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Abstract

Robots are deployed by a Web search engine for collecting information from different Web servers in
order to maintain the currency of its data base of Web pages. In this paper, we investigate the number of
robots to be used by a search engine so as to maximize the currency of the data base without putting an
unnecessary load on the network. We use a queueing model to represent the system. The arrivals to the
queueing system are Web pages brought by the robots; service corresponds to the indexing of these pages.
The objective is to find the number of robots, and thus the arrival rate of the queueing system, such
that the indexing queue is neither starved nor saturated. For this, we consider a finite-buffer queueing
system and define the cost function to be minimized as a weighted sum of the loss probability and the
starvation probability. Under the assumption that arrivals form a Poisson process, and that service times
are independent and identically distributed random variables with an exponential distribution, we obtain

explicit solutions for the optimal number of robots to deploy.
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1 Introduction

The World Wide Web has become a major information publishing and retrieving mechanism on the Internet.
The amount of information as well as the number of Web servers has been growing exponentially fast in
recent years. In order to help users find useful information on the Web, search engines such as Alta Vista,
HotBot, Yahoo, Infoseek, Magellan, Excite and Lycos, etc. are available. These systems consist of four main
components: a database that contains web pages (full text or summary), a user interface that deals with
queries, an indexing engine that updates the database, and robots that traverse the Web servers and bring
Web pages to the indexing engine. Thus, the quality of a search engine depends on many factors, e.g., query
response time, completeness, indexing speed, currency, and efficient robot scheduling.

Our interest here focuses on the function served by robots: establishing currency by bringing new pages to
be indexed and bringing changed /updated pages for re-indexing. We investigate the problem of choosing the
number of robots to meet the conflicting demands of low network traffic and an up-to-date data base. The
specific model, illustrated in Figure 1, centers on the indexing engine, which is represented by a finite, single-
server queue/buffer, and multiple robots acting as sources of arriving pages. The times between successive
page accesses are independent and identically distributed for each robot; the robots themselves are identical
and function independently. The indexing (service) times are independent, identically distributed, and

independent of the arrival processes.

When a robot arriving with a page for the indexing buffer finds the buffer full, the page being delivered
is lost, at least temporarily. In this situation, a potential update or new page has been lost, and network
congestion has been created to no benefit. On the other hand, if the buffer is ever empty, and hence the
indexing engine is idle, data base updating is at a standstill waiting for the robots to bring more pages. To
reduce the probability of the first of these two events, we want to keep the number of robots suitably small,
but to reduce the probability of the second, we want to keep the number of robots suitably large. To make
the objective concrete, we will formulate a cost function as a weighted sum of the probabilities of an empty
buffer and a full buffer. We will then study the problem of finding the number of robots that minimizes the
cost function.

There is a large literature on search engines and their components. The search engines themselves may
well be their own best source of references; we recommend this entree to the research on any aspect of the
subject. Tn particular, much can be found on the design and control (including distributed control) of robots.
However, we have found very little on the modeling and analysis of robot scheduling and the indexing queue.
The work in [2] is the only such effort we know about. In [2], the authors propose a natural model of
Web-page obsolescence, and study the problem of scheduling a single search engine robot so as to minimize
the extent to which the search engine’s data base is out-of-date.

Section 2 introduces the probability model, sets notation, and formalizes the optimization problem. Section
3 solves the optimization problem and presents an explicit computation of the optimal number of robots.
The sensitivity of the results to model parameters is also studied in some detail. Section 4 concludes with a

brief discussion of further, more general results not included here and of interesting questions that remain
open.

2 Preliminaries and general notation

The size of the finite buffer is K'; we assume that K > 2. The number of robots is denoted by N. Each 1s a
Poisson source with rate A; the sources are independent of each other. Then for N robots, the total arrival
rate is NA. As noted earlier, we assume that the arrival and service processes are independent.
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Based on these definitions, we define the cost function as follows. As mentioned earlier, it is the weighted
sum of two terms :

e The probability of an empty buffer P {X = 0}, where X is a random variable with the stationary

queue-length distribution.

e The probability of losing an arriving page. This i1s the probability that the queue length seen by an
arrival is K, which we denote by P* {X = K}

If we define p := NA/p, then the cost function can be written as:
Clp,7, K) = 4P {X = 0} + P* {X = K}

where v is a positive constant that is useful when we want to stress one term or the other.

We use the results of queueing theory to compute C(p, v, K) (see e.g., [3]). In the calculation of the value
of p that achieves min, C'(p, ¥y, i), we first consider p as a continuous variable. And then, depending on the

behavior of the cost function, we will derive the optimal (discrete) number of robots.

