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Abstract

Speed of computation and power consumption are the two main parameters of con-
ventional computing devices implemented in microelectronic circuits. As performance of
such devices approaches physical limits, new computing paradigms are emerging. Two
paradigms receiving great attention are quantum and DNA-based molecular computing.

This paper focuses on DNA-based computing. This paradigm can be abstracted to
growth models where computational elements called tiles are self-assembled one by one,
subject to some simple hierarchical rules, to fill a given template encoding a Boolean
formula. While DNA-based computational devices are known to be extremely energy
efficient, little is known concerning the fundamental question of computation times.
In particular, given a function, we study the time required to determine its value for
a given input. In the simplest instance, the analysis has interesting connections with
interacting particle systems and variational problems.

1 Introduction

The elementary logic unit of DNA computing is the tile modeled as shown in Figure 1 as
a marked or labeled square. In the simplest version, the label values are 0 or 1, and they
break down into two input labels on one edge and two output labels on the opposite edge.
A computational step consists of one tile bonding to others according to given rules that
match input labels of one tile to the output labels of one or two adjacent tiles.1 Figure 1
shows a simple example. Successive bonding of tiles performs a computation, e.g., the
evaluation of a Boolean formula on given inputs, in a self-assembly process guided by a
template. The tiles are DNA-based molecular structures moving randomly, in solution,
and capable of functioning independently and in parallel in the self-assembly process; the
template is needed to properly structure the self-assembly, in particular to impose the
sequential constraints on self-assembly needed to produce the desired computation. In
contrast to classical computing paradigms, the random phenomena of self-assembly create
a randomness in the time required to perform a given computation. The research reported

1In the DNA lexicon, the notion of bonding is also commonly referred to as gluing, sticking, or attaching.
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Figure 1: The set of four tiles on the left implements the operation ⊕. A tile glues to other tiles
only if their corner labels match. On the right operation 0⊕ 1 = 1 is performed. The input tiles are
preassembled and the correct output tile simply attaches itself to the pattern, effectively obtaining
the value of the output bit.

here characterizes stochastic computing times within computational paradigms based on
self assembly.

The notion of computing with tiling systems originated with Wang [17] over 40 years ago,
but the modern theory emerged within the last several years in the work of Winfree [19],
and Rothemund and Winfree [15]. The early theoretical work on general computation
focused chiefly on various measures of complexity, in particular, program-size and time
complexity [1, 15, 18], but Adleman et al [1, 2] investigated interesting combinatorial
questions such as the minimum number of tile types needed for universality, and stochastic
optimization questions such as the choice of concentrations that leads to minimum expected
assembly times.

The analysis of random phenomena of self assembly has produced few results to date.
Adleman et al [3] inaugurated this line of research with an analysis of a baseline linear model
of a random self-assembly process. (See [6] for a variant of the linear model.) Baryshnikov
et al [5] extended the results to incremental self-assembly systems in which structures grow
only one tile at a time, and they introduced a novel control mechanism for maximizing yield
in reversible processes. The scale of tile systems in the discrete setting is so large that, to
date, the techniques of hydrodynamic limits have shown the most promise. This is further
illustrated in the studies of this paper.

Our brief review has focused on mathematical modeling and analysis of general DNA
computation, as opposed to constructs solving specific combinatorial problems. Nor have
we referred to the extensive literature on the intriguing experimental side of DNA compu-
tation. We refer the reader to [2] for a useful summary of these matters and an extensive
bibliography.

To fix ideas, we describe the recently proposed techniques of Carbone and Seeman [7]
in Section 2. The next section will then fit this scheme into the abstraction of growth
models. Section 3.1 studies computation times as the times to grow rectangular constructs,
then Section 3.2 generalizes our timing analysis to the growth of arbitrary structures in two
dimensions.
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Figure 2: An example of a template and the Boolean formula it encodes [7]. Under the template of
labeled pawns one can see its vertical section. In this example four N-tiles are used for computation
while ten tiles are needed in total (besides the input).

