hirschler and
Wong [16] in the context of memory allocation.

5.3 Variable size bins

Taking a complementary approach to the approximation schemes of Section 4.3, Hochbaum
and Shmoys [61] define an e-dual approzimation algorithm for bin packing, which we denote
by M.. For a given ¢ > 0, M. finds in polynomial time a packing of L in OPT(L) bins,
each of capacity C' = 1+ e. A primary objective of M. is the approximation scheme for
the capacity minimization problem discussed in Section 5.6, but such algorithms also find
use in bin packing settings where precise bin capacities vary or are unknown.

We remark that the above dual approach can be likened to a search for near-feasible,
optimal solutions rather than feasible, near-optimal solutions. The construction of M.
exploits a reduction of the problem to bin packing with a finite number of item sizes, and
hence the integer program formulation in Section 5.2. A recent, general discussion of the
details has been given by Hochbaum [63], who describes a version of M. that requires only
linear running time (with constants depending on &).

Consider now the case where we are given different bin types, By, Ba, ..., By with sizes
1 =38(By) > s(By) > ...> s(By). For each type, an unlimited number of bins is available,
and the aim is to pack a list L of elements a;, with s(a;) € [0,1], into a subset of bins having
the smallest total size. Let s(A, L) denote the total size of the bins used by algorithm A
to pack the items of L. Then

. s(4, L)
T =1 —_— PT. L) >k
R 11(1(1kiu_|_pOO {S(OPT,L) s(OPT, L) > }

The problem has practical importance in many of the classical bin packing applications,
e.g., cutting-stock problems, the assignment of commercials to variable size breaks in tele-
vision or radio broadcasting, memory allocation for computer operating systems, etc.

At first glance, one might expect variable size bin packing to be harder than the classical
problem. However, this need not be true in general. For example, if we have bin types for
1 and 1, then packing large elements with sizes at least % can be done

2
without wasted space. Similarly, we can pack smaller elements together without any waste,

all sizes between
so long as their sum is at least %

For general sets of bin sizes, an on-line algorithm must select the bin size for packing
the current element whenever a new bin is opened. Friesen and Langston [39] proposed
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an on-line algorithm based on the Next-Fit rule, which always selects the largest bin-size
(Next-Fit, using Largest possible bins, NFL), and proved that its APR is 2. Kinnersley
and Langston [78] showed that the same APR is obtained by adopting the First-Fit rule,
both for an algorithm that uses the largest possible bins and for an algorithm that uses
the smallest bins. Very recently, Burkard and Zhang [14] pointed out that this APR
characterizes a large class of algorithms that use one of the above bin-opening rules.

Kinnersley and Langston [78] analyzed other fast on-line algorithms. They proposed a
scheme based on a user-specified fill factor, f > %, and proved that this strategy guarantees
an APR smaller than 3 + % < 1.75. Zhang [106] proved that, with f = 1, the APR is %.

Csirik [27] investigated an algorithm based on the Harmonic-Fit strategy (Variable
Harmonic-Fit, VH), and showed that its APR is at most h. (1) &~ 1.69103. For special
collections of bin types the algorithm may perform better; for example, Csirik proved that
if there are only two types of bins, with s(B;) = 1 and s(B;) = 15, we have Ry = 1.
This result is very interesting since the bound is smaller than the 1.54 on-line lower bound
of van Vliet [96] for the classical problem (see Section 3.6), and implies that, for certain
sets of two or more bin sizes, on-line algorithms can behave better than those restricted
to a single bin size. This raised further, still unanswered questions. If there are only two
different bin types, which combination of sizes produces the smallest APR? What lower
bounds depending on bin sizes can be proved? What can be said about the problem with
at least three bin sizes?

