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1 Introduction

Problems. The problems studied here all involve the partitioning of a set of positive numbers into
a collection of subsets satisfying a sum constraint. The following two problems are among the most
fundamental. They have wide-ranging applications throughout computer science and operations

research.

Bin Packing (BP). Given ¢ > 0 and a set S = {X1,..., X,} with 0 < X; < ¢, 1 <i < n, partition
S into a minimum number of subsets such that the sum of the X;’s in each subset is no more

than c.

The X;’s are usually called items or pieces and are thought of as being packed into bins By, Bs, . . .,
each with capacity ¢; the items packed in a bin comprise one of the subsets in a solution to the

optimization problem.

Multiprocessor Scheduling (MS). Given an integer m > 1 and a set S = {X1,...,X,}, find a
partition of S into m subsets such that among all such partitions, the maximum subset sum

1s minimized.

Note that the MS problem is complementary to the BP problem in that the objective function
and the given parameter are interchanged. The items are now called tasks or jobs, with running times
or durations instead of sizes. The bins become processors Py, ..., P, and the partition becomes a
schedule of S on m processors that minimizes the makespan ¢, 1.e., the completion time of a latest
finishing task. Because of the sequential nature of most heuristics, it is convenient to assume that the
set to be partitioned is given as a list L, = (X1,..., X;,) from which items are packed or scheduled
one by one. If H denotes an MS heuristic, then H(L,, m) denotes the makespan of the m-processor
schedule generated by H for the tasks in L,. In the BP problem, the bin capacity is essentially a
scale factor, so we take ¢ = 1 without loss of generality. Thus, if H denotes a BP heuristic, then

H(Ly) denotes the number of unit capacity bins in which H packs the items of L.
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Merely deciding whether a list of numbers can be partitioned into two subsets with equal sums
is NP-complete, so as one would expect, both the BP and MS problems are NP-complete. Thus,
one is unlikely to find an algorithm that will solve these problems exactly and efficiently.! For this
reason, a large literature has built up over the past 20 years on the design and analysis of heuristic
or approximation algorithms. Such algorithms are designed to generate optimal or nearly optimal

solutions for most problem instances. Quantifying this last statement is the goal of analysis.

Analysis. Early research on BP, MS, and related problems concentrated on combinatorial, worst-
case results, as reflected in the survey by Coffman, Garey and Johnson (1984). For example, a
scheduling heuristic H would be assessed by determining for each m an upper bound over all L,, and n
on the ratio H(L,, m)/OPT(L,, m), where OPT stands for an optimal algorithm, i.e., OPT(L,,, m)
denotes the makespan of a solution to the MS problem for the problem instance (L,,m). Simi-
larly, the ratios H(L,)/OPT(Ly) were bounded for BP heuristics H. Such results are inherently
pessimistic, so probability models were introduced in order to learn more about the probable or
average-case behavior of heuristics. Probabilistic analysis began about 10 years ago, and gained

considerable momentum when some striking new results were developed a few years later.

In the standard probability model, the X;’s are taken as independent samples from a given
distribution F'(2). The goal is then an estimate of distributions such as P{H(L,) < z}, or what is
sometimes easier to obtain, expected values such as E[H(L,, m)], where the expectations are over

all n-item samples L, = (X1,..., Xp).

Typically, exact analysis of probability models is quite difficult, especially for the more efficient
algorithms, so asymptotic techniques have been used. These techniques estimate behavior for large
problem instances, i.e. for large n. Also, the estimates often take the form of expressions with
terms that are precise only within unspecified multiplicative constants. For example, let F(x) be
the uniform distribution on [0, 1]. Then as illustrated later, there are BP heuristics H for which it
has been proved that F[H(L,)] = n/2+0(y/n). Here, the O(-) notation is simply a relaxation of the
concept “is proportional to.” Precisely, f(n) = O(g(n)) means that there exist constants «, 3 > 0

such that for all n large enough,
ag(n) < f(n) < Bg(n).

If we only know the existence of 3 > 0 such that the right-hand inequality 1s satisfied for all n large
enough, then we write the familiar f(n) = O(g(n)). A similar restriction to « and the left-hand
inequality is denoted f(n) = Q(g(n)).