2 DNA computation of Boolean formulas

The template governing computations is a triangular array of nodes with i nodes at level
i, i ≥ 1, as illustrated in Figure 2 [7]. Physically, it may be viewed as an array of posts or
nodes, called pawns, glued to a metallic substrate. Boolean formulas in the form of trees
are mapped onto the template by suitably typing the nodes according to function. Such
mappings are not unique in general, but the choice of mapping is of no concern here. As
illustrated in Figure 2, the nodes are of four types:

1. input nodes, denoted I, where the tiles representing the input are superimposed on
the leaves of the tree. Inputs to these tiles are left unspecified.

2. gate nodes, where tiles perform a gating function. The gates in Figure 3 are all NAND
gates denoted by N.2

3. forwarding nodes, where information at a tile input is passed down to the diagonally
opposite output; right to left is denoted by R, and left to right is denoted by L.

4. null nodes, denoted by *, where tiles perform no function at all. These nodes are
introduced in order to meet the technical requirement that all nodes of the template
be involved in the mapping (to every node there will correspond a tile).

Tiles are classified in the same way. Physical identification of tile type is encoded by another
label, called the middle label, which derives from properties of the molecular structure.

Physically, the computation begins by pre-assembling the input tiles to the leaves of the
template. Next, the template is put in solution along with the tiles of the various types.
The template acts as a lower layer; in an upper layer, tiles then glue to the template by
self-assembly; sequential constraints of the hierarchy of gates are ensured by the fact that
a tile can bond only if it bonds to tiles at both of its inputs. Each time a gate tile bonds, a
Boolean operation is effectively performed. Attachment of the root tile signals completion
of the computation and carries the result in its output labels.

2Recall that a NAND gate with Boolean inputs x and y outputs the value 1 if and only if either x or y or
both have the value 0; and recall that any Boolean function can be implemented using only NAND gates.

3



1 4

1

2

3

2 3 5

Figure 3: Growth models of DNA-based computation. The actual process of self assembly (left)
can be equivalently represented as a growth process (right). There is one-to-one correspondence
between tile on the left and squares on the right. White tiles (squares) represent the input.

3 Growth models

In a reference theory for self assembly, it is natural to take the times between successive
tile placements as independent, exponential random variables; for convenience, we take
the mean as the unit of time. As described, the tiling assemblies of the last section are
growth processes, although the computations themselves are processes of coalescence which
terminate in a single value at the root of the template. As we shall see, it is more useful
to focus on the equivalent growth times. In the abstraction introduced below, we relate
the times to grow (self-assemble) for constructs or patterns to classical theories of particle
processes; growth is again subject to rules analogous to those governing the self-assembly
process of the previous section.

In the next subsection we examine a computational template of a rectangular shape.
There we outline the basic ideas that will be used in the subsequent section to argue about
the speed of computation on templates having arbitrary shapes.

3.1 Rectangle computation

Figure 3 (left) shows an example in which an initial set of tiles (input) is placed along the two
lines (white tiles), and growth proceeds outward in the positive quadrant: the placement of a
new tile is allowed only if there are already tiles to the left and below the new tile’s position
which match labels as before. The left-and-below constraint is equivalent to requiring a
newly added tile to bond at both of its input labels. In the example of Figure 3, new
tiles can be added only to the three “notches.” The eventual output of the computation is
represented by the dark tile which can be attached only after all tiles to its left and below
are in place. The tiles that perform computation, i.e., non-input and non-output tiles, are
lightly colored in Figure 3.