Csirik’s VH algorithm suffers from the same “illness” as the classical HF}, algorithm
(see Section 3.4); it reaches the h. (1) bound only for a very large number of open bins.
More precisely, let M > 1 be a positive integer, and suppose that the algorithm can use [
different bin types. Let M; = [Ms(B;)] (7 = 1,...,1), and denote by VHy, the resulting
VH algorithm, which is a k-bounded space algorithm with k£ = 2221 M, —1+1. It M <5
then Ry, > %.

Burkard and Zhang [14] investigated other bounded-space algorithms for variable-size
bin packing. They distinguished three different components: the opening rule, packing
rule, and closing rule. The opening rule was fixed as follows. If the current item has size
s(a;) > % and there exist bin sizes smaller than 1 that can accommodate a;, then the rule
opens the smallest such bin; otherwise, it opens a bin of size 1. The packing rules analyzed
were First-Fit (the F rule) and Best-Fit (the B rule). The closing rule closes a bin of size
less than 1, if one exists; otherwise, it closes either the lowest indexed bin (the first-bin
or F rule) or the most nearly full bin (the best-bin or B rule). With this terminology,
VXY denotes the k-bounded algorithm that incorporates packing rule X and closing rule
Y. Burkard and Zhang showed that, among the four resulting algorithms (VFF;, VFBy,
VBF} and VBB}), VBBy is the best, and that the following holds.

Theorem 5.6 (Burkard and Zhang [14]). Rygg, = 15. Moreover, Ry > Ry if and
only if My <7, with k> 6]+ 1.

The authors proved the theorem by a weighting function technique. They also mentioned
that, with a small modification in the weighting function, they could prove that Ripg, =
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% + ﬁ for any k£ > 2. So, one of the more interesting questions remains open: Does
there exist an on-line algorithm with an APR strictly less than h. (1) for all collections of
bin sizes?

For the off-line case, few results have been proved. Friesen and Langston [39] presented
two algorithms based on the First-Fit Decreasing strategy. The first one, FF'D using Largest
bins, and Repack (FFDLR), begins by packing the presorted elements into the largest bins,
then repacks the contents of each open bin into the smallest possible empty bin. The
second algorithm, FFD using Largest bins and Shift (FFDLS), improves on the first phase
of FFDLR: whenever the bin (say of type B;) where the current item has been packed
contains an item of size at least %, the contents of the bin are shifted, if possible, to the
smallest empty bin (say of type Bj) such that s(B,) > ¢ > 2s(By,), where ¢ denotes the
total item size packed into the current bin. Friesen and Langston proved that Rypip =
and Rfjprs = 3-

Murgolo [89] proposed an efficient approximation scheme. He first gave an algorithm
with a running time linear in the number of items but exponential in % and the number
of bin sizes. Then, following the ideas in Karmarkar and Karp [74], he solved a linear

programming formulation of the problem by the ellipsoid method, thus obtaining a fully

3
2

polynomial-time approximation scheme.

Very recently, Zhang [107] considered a variant of the on-line version of the problem,
in which item-size information is known in advance, but no information on bin sizes is
available, except that each bin size is known to be no less than the size of the largest item.
Bins arrive one at a time, and we have to decide which items to pack into the current bin.
Zhang proved that the analogues of the classical NF, FF, NFD and FFD algorithms all
have APR equal to 2, and left as an open question whether one can devise an algorithm
with an APR better than 2.

It is not difficult to extend the strong divisibility results of the previous section to the
variable-size bin case. If the pair (L;, s(B;)), where L; is the sublist of L containing the
elements with size not exceeding s(B;), is strongly divisible for all ¢ = 1,...,k, then the
following algorithm produces an optimal packing (see Coffman, Garey and Johnson [20]).
First use the FFD algorithm to pack items in bins of type By, until either all items are
packed or the total size of the unpacked items is less than s(By). In the latter case, if the
size of the largest unpacked item exceeds s(B,), place all these items in a bin of type By;
otherwise, repeat the process for the remaining items and bins of types By, Bs,.... The
case of weak divisibility has not been treated.