3 The M/M/1/K search engine model

By the assumptions of Section 2, our search engine model is the well-known M/M/1/K queue. We first

address the problem of finding the optimal number of sources in this model.



3.1 Optimizing the number of robots

The following proposition gives the well known stationary queue-length probabilities at arbitrary epochs for

this queue [3]:

Proposition 1 For any p > 0,

l—p

T F

_ AK+1
P(X=i)=4{ | 7°F

0 fori> K.

' ofori=0,1,... K

When p = 1 the non-zero stationary queue-length probabilities at arbitrary epochs are all equal and given by

Prob(X =i)=1/(K+1) fori=0,1,... K.

The expression for the cost function C(p,v, K') now flows from Proposition 1 and the PASTA property that
ensures that in the M/M/1/K queue the stationary queue-length probabilities at arbitrary epochs and the
stationary queue-length probabilities at arrival epochs are equal (i.e., P* (X = k) = P(X = k)). We find
that

(1=p)(v +0")
W forpgél

Clp,v, K) = (1)
v+1

1+ K

for p = 1.

Note that for any K > 2, 4 > 0, the mapping p — C(p, K,7) is continuous and differentiable at each point
in (0, 00), including the point p = 1.

Lemma 1 For any v > 0, K > 2, the mapping p — C(p,7,K) has a unique minimum in [0,00), to be
denoted p(y, K). Furthermore, 0 < p(y, K) <1 ify <1, p(1,K) =1 and p(y, K) > 1 if vy > 1.

Proof. Fix K > 2. We have

oC(p,v, K) _ R(p,y,K) 2)
dp (1= pRAL)?

with
R(p,y, K) = p*% = Kyp™ '+ (y = 1)(K + 1)p" + Kp" =1 — . (3)
Tedius but elementary algebra shows that the polynomial R(p, v, K) in the variable p
(i) has a zero of multiplicity two (respectively, three) at point p = 1 when y # 1 (respectively, v = 1);
(ii) has a zero of multiplicity one in [0, 1) and no zero in (1,00) when v < 1;
(iii) has a zero of multiplicity one in (1,00) and no zero in [0, 1) when v > 1;

(iv) has no zero other than 1 when v = 1.



We deduce from the above that

9C(p, v, K 1—p)? ]
(pa,z Do (1(_ pr-l)—l)z Q(p,7, K)

where Q(p,v, K) is a polynomial in the variable p with a single zero p(y, K) in [0, 00) with p(y, K) < 1 if
y<1,p(1, K)y=1and p(y, K) > 1if y > 1. Furthermore, the inequality @(0,v, K') = —y < 0 implies that,
for any v > 0, Q(p,7,K) < 0 for 0 < p < p(vy,K) and Q(p,y, K) > 0 for p > p(v, K), which proves the

lemma.

Q

Tt is worth observing that the optimum p(y, K) does not depend on the buffer size K when v = 1. This
means that if the same weight is given to the probability of starvation and to the loss probability, then the

optimal arrival rate is equal to the service rate, independent of the buffer size.

We now return to the original problem, namely the computation of the number N of robots that minimizes
the cost function C(p,v, K) with p = AN/u. The answer is found in the next result which is a direct corollary
of Lemma 1.

Proposition 2 For any v > 0, K > 2, let N(y, K) be the optimal number of robots to use.

Then,

N(y,K)=ar C(nA/p,y, K) (4)

g min
ne{lp(v, K)u/2],[p(v, K)u/X]}
where for any real number x, |x| (respectively [x]) denotes the largest (respectively smallest) integer less

(respectively more) than or equal to x.

In the next section, we investigate the impact of the parameter v on the optimal number of robots.

3.2 Impact of v on the optimal number of robots

Recall that the parameter 74 i1s a positive constant that allows us to stress either the loss probability or the
probability of starvation. Part of the impact of ¥ on p(y, K), and therefore on N (v, K), the optimal number

of robots, is captured in the following result.

Proposition 3 For any v > 0, K > 2, the mapping p — p(v, K) is nondecreasing in [0,00), with

lim, . p(y, K) = 0.

Proof. Pick two constants 0 < 41 < 72 and define

Alpyr, 72, K) = Clp, 72, K) = Clp,m, K)
l—p
T e (2= 7)
Let us assume that p(ys2, K) < p(71, K) and show that this leads to a contradiction.

The mapping p — A(p, y1, 72, K) is stricly decreasing in [0, 00). Therefore,

0 < A(p('}/Z, [{)’ Y1572, [{) - A(p('yla[{)a Y1572, [{)
= [C(p(y2, K), 72, K) = C(p(71, K), 72, K)] + [C(p(y1, K), 71, K) = C(p(vy2, K), 71, K)] <0 (5)
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Figure 2: Optimal number of robots as a function of v, with u/A = 5.7

where the last inequality follows from the definition of p(y, K). This ends up as a contradiction, which proves

the first part of the proposition.