We emphasize that usually very little is known about the multiplicative constants hidden in the

1Garey and Johnson (1979) give a comprehensive treatment of NP-completeness and its implications.
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O(-) terms. One can almost always find some bounds for these constants, but in most cases there is

reason to believe that the bounds are very crude.

In the remainder of this section we present a number of fundamental algorithms together with a

sampling of results that measure the quality of the packings produced.

BP results. We begin by describing three algorithms that pack the items in the sequence X1, ..., X,.
An item is packed when it is encountered; once packed, it is not moved thereafter. The algorithms
are said to be on-line because, for each 7, 1 < i < n, the rule that decides where X; is packed is
independent of the number and sizes of the remaining items X;41,..., X,. All three algorithms

begin by packing X; into B;.

The simplest of the three algorithms 1s Next Fit, abbreviated NF. In packing X;, ¢ > 2, NF first
checks the highest indexed, nonempty bin, say B;, j > 1. X; is packed in B; if it fits, i.e., if X; plus
the sum of the items already packed in B; is at most 1. Otherwise, X; is packed into B;1, which

then becomes the new highest-indexed, nonempty bin.

The two algorithms, First Fit (FF) and Best Fit (BF), improve on NF by checking all nonempty
bins before starting a new bin, 1.e., FF and BF pack an item X; into an empty bin if and only if X;
does not fit into any nonempty bin. FF packs X;, 7 > 2, into the lowest indexed, nonempty bin, if
any, in which X; fits, while BF packs X; into a nonempty bin, if any, in which X fits best, 1.e., with

the least unused capacity left over. Ties are resolved by BF in favor of lower indexed bins.

Improved, off-line versions of these algorithms are obtained by first sorting the X;’s into decreas-
ing order; the corresponding NFD, FFD, and BFD algorithms (D stands for decreasing) are simply
NF, FF, and BF applied to the list (X(y), ..., X(1)), where X(;y denotes the it smallest item in L.

Table 1 summarizes a number of the basic results that have been derived for the above algorithms
under the assumption that F'(2) is the uniform distribution on [0, 1]. Worst-case bounds and the
average-case result for OPT(L,) are also shown for comparison. Clearly, the average cases are far
more favorable than the worst cases. The ratios E[H (L,)]/E[OPT(L,)] ~ 2E[H(Ly)]/n for NF and
NFD are 4/3 and 1.29 as compared to their respective worst-case ratios, 2 and 1.691.... Note also
that the FF and BF heuristics, along with their counterparts FFD and BFD, are all asymptotically
optimal in the sense that E[H(L,)]/E[OPT(Ly)] ~ 1 as n — oo for each heuristic.

The shortcomings of the ©(+) results are apparent, since the average-case results do not distin-
guish between FFD, BFD, and OPT. On the other hand, the average-case results do show that
for all n sufficiently large, FF(Ly) > BF(Ly), a distinction that does not appear in the worst-case

results.
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Algorithm | l.u.b. for H(L,)/OPT(L,) E[H(Ly)]
NF 2 ~2n/3 as n — oo
FF 17/10 =n/2+ 0(n?3)
BF 17/10 =n/2+ O(vnlog* " n)
NFD 1.691 ... ~ (.645..)n as n — o0
FFD 11/9 =n/2+0(/n)
BFD 11/9 =n/2+0(/n)

E[OPT(La)] = n/2+6(/n)

Table 1. Worst-case vs. average-case with F'(2) the uniform distribution on [0, 1].

MS results. We begin by describing three heuristics. The simplest is the on-line List Schedul-
ing (LS) algorithm, which schedules the tasks in the given sequence X,..., X, on the processors
Py, ..., Py with Xy starting on P;. LS schedules X;, ¢ > 2, on that processor having a smallest
workload in the schedule for Xy,..., X;_1, with ties broken in favor of lower indexed processors.
By the workload of a processor, we mean the total duration of the tasks already scheduled on that
processor. As before, LS can be improved by first sorting 7,, into decreasing order. LS along with

the initial sorting is called the Largest Processing Time (LPT) algorithm.