5.4 Dynamic bin packing

In this section we consider a generalization in which each item a; is characterized by a
triple (b(a;), d(a;), s(a;)), where b(a;) is the start (arrival) time, d(a;) (d(a;) > b(a;)) is the
departure time, and, as usual, s(a;) is the size. Item a; remains in the packing during the
time interval [b(a;),d(a;)). We assume that b(a;) < b(a;) if ¢ < j. The problem calls for
the minimization of the maximum number, O PTp(L), of bins ever required in dynamically
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packing list . when repacking of the current set of items is allowed each time a new item
arrives. More formally, if A(L,1) denotes the number of bins used by algorithm A to pack
the current set of items at time ¢, the objective is to minimize

A(L) = A(L,t
(L) (X (L)
Note that, in this case, an opened bin can later become empty, so the classical open/close
terminology is no longer valid. The definition of the APR is straightforward:

. A(L
Rf:&:@fﬂp{w;j@"“:”}

The problem models an important aspect of multiprogramming operating systems: the
dynamic memory allocation for paged or other virtual memory systems (see, e.g., Coffman
[19]), or data storage problems where the bins correspond to storage units (e.g., disk
cylinders or tracks), and the items correspond to records which must be stored for certain
specified periods of time (see Coffman, Garey and Johnson [22]).

Research on dynamic packing is at the boundary between bin packing and dynamic stor-
age allocation. The most significant difference between the two areas lies in the repacking
assumption of dynamic bin packing; repacking is disallowed in dynamic storage alloca-
tion, so fragmentation of the occupied space can occur. Coffman, Garey and Johnson [22]
studied two versions of the classical FF algorithm. The first is a direct generalization of
the classical algorithm. The second is a variant (Modified First-Fit, MFF) in which the
elements with s(a;) > L are handled separately, in an attempt to pair each of them with

2
smaller elements.

Theorem 5.7 (Coffman, Garey and Johnson [22]). If ;75 < max{s(a;)} < , then

U< Reg(k) < 24 21220 — 280674 ... ifk=1;

=
B SRk S B 4 ity k> 2
< Rjpr(1) <54 1n3 = 2.78768. . ..

For k = 2, we get % < Rpp(2) < 1.78768 . ... Although these results are worse than their
classical counterparts, relative performance is much better than one might think. This can
be seen in the following lower bounds.

Theorem 5.8 (Coffman, Garey and Johnson [22]). For any on-line dynamic bin packing
algorithm A, Ry > % and Ra(k) > 1+ k(kk—:—zl) if k> 2, which gives Ra(2) > 1.666. ...

If we restrict our attention to strongly divisible instances (see Section 5.2), then matters
improve, as expected. The gap between the general lower bound and that for FF disappears.
Indeed, we have
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Theorem 5.9 (Coffman, Garey and Johnson [20]). If (L,C) is strongly divisible and L is
such that s(ay) > s(az) > ... > s(ag) (k > 2), then the APR of the dynamic version of FF

S8
= s(a;) S(Gz’+1))
Re - (1 oo

Moreover, for any on-line algorithm A that operates only on strongly divisible instances,
RY > Rpp.

By a straightforward inductive argument, it can be shown that the continued product
has the upper bound

k—2

. 1 1
Jim (1 + Qk_z) II (1 + 5) =2.384...

=1

5.5 Bounds on the number of items per bin

The present section deals with the generalization in which the maximum number of items
packed into a bin is bounded by a positive integer p. The problem has practical applica-
tions in multiprocessor scheduling with a single resource constraint, when the number p
of processors is fixed, or in multitasking operating systems where the number of tasks is
bounded. In the context of these applications, Krause, Shen and Schwetman [79] modified
classical algorithms so as to deal with the restricted number of items per bin. Their on-line
algorithm, pFF, is FF with an additional check on the number of items in open bins. They
proved that, if p > 3, then

27 37 21 24

o0

10 10p = P =100 10p

As p tends to oo, the bound is much worse than the corresponding APR of the unrestricted
problem (2.7 versus 1.7). Whether this upper bound can be improved remains an open
question.