An abstraction of this process operating in the positive lattice is shown on the right in
Figure 3. In this model, in which connections to well understood, cognate processes are
most easily seen, a new square can be added only in vacant positions having a square both
to the immediate left and immediately below the position. Only input squares can lie along
the coordinate axes, so under the placement constraint and any finite initial set of squares,
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Figure 4: An abstraction of the device device described in [7] (see Figure 2) that computes a single
bit upon the completion of the computation (assembly). The input tiles are shown in white while
the output tile is dark.

a growth process terminates in finite expected time in a rectangular shape. For example,
it is easy to see that, after 8 more tiles (squares) are added to the assembly of Figure 3, a
rectangular array results (including the (final) output tile). As in the left figure, the result
of the ”computation” is depicted by the dark square in the upper-right corner. Clearly,
there is a one-to-one mapping between the processes on the left and right in Figure 3. In
particular, the template shown in Figure 2 maps to the triangle shown in Figure 4; as before,
the dark tile represents the output while the white tiles carry the input information.

The fundamental quantity of interest is the computation time, or equivalently, the time
until the final square (represented by the dark square in position (M, N) of Figure 3) is in
place. We denote this random completion time by CM,N . Let Ti,j be the time it takes for a
tile to land at position (i, j) once the conditions are favorable; that is, once both positions
(i, j − 1) and (i − 1, j) are tiled. Recall that our basic assumption is that the Ti,j ’s are
independent exponential random variables with unit means. Similarly, by Ci,j we denote
the time until the square (i, j) becomes occupied. Then the completion times can be written
in terms of attachment times Ti,j by means of the following recursion

Ci,j = max(Ci−1,j , Ci,j−1) + Ti,j ,

with initial conditions Ci,1 = 0 and C1,j = 0 for 1 ≤ i ≤ N and 1 ≤ j ≤ M . The recursion
simply reflects the fact that a tile can be attached only if tiles to its left and below are
already in place. By unwinding the recursion one can write the completion time as

CM,N = max
π: (1,1)→(M,N)

∑

(i,j)∈π

Ti,j ,

where the maximum is taken over all paths π from (1, 1) to (M,N) consisting of segments
going north or east only. We remark that the basic recursion formula above can be thought
of as an instance of an iterative multiplication of matrices in the so-called max-plus algebra,
also known as idempotent algebra (see [13, 8]). In this formulation, the random values of
interest, i.e., the completion times of a computation, are analogous to the matrix elements
of the product of a large number of large random matrices.

Alternatively, CM,N is the time when the M -th particle and N -th hole exchange positions
in the totally asymmetric simple exclusion process (TASEP) on the integers starting from
the megajam configuration: the positions (integers) to the left of the origin are all occupied
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by particles, and all positions to the right of the origin are empty. At independent, unit-
mean exponentially distributed times, particles attempt to move to the right. A move
actually occurs only if the adjacent position is a hole, i.e., is unoccupied. We further exploit
the correspondence between the TESAP process and the assembly process on the plain in
the next subsection.

Remarkably, the exact hydrodynamic-scale behavior of the TASEP process is known.
As the rectangular DNA computer becomes large, or equivalently, as N,M grow to infinity
such that M/N tends to a positive constant, one has [11, p. 412]

lim
N→∞

CM,N

(
√

M +
√

N)2
= 1. (1)

The preceding formula quantifies the degree of parallelism in the computation. Consider,
for simplicity, a square template of size N × N . While the number of tiles is N2, the
computational time is linear in N since CN,N ≈ 4N for large N . Expression (1) also allows
one to estimate required attachment times given the template size and a constraint on
the computation time. For example, let the required computation time be 1 second and
let the template consist of 103 × 103 = 106 tiles. Then, given that the attachment times
are iiḋ. exponential random variables their common mean needs to be 1/(4 · 103) = 0.25
milliseconds.

We conclude this subsection with two observations. First, prior to the computation the
set of input tiles needs to be prefabricated. Potentially, the input can be linear in N and,
therefore, the prefabrication of the input might be the actual bottleneck of the computation.
Second, our analysis assumes that no errors occur in the process of computation, i.e., a tile
never bonds to an incorrect place on the template. While the main trade-off in microelec-
tronic circuits is between the speed of computation and power consumption, it appears that
in DNA-based computational devices it is between the the speed of computation and the
correctness of the output. In particular, higher speed requires smaller attachment times,
i.e., higher molecular mobility, which can result in higher error rates.