The third MS heuristic was originally proposed for a somewhat different optimization problem:
With the instances (L,,, m) the same as in the MS problem, the objective of the set-partitioning (SP)
problem is to find a schedule that minimizes the difference in the maximum and minimum processor
workloads. Clearly, one expects a good heuristic for SP to be a good heuristic for MS; indeed, the
two problems are obviously identical for m = 2. The heuristic described below is a set-differencing
method. Tt can be extended to all m > 2. However, we confine ourselves to the case m = 2, since it

is easier to describe and analyze.

Two tasks X and Y in list L are said to be differenced in L when a new list L’ is formed from L
by replacing X and Y with a task having duration |X — Y|. The Largest-First Differencing (LFD)
heuristic applied to L, = Lgll) for m = 2 begins by differencing the largest two tasks in Lgll) to form
Lf). Then the largest two tasks are differenced in Lf) to form L%S). This procedure continues until
a list Lﬁ{” of one task remains. LFD defines a schedule for L,, by requiring that the tasks differenced
in Lg), 0 < i< n-—1, be scheduled on different processors in such a way that the final processor
workloads differ by the duration of the task in Lﬁ{”. This schedule 1s easily developed by working
backward through the sequence of differencing operations. First, the task in Lﬁ{” is put on one or
the other of the two processors. Suppose the schedule for Lg), 2 <1 < n, has been formed, and let
X and Y be the tasks differenced in Lgf_l). Then the schedule for L%_l) 1s formed from the schedule
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for Lgf) by removing a task of duration | X — Y|, then scheduling X and Y on different processors
)

so as to preserve the processor workload difference, i.e., the duration of the task in Lﬁl” .

Typical, yet simple illustrations of probabilistic results can be found in the analysis of the “ab-
solute error”

A"(L,,m) = H(L,,m)—OPT(L,,m) . (1.1)

Let m = 2. Then E[A®(L,,2) < E[DX]/2, where DI = DH(L, 2) is the difference in the two
processor finishing times in the schedule produced by H. Now assume that F(z) is the uniform

distribution on [0,1]. Then an analysis shows that E[DL®] = 1/3 and E[DEFT] < A

el
satisfactory analysis of LFD remains an open problem, but for a randomized, more easily analyzed
version of LFD, denoted LFD*, it has been shown that there exists a universal constant ¢ > 0
such that E[DEFP"] = O(n_c\/@). Thus, while the heuristics have become increasingly more

complicated, they have produced increasingly more efficient schedules for large n.

2 Analytical Techniques

We describe and illustrate below a number of the more important techniques that have been

successfully applied in the analysis of BP and MS problems.

2.1 Markov Chains

For the simpler BP and MS heuristics, it is sometimes possible to formulate a tractable Markov
chain that represents the element-by-element development of partitions. A state of the Markov chain
must represent block sums in a suitable way; given the state space, the transition function is defined
by the heuristic. Results for general n are obtained by a transient analysis, while asymptotics for

large n are obtained by a steady-state analysis.

To illustrate ideas, consider the average-case analysis of LS on m = 2 processors, and assume
that F'(x) is the uniform distribution on [0,1]. Define V; as the (positive) difference between the
processor finishing times after the first ¢ tasks have been scheduled. The following recurrence is

easily verified:

Vo { Vit = X, 1§é§n,

Since the X; arei.i.d. random variables, {Vi}iZO is a Markov chain. A routine analysis shows that the
density for V; is given by fi(2) = 2(1 — =), for all ¢ > 2. Then we obtain the result cited in Section 1,
viz. E[DES] = E[V,] = 1/3. Since OPT(L,,2) > (L,)/2 and LS(Ly,2) = [Vi +0(Ln)]/2, we also
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have the relative performance bound

E[LS(Ly,2)] E[V,] _ 2
FOPTm 2] = T By ~ T

As another example, {NF(Ly), 1, },>1 is a bivariate Markov chain, where ; is the level, i.e., sum
of item sizes, in the last bin of an NF packing of ;. An analysis of this chain for F(z) uniform on
[0, 1] shows that

2n

E[NF(L,)] = 5-+6, n>2,

thus refining the result cited in Table 1. Indeed, an explicit, though complicated expression for the

distribution of NF(L,) can be derived.

Unfortunately, the Markov-chain approach seems to be limited to the relatively simplistic, less
efficient heuristics; the state spaces of Markov chains for other heuristics like FF and BF simply

become too large and unwieldy.