Their second (off-line) algorithm (Largest Memory First, LMF) is an adaptation of

FFD. They proved that Ri§;p = 2 — % if p > 2. Here too the gap between the unrestricted

and the restricted case is large (2 versus %) The authors’ search for an algorithm with
better worst-case behavior resulted in the Iterated Worst-Fit Decreasing (IWFD) algorithm.
IWFD starts by sorting the items according to nonincreasing size, and by opening ¢ empty

bins, where ¢ := (max(%,zyzl s(aj))] is an obvious lower bound on OPT(L). Then (i)
IWED tries to place the items into these ¢ bins using the Worst-Fit rule (an item is placed
into the open bin whose current number of items is less than p and whose current content
is minimum, breaking ties by highest bin index); (ii) whenever the current item a; does
not fit in any of the ¢ bins, ¢ is increased by 1, all items are removed from the bins and
the processing is restarted from (i). If one implements this approach using a binary search
on ¢, the time complexity of IWFD is O(nlog®n). Krause, Shen and Schwetman proved

that the algorithm behaves very well in certain special cases:
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- if p=2then IWFD(L)=OPT(L) for any list L;

- if in the final schedule no capacity constraint is operative, i.e., no open bin has residual

capacity smaller than the size of the smallest item, then IW FD(L) = OPT(L);

- if in the final schedule no cardinality constraint is operative, i.e., no open bin con-
taining p items has residual capacity at least equal to the size of the smallest item
then



Theorem 5.10 (Galambos and Woeginger [44]). There exists a sequence of nonnegative
numbers ey, €g, ..., with €, > 0, m > 4 and ¢, — 0 as m — oo, such that R(m) <
g

This result encouraged further research; important milestones on the way to our current po-
sition on the problem are as follows. Bartal, Karloff and Rabani [9] presented an algorithm
with a worst-case ratio 2 — 71—0 = 1.98571 ... for all m > 70. Earlier, Faigle, Kern and Turan
[35] proved lower bounds for different values of m. They pointed out that for m < 3 the
LS algorithm is optimal among on-line algorithms, and they proved a 1+ % = 1.70710. ..
lower bound for m > 4. Then these bounds were improved, as shown below.

Theorem 5.11 (Chen, van Vliet and Woeginger [18]). For all m = 80 4+ 8k with k «a
nonnegative integer, R(m) > 1.83193.

Theorem 5.12 (Bartal, Karloff and Rabani [10]). For all m > 3454, R(m) > 1.8370.

Until recently, the following result gave the best upper bound for R(m), and was a gener-
alization of the methods in [10].

Theorem 5.13 (Karger, Phillips and Torng [73]). R(m) < 1.945 for all m.

The tightest results currently known are those of Albers [2] who recently proved the
next two bounds.

Theorem 5.14 (Albers [2]). R(m) < 1.923 for all m.

Just as previous authors, Albers recognized that, during the packing process, a good
algorithm must try to avoid packings in which the content of each of the bins is about the
same, for in such cases many small items followed by a large item can create a poor worst-
case ratio. Albers’ new algorithm attempts to maintain throughout the packing process
| %] bins with small total content, and [%] bins with large total content. The precise aim
is always to have a total content in the small-content bins that is at most 4 times the total
content in the large-content bins. With an optimal choice of v, one obtains a worst-case
ratio of at most 1.923.

For her new lower bound, Albers proved
Theorem 5.15 (Albers[2]). R(m) > 1.852 for all m > 80.

Attempts to further reduce the general gap of about .07 continue. For the special case
m = 4, it is proved in [18] that 1.73101 < R(4) < 22 =1.7333..., but the exact value of
R(4) remains an open problem. Another enticing open problem is: Does R(m) < R(m+1)
hold for any m?