3.2 Computation of arbitrary shapes

In this subsection we examine a DNA computation of an arbitrary shape, say λD ⊂ R2, such
that some segments on the boundary of D correspond to the data, and some to an output, or
read-off region (see Figure 5; the input area is the bold line in the southwest, and the output
line can be seen in the northeast). We are interested in the case when λ, the scale parameter,
is large. In this regime, the number tiles, and, therefore, elementary logic operations in the
DNA computer, is large. As in the previous subsection, the computation is a sequence
of additions of tiles (subject to the left-below condition) to the original template. Before
addressing the computational time on such a device, we describe an additional property of
the TASEP process.

This equivalence of the particle process and our assembly problem on the lattice is well-
known, but we briefly remind the reader of the mapping from one sample space to the other.
We focus on an unbounded template (lattice), such as the one in Figure 6, to which tiles
can be attached. Consider a profile of the self-assembly process as shown in Figure 6. The
profile is the staircase created by the sequence of boundary tiles; these are the dark tiles in
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Figure 5: An example of a 2D computational template with a non-rectangular shape on a plane.
The two bold lines represent the input (southwest) and output (northeast) regions. The computation
(assembly of tiles) begins at the input segment and proceeds towards the output segment.

Figure 6 that touch, either at a vertex or along a side, the untiled region. Scan the profile
from upper left to lower right in a sequence of steps, each being a move left to right across
the top of a tile at the boundary or down the right side of a tile at the boundary . In this
scan produce a sequence of 0’s and 1’s, a sample of the TASEP, such that, at each step to
the right a 0 is added to the sequence so far, and at each step downward a 1 is added.

Suppose that at some time instance the boundary between the tiled and untiled sections
is a random set of tiles with parameter p ∈ (0, 1). That is, for every tile on the boundary
there exists a boundary tile under it with probability p and that is independent of all other
tile positions. In this case the corresponding TASEP process has Bernoulli distribution of
particles (ones). Since Bernoulli measure is invariant with respect to TASEP, one concludes
that the statistical shape of the boundary remains the same and that the boundary moves to
the right at a long-term average speed of q [12, Theorem 4.17] (by symmetry the boundary
moves upwards at a long-term average speed of p). Let v(x, y) be the time needed for the
boundary to reach point (x, y) (on the hydrodynamic scale). Given that vx and vy are
partial derivatives of v, the preceding implies that vx = q−1 and vy = p−1 and, thus, since
p + q = 1, one has

v−1
x + v−1

y = 1. (2)

Next, in the domain D, consider the function u(x, y), the hydrodynamic limit of the
propagation time from the input region on ∂D to a point (x, y). The claim is that at a
point where u is smooth (i.e., where u is continuously differentiable), function u satisfies
the following PDE (Hamilton-Jacobi equation):

H(ux, uy) := u−1
x + u−1

y − 1 = 0, (3)

where ux and uy are partial derivatives of u. To show that u satisfies this PDE, one
could approximate locally level lines of u by random lines described in this section and
representing the (random) Bernoulli configuration with an appropriately chosen parameter
p to match the local slope of the level curve of u. The propagation speed for such initial
configurations is given by (2) and a straightforward coupling argument implies that u
satisfies the Hamilton-Jacobi equation locally.

The classic theory, as it relates to variational problems and partial differential equations
of first order (see, e.g. [4, Section 9.46]), implies that any function which locally solves
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Figure 6: Boundary of the tiled and untiled regions and its mapping to the particle process. In this
particular case p = q = 1/2. When the corresponding particle process is in steady state (Bernoulli
distribution of particles), the boundary moves to the right at a long-term average speed of q (by
symmetry, the vertical speed is p). The angle of the boundary remains the same.

H(ux, uy) = 0 can be represented also as the extremal action function extremizing the
following functional ∫

L

(
dξ

dz
,

dη

dz

)
dz,

where L is the Legendre dual to H, i.e.,

L(x, y) = inf
(ξ,η): H(ξ,η)=0

(xξ + yη).