2.2 Bounds

The immediate advantage of bounds is that they lead to a tractable analysis. The sacrifice
is that they are limited to providing only partial information. However, this information is often
sufficient to choose between alternative heuristics. For example, the results cited in Table 1 for
FF, BF, FFD, and BFD were all obtained by bounding techniques, yet they show that for all n
sufficiently large, we have F[FF(L,)] > E[BF(Ly)] > FE[H(Ly)], where H stands for either FFD or

BFD. As illustrated below, bounding techniques have come in two basic forms.

Bounding the Objective Function. In analyzing the BP heuristic H, it may be possible to find
a function g(L,) such that g(L,) > H(L,) for all L, and such that E[g(L,)] is easily calculated.
Then we have the average-case bound E[H(L,)] < Elg(L,)]. A similar assertion applies to the

analysis of MS heuristics.

As a concrete example, we consider the LPT heuristic and its absolute error, as defined by (1.1).

Since OPT(Ly,m) > o(Ly)/m, we have

AYPT (L, m) < LPT(L,,m)—o(L,)/m

1 7
11%1%)(”{)((2') - > X(k)} : (2.1)

k=1

IN

To see the latter inequality, let ¢ be the largest index such that X(;y runs until the end of the schedule.
Then just after X(;) is scheduled the average processor idle time up to the end of the schedule is at
most (m — 1)X;/m < X(;). Each task X3 scheduled after X(;) reduces the average idle time by
X(ry/m; (2.1) follows easily.
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To illustrate the use of the bound (2.1), we show that
ALPT(LH, m) — 0 (a.s.) as n — oo, (2.2)

when F'(x) is strictly increasing in (0,4) for some 6 > 0, and F[X;] < co. Bounding the right-hand
side of (2.1) by
Ler]

X(fen)y +max § 0, Xmy = — > Xy o 0<F7He) <8, (2.3)
k=1

we observe that the first term in (2.3) converges (a.s.) to F~'(¢) as n — oo, and that it can be
made arbitrarily small by an appropriate choice of €. Also, since E[X;] < 00, X(n)/n — 0 (as.).

Moreover, Z]En;lj X(k)/n converges (a.s.) to a positive constant as n — oo for every € > 0. Thus, the

second term within the maximization in (2.3) tends to —oo (a.s.). We conclude that (2.2) holds.

In another application of (2.1), it has been shown that if F'(2) is the uniform distribution on
[0,1], then E[ALPT(L, m)] < Cm 47, Where ¢p, is a bounded function of m that tends to 1 as

m — O0.

In some cases, the requirement that a bound hold deterministically for all L, is too stringent
to yield good results. In addition to a bound H(L,) < g(Ly) that always holds, there may exist a
sharper bound ¢'(Ly) such that H(L,) < ¢'(L,) except on a set having a small probability ¢,. If
qn — 0 sufficiently rapidly that ¢, F[g(Ln)] = o(E[¢'(Ln)]) as n — oo, then we have

E[H(Ln)] < (1= ¢0)Elg"(Ln)] + an Elg(Ln)] ~ Elg'(Ln)] -

Dominating Algorithms. A common way to bound H(L,) is to introduce a simpler, more easily
analyzed algorithm H' for which it can be proved that H'(L,) > H(L,) for all L,. In this case, H’
is said to dominate H. For example, the MATCH packing heuristic iterates the following procedure
until all items are packed. Let S denote the set of items that remain to be packed. MATCH first
finds a largest item in S, say X. If |S| = 1 or if no remaining item fits with X ie., Y + X > 1 for
allY € S — {X}, then MATCH puts X into a bin alone. Otherwise, MATCH puts items X and X’
into a bin alone, where X’ is a largest remaining item other than X such that X + X’ < 1.

Tt can be proved without much difficulty that FFD(L,) > MATCH(L,) and BFD(L,) >
MATCH(L,) for all L,. Moreover, MATCH has the following simple analysis. First, we have
MATCH(L,) < (n+b)/2, where b is the number of singleton bins in the MATCH packing. The num-
ber of singletons with an item no larger than 1/2 is at most one, so MATCH(L,) < (n+b'+1)/2 where
b is the number of singletons with an item larger than 1/2. But an inspection of MATCH shows that

b is equal in distribution to max & where & is a symmetric, n-step random walk starting at the
Stsn
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origin. Standard results then yield MATCH(L,) = n/2+ ©(y/n) and hence H(L,) = n/2+ O(\/n),
where H stands for either FFD or BFD.