Let us turn now to the off-line case. By preordering the elements according to nonin-
creasing size and applying the LS algorithm, we obtain the so-called Longest Processing

Time (LPT) algorithm for P||Cax. Graham [57] proved that Rypr = %— # The Multifit
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algorithm by Coffman, Garey and Johnson [21] adopts a different strategy, leading to bet-
ter worst-case behavior. The algorithm determines, by binary search over an interval with
crude but easily established lower and upper bounds, the smallest capacity (' such that
the FFD algorithm can pack all the elements into m bins. Coffman, Garey and Johnson
proved that, if k& binary search iterations are performed, then the algorithm, denoted by
MFy, requires O(nlogn + knlogm) time and has an absolute worst-case ratio satisfying

Rur, <122 4+27F

Friesen [38] improved the bound uniform in & to 1.2, but Yue [103] later settled the question
by proving that this bound is % Friesen and Langston [39] developed a different version
of the Multifit algorithm, proving that its worst-case ratio is bounded by g +27F,

A different off-line approach was proposed by Graham [57]. His algorithm Zj optimally
packs the min{k,n} largest elements and completes the solution by packing the remaining

elements, if any, according to the LS algorithm. Graham proved that
1— 1
R <1 _m
7, S 1+ T { % J
and that the bound is tight when m divides k. Algorithm Z; implicitly defines an ap-
proximation scheme. By selecting k = k. = (%L we obtain Rz, < 14 ¢. The
running time is O(nlog n + m™179/%) and so the method is unlikely to be practical. The
result was improved by Sahni [93], in the sense that the functional dependence on m and
¢ was reduced substantially. His algorithm A, has running time O(n(é)m_l) and satisfies
Ra. <1+ ¢; hence it is a fully polynomial-time approximation scheme for any fixed m.
For m even moderately large, the approach of Hochbaum and Shmoys [61] may of-
fer major improvements. They developed an e-approximate algorithm that removed the
running-time dependence on m and reduced the dependence on n. The dependence on %
exponential, which is to be expected, since a fully polynomial-time approximation scheme
would imply P = NP. Their algorithm (like MFy, for example) is based on the binary
search of an interval, but it uses the e-dual approximation algorithm of Section 5.3 at each
iteration. Hochbaum and Shmoys show that, after k steps of the binary search, the bin
capacity is at most (1+4¢)(1+27%) times optimal. From this fact and the properties of M,
given in Section 5.3, one obtains a linear-time approximation scheme for the capacity min-

is

imization problem. (See also Hochbaum’s [63] more extensive discussion of this interesting
technique.)

5.7 Maximizing the number of items packed

In this section, we consider another variant in which the number of bins is fixed; the
objective now is to pack a maximum cardinality subset of a given list L. The problem
arises in computing applications, when we want to maximize the number of records stored
in one or more levels of a memory hierarchy, or to maximize the number of tasks performed
on multiple processors within a given time interval.
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We extend the classical bin packing notation in the obvious way and define

Ri(m,n) =min { OPT (L)

so that the APR is defined by

RS (m) = Jim inf Ra(m,n)
and has values less than or equal to 1.

The problem was first studied by Coffman, Leung and Ting [25], who adapted the
First-Fit Increasing (FFI) heuristic. The items are preordered according to nondecreasing
size, the m bins are opened, and the current item is packed into the lowest indexed bin
into which it fits, stopping the process as soon as an item is encountered that does not fit
into any bin. Tt is proved in [25] that Rg(m) = 2 for all m.

The [Iterated First-Fit Decreasing (IFFD) algorithm was investigated by Coffman and
Leung [24]. The algorithm sorts the items by nonincreasing size, and iteratively tries to
pack all the items into the m bins following the First-Fit rule. Whenever the current item
cannot be packed, the process is stopped, the largest item is removed from the list, and
a new FFD iteration is performed on the shortened list. The search terminates as soon
as FFD is able to pack all the items of the current list. Coffman and Leung showed that
IFFD performs at least as well as FFI on every list, and that g < E’f’gFD(m) < %. The time
complexity of IFFD is O(nlogn 4+ mnlogm), but a tight APR is not known.