Evaluating the infimum for the particular choice of H(ξ, η) = ξ−1 + η−1 − 1 (see (3)), one
obtains

L(x, y) = x

√
x +

√
y√

x
+ y

√
x +

√
y√

y

= (
√

x +
√

y)2.

Hence, we have established the computational time in terms of a variational problem:

Theorem 1. The time CλD required to complete computation on a DNA computer of shape
λD is given by

lim
λ→∞

λ−1CλD = sup
γ

∫ (√
dξ

dz
+

√
dη

dz

)2

dz, (4)

where the supremum is taken over all piece-wise smooth increasing curves γ = (ξ(z), η(z)) ∈
D, 0 ≤ z ≤ 1, starting at the input region and ending at the output region of D.
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Figure 7: Two examples of 2D DNA-based computational devices. The one on the right corresponds
to the one proposed in [7]. A few piece-wise linear paths from the input areas to the output areas
are shown. The paths that determine the computational times (maximize the integral in (4)) are
shown with solid lines.

Remark 1. It is easy to prove that the parts of the extremals in the interior of D are
straight-line segments; see Figure 7 for examples.

Remark 2. The construction of the function L implies that the functional (4) is parametriza-
tion invariant. That is, it depends only on the trajectory {γ(z)}0≤z≤1.

4 Concluding remarks

This result allow one to determine the hydrodynamic limits of the computation times for
2D DNA-based logical devices. The fluctuations around the hydrodynamic scaling can
in fact be estimated. In the particular situation of homogeneous attachment rates, these
fluctuations can be studied using combinatorial methods and the powerful machinery of
Riemann-Hilbert problems [9, 14]. In more general settings, less precise yet more robust
methods are applicable (see, e.g. [16]).

Next we discuss the case when attachment times are not identically distributed exponen-
tial random variables, i.e., attachment rates are nonhomogeneous and/or non-Markovian.
In such a case, coupling methods ([10]) allow one to prove once again a convergence of the
computation-time function u, in the hydrodynamic scaling, to a solution of a homogeneous
first order PDE. However, recovering exactly the structure of the PDE appears to be out of
reach. Nevertheless, the Markovian setting allows one to bound the corresponding Hamil-
tonian H if the random attachment times can be bounded by exponential variables. These
bounds can also be used, evidently, to put some a priori bounds on the solutions of the
PDE. In general, in the hydrodynamic limit, the computation time could be expressed as
the extremal value of the following functional

∫
L

(
ξ, η,

dξ

dz
,

dη

dz

)
dz.

Although, the analytic form of L might not be known, the functional can, in principle, be
estimated by simulation. In Figure 8 we show simulation results for two attachment times.

We point out that there is a clear analogy with geometric optics, since we look for the
extremals of a Lagrangian that is homogeneous, and of degree-1 in velocities. The space in
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Figure 8: Estimated forms of the curve L = 1 when attachment rates are not exponential random
variables. Attachment times are equal in distribution to (1 − α)T1{B=0} + αT1{B=1}, where B is
Bernoulli with parameter 1/2 and T is exponential of unit mean. The parameter α is set to 0.5
(A) and 0.9 (B). The curve (

√
x +

√
y)2 = 1 shown with the dashed line corresponds to the case of

homogeneous attachment times (α = 1/2).

which the extremals are being sought consists of all (piece-wise) curves connecting boundary
manifolds. The term reverse-optic law serves as a mnemonic for remembering the expression
for computation times. In particular, when considering the computation of a single bit one
has:

DNA computing sup
∫ (√

∂ξ
∂z +

√
∂η
∂z

)2

dz

Geometric optics inf
∫ √(

∂ξ
∂z

)2
+

(
∂η
∂z

)2
dz

Finally, we note that the idea of using max-plus algebra in software and hardware de-
sign appeared earlier (see [13, 8] and references therein). However, the extension of this
circle of ideas to the case of stochastic local propagation, crucial for the analysis of DNA
computations, is, to our knowledge, new.
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