On the other hand, it is easily checked that C(p,~, K)/0p < 0 for p = (v/K)"/E=1) when v > 0. Hence,

by Lemma 1, we deduce that, necessarily,

1/(K=1) )
i ) <p(v,K), ¥Yy>0. (6)

po(v, K) = (f

Letting 4 tend to infinity on both sides of (6) yields the second result of the proposition.
Q@

Proposition 3 has a simple physical interpretation. As the parameter 7 increases the probability of starva-
tion becomes the main quantity to minimize. The minimization is done by increasing the arrival rate or,
equivalently, by increasing the number of robots. Figure 2 provides two numerical examples, illustrating the
monotonicity of the optimal number of robots. One should note that the rate of increase of this function
seems to decrease when the buffer size increases.

The next section focuses on the impact of the buffer size K on the optimal number of robots.

3.3 Impact of K on the optimal number of robots

In this section, we examine the behavior of p(y, K) as a function of K. The first result establishes an upper

bound on p(y, K) that complements the lower bound given in (6).

Lemma 2 For any v > 0, K > 2,

p(1, K) < (K + )70 = py (9, ). (7)



Proof. Thanks to Lemma 1, it is enough to show that dC(p,y, K)/0p > 0 at the point p = pi(y, K) or,
equivalently from (2), that R(p1(y, K),vy, K) > 0.

By writing R(p, v, K) in the form
R(p,y, K) = p" 1 (0571 = K9) + (v = DK + D)o + K57 =5,

we find that

K41

K-1 _|_

R(pi(v,K),v, K) = (K +1)7)) (v = (K + 1) (K + D)) F= +1(K(K + 1) = 1)

which is strictly positive, in particular for K > 2 and v > 0.

@
The lower and upper bounds (6) and (7) combine to yield
Aim p(y, K) =1 (8)

for any v > 0. In other words, the optimal arrival rate converges to the service capacity when the buffer size

increases to infinity.
In terms of the optimal number of robots to be used when K — oo, we see from (8) and (4) that

C(An/u,y, K). (9)

m ar

lim N(y,K) = li i
Jim N(y, K) = lim_ & e lu/a /AT

Hence, for K large enough, (9) suggests the approximation
|—/'L//\-| if C(p+,"}/,OO) < C(p_,"y,OO)

/A i Cp4,7,00) > Clp-, v, 00)

N(y, K) ~

or, equivalently from (1),

(/AT if (pp = 1)/pp <v(1—p-)
N(v,K) ~ (10)

/Al if (pp = 1) /pp < v (1 —p-)

with py:= (A ) [n/A] and p_ = (A p)[pu/A].
The limiting result (8) may seem counterintuitive at first. Indeed, one may be tempted to argue that the
component P(X = K) in the cost function C(p,v, K) converges to 0 as the buffer size increases to infinity

and to conclude that C'(p,v, K) is minimized when P(X = 0) converges to 0, which occurs when the arrival

rate converges to infinity.
This intepretation is not correct as limg .o, P(X = K) = (p—1)/p > 0 when p > 1 (see Proposition 1).

It is easily checked from Proposition 1 that lim, 1 limg_.oo C(p, 7, K) = limg oo lim,—1 C(p, v, K) = 0,
which agrees with (8).

Tt is not an easy task to study the behavior of p(y, K) as a function of K. We suspect the mapping
K — p(v, K) to be increasing when 0 < 4 < 1 and decreasing when v > 1, but we have not been able to
prove it. The conjectured behavior of the mapping K — p(y, K) (and of K — N(v, K)) is illustrated in
Figures 3 and 4. Figure 5 illustrates the behavior of the optimal number of robots as a function of the ratio

u/ A, when the buffer size is quite large. In both curves, the parameter v is fixed (equals 0.5 and 2.0).
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Figure 5: Optimal number of robots as a function of u/A, for “large” buffer



4 Final Remarks

Useful generalizations are obtained by replacing exponential distributions by general ones. We have done this
in part by solving our optimization problem for a broad class of indexing-time distributions. This analysis
will appear in an expanded version of the paper.

The reader may have already noticed that a search engine with a variable, dynamically changing number
of active robots/sources could lead to better solutions in general. For example, one can contemplate robot-
control rules that deactivate robots as the buffer approaches the full state, and activate more robots as the

buffer approaches the empty state. The authors have a companion paper in progress on this extension [4].

Finally, a realistic model may require that robots not all be considered identical. They may operate in
different geographical neighborhoods, for example, in which case our problem could become part of a larger
problem in which the optimal location of robots is also included.
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