Let us now consider lower bounds on the APR. If an algorithm A packs items aq, ..., a;
from a list L = (ay,...,a,) so that s(a;) > 1 — s(B;) for any ¢ and for any j > ¢ (i.e., no
unpacked item fits into any bin), then it is said to be a prefiz algorithm. Note that both
FFI and and TFFD are prefix algorithms).

Theorem 5.16 (Coffman, Leung and Ting [25]). Let A be a prefix algorithm and let
k = mini<i<n{|Bi|} be the least number of items packed into any bin. Then

~ mk
A
Moreover, the bound is achievable for all m > 1 and £ > 1.

The case of divisible item sizes was investigated by Coffman, Garey and Johnson [20].
They proved that both FFI and IFFD produce optimal packings if (L,C') is strongly
divisible. IFFD remains optimal even if (L, (') is weakly divisible, but FFI does not.

The case of variable sized bins was analyzed by Langston [80], who proved that, if the
bins are rearranged by nonincreasing size, then g (m) = Tand 2 < Rigpp(m) < = for
all m.
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5.8 Maximizing the number of full bins

In this variant of the problem the objective is to pack a list of items into a maximum
number of bins subject to the constraint that the content of each bin be no less than a
given threshold T'. Each such bin is said to be full. Potential practical applications are (i)
the packing of canned goods so that each can contains at least its advertised net weight,
and (ii) the stimulation of economic activity during a recession by allocating tasks to a
maximum number of factories, all working at or beyond the minimal feasible level.

This problem is yet another dual of bin packing. A comprehensive treatment can be
found in Assmann’s Ph.D. thesis [4]; Assmann’s collaboration with Johnson, Kleitman
and Leung [5] established the main results. They first analyzed an on-line algorithm, a
dual version of NF (Dual Neat-Fit, DNF): pack the elements into the current bin B; until
s(B;) > T, then open a new empty bin Bj;1 as the current bin. If the current bin is not
full when all items have been packed, then merge its contents with those of other full bins.
All on-line algorithms are allowed this last repacking step to ensure that all bins are full.

It is proved in [5] that Rp = 1, where

Ry = lim inf (min{% . OPT(L) = m})

Assmann et al. [5] also studied a parametrized dual of FF, called Dual First-Fit
(DFF[r]). Given a parameter r (1 < r < 2), the current item a; is packed into the first
bin B; for which ¢(B;) + s(a;) < rT. If there are at least two nonempty and unfilled bins
(i.e., bins B; with 0 < ¢(B;) < T) when all items have been packed, an item is removed
from the rightmost such bin and added to the leftmost, thus filling it. Finally, if a single
nonempty and unfilled bin remains, then its contents are merged with those of previously
packed bins. It was shown that ];’]%OFF[T] = %, although a better bound might have been
expected. But some years later Csirik and Totik proved that DNF is optimal among the

on-line algorithms.
Theorem 5.17 (Assmann et al. [5] and Csirik and Totik [32]). We have that
1

ey =
DFF[r] = 5
and that there is no on-line dual bin packing algorithm A for which E’if > %

Turning now to off-line algorithms, we mention first the observation of Assmann et al.
[5] that presorting does not help the adaptations of algorithms Next-Fit Decreasing and
Next-Fit Increasing, for which R, = R = 1. On the other hand, the off-line version
DFFDJ[r] of DFF[r], obtained by presorting the items according to nonincreasing size, has
better performance.

Theorem 5.18 (Assmann et al. [5]). E’]%OFFD[T] =2if 3 <r <2 andlim_, E’]%OFFD[T] =

: oo 1
lim, RDFFD[T] =3
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The [Iterated Lowest-Fit Decreasing (ILFD) algorithm was also investigated in [5]. It
is analogous to algorithm IFFD described in Section 5.7. The items are preordered by
nonincreasing size. At each iteration, a prefixed number m of bins is considered, and a
Lowest-Fit packing is obtained by iteratively assigning the current item to the bin with
minimum contents. Binary search on m determines the maximum value for which all m
bins are filled. Since n is an obvious upper bound on the optimal solution value, it is easily
seen that the algorithm has O(nlog®n) time complexity. Moreover,

Theorem 5.19 (Assmann et al. [5]). Rypp = 2.
It is not difficult to see that DNF does not produce optimal packings even when (L, () is
strongly divisible. However, we do have the following optimality results.

Theorem 5.20 (Coffman, Garey and Johnson [20]). If (L,C) is strongly divisible, then
the dual version of NFD (DNFD) produces an optimal packing. For weakly divisible lists
DNFD is no longer optimal, but ILFD is.

Finally, we observe that obtaining an approximation scheme for the dual bin packing
problem is still a research challenge. The approach used by Fernandez de la Vega and
Lueker [36] and Karmarkar and Karp [74] (see Section 4.3), which eliminates the effect of
small items on worst-case behavior, does not appear applicable, as in this dual problem,
small items can play an important role in filling small gaps.

5.9 Further directions
5.9.1 Partial orders

In this generalization, precedence constraints among the elements are given, where prece-
dence refers to the relative ordering of bins. Let < denote the partial order giving the
precedence constraints. Then a; < a; means that, if ¢; and «a; are packed in B, and B;,
respectively, then r < s. Call the model strict if r < s replaces r < s is this definition.

Two practical applications have been considered in the literature. The first one is the
assembly line balancing problem, in which the assembly line consists of identical worksta-
tions (the bins) where the products stop for a period of time equal to the bin capacity.
The item sizes are the durations of tasks to be performed, and a partial order is imposed:
a; < a; means that the workstation to which a; is assigned cannot be downstream of the
one to which a; is assigned. The second application arises in multiprocessing scheduling;
here each item corresponds to a unit-duration process having a memory (or other resource)
requirement equal to the item size. The bin capacity measures the total memory availabil-
ity. In the given partial order, a; < a; imposes the requirement that a; must be executed
before a; finishes. The objective is then to find a feasible schedule that finishes the set of
processes in minimum time (number of bins).

The first problem was studied by Wee and Magazine [99] and the second by Garey et al.
[48]. In both cases the Ordered First-Fit Decreasing (OFFD) algorithm was applied. An
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item is called available if all its immediate predecessors have already been packed. At each

stage, the set of currently available items is sorted according to nonincreasing size, and

each item is packed into the lowest indexed bin where it fits and no precedence constraint is

violated. Note that, if no partial order is given, this algorithm produces the same packing

as FFD. In general, however, its worst-case behavior is considerably worse. The APR is
OFrp = 2, except in the strict model, where R3ppp = %.

5.9.2 Clustered Items

In this generalization, a function d;; = f(a;, a;) is given, measuring the ‘distance’ between
items a; and a;). A distance constraint D is also given; two items a; and a; may be packed
into the same bin only if d;; < D. The problem has several obvious practical applications
in contexts where geographical location constraints are present. Chandra, Hirschler and
Wong [16] studied different cases, their main result being for the case where the items in a
bin must all reside within the same unit square. They proposed a geometric algorithm A
a



component sets (items) in the magazine can be in production. The problem is to plan the
overall production process so as to minimize the number of set-ups.

S. Khanna [77] mentions, in connection with studies of multimedia communications,
that graph packing is an interesting special case. Items are edges (pairs of vertices) in a
given graph (G. An edge is packed in a bin if both of the vertices to which it is incident are
in the bin, and so the problem is to pack the edges of (¢ into as few bins as possible subject
to the constraint that there can be at most C' vertices in any bin. The approximability of
this problem has yet to be studied.
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