2.3 Stochastic Planar Matching

Matching problems in one or more dimensions have arisen in the analysis of several packing
heuristics. An example in one dimension was given in Section 2.2. Here, we first define a general-
ization of this matching problem to 2 dimensions and then illustrate how it occurs in the analysis

of algorithms.

Let n plus points and n minus points be chosen independently and uniformly at random in the
unit square. Let M, denote a maximum up-right matching of plus points to minus points such that
if a plus at (,y) is matched to a minus at (¢',y'), then @ < 2’ and y < y'. Let U, denote the
number of points left unmatched by M,,. The problem of determining the distribution of U, is called
the up-right matching problem. Asymptotic bounds on the expected value are given by

E[U,] = ©(/n log®* n) . (2.4)

To illustrate the applications of (2.4), we consider an upper bound analysis of the BF heuristic,
assuming that F(x) is the uniform distribution on [0,1]. Define the Modified Best Fit (MBF)
heuristic to be the same as BF except that MBF closes a bin to any further items whenever the bin
receives an item no larger than 1/2. Clearly, bins in an MBF packing have at most two items. It is

not difficult to prove that MBF dominates BF, so that E[BF(Ly)] < E[MBF(L,)].

Next, we describe MBF as a matching procedure. Plot the items of L, as points in the left
half of the unit square so that X; has a y coordinate 1 —i/n and an  coordinate X; if X; < 1/2
and 1 — X; if 1/2 < X; < 1. X; is plotted as a plus point if X; < 1/2 and as a minus point if
1/2 < X; < 1. Now match a plus point with a minus point if the corresponding items are placed
in the same bin by MBF. By definition of MBF, the minus point must be above the plus point,
since the item corresponding to the minus point had to be scanned first. Also, the minus point must
be to the right of the plus point, since the two items fit into a single bin. An MBF matching is
a maximum up-right matching, as is easily verified. However, the model differs from the original
one 1n two respects. First, points are samples in the left half of the unit square, and second, the »
coordinate has been discretized so that « € {0,1/n,...,(n —1)/n}. But (2.4) still holds, since the

effects of both differences are limited to changes in the hidden multiplicative constant.

Finally, we observe that MBF(L,) is the sum of the occupied space ¢(L,) and the unoccupied
space, the latter quantity being bounded by U,. Thus, E[MBF(L,)] = n/2 + @(\/ﬁlog3/4 n) and
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hence
E[BF(L,)] = g +O0(v/nlog®* n) .

Again using the up-right matching result, a corresponding lower bound can be proved, so we obtain

the result for BF cited in Table 1.

2.4 Order Statistics

Let F,, () denote the empirical distribution function for the sample L, = (X1,..., X,). Prob-
ability bounds for the one-sided Kolmogorov-Smirnov statistic, D¥ (L, ) = sup[F,(z) — F(z)], have
been used to advantage on a number of occasions when the inequality D §xd can be transformed
directly into a corresponding bound on a given performance metric. A simple example occurs in the

analysis of LS when F(x) is the uniform distribution on [0, 1].

Consider the normalized absolute error

LS(Lp,m)— OPT(L,,m)
OPT(Ln,m) '

RES(L,,m) = (2.5)

LS can do no worse than to finish a schedule by running the largest task on some processor while
all other processors are idle. It follows that LS(L,, m) < [X) + ¢(Ln)]/m. This bound together
with OPT(L,, m) > o(Ly)/m reduces (2.5) to

RYS(L,,m) < (m—1)/a(Ly) . (2.6)

Now D*(L,) < d means that i/n — X(;) < d simultaneously for all 1 <7 < n. A summation then
yields (n 4+ 1)/2 — dn < (L, ), whereupon substitution into (2.6) gives

2Am—1) 1

LS
Ln.m) < -
R (L, m) £ == — 195

(2.7)
Then (2.7) along with the Smirnov estimate,
x 2 2x 1
P{DYIL,)< =} =1—-e2 (1-—"=40|-
(s f = 1= (1- 5o ()
can be used to estimate the distribution of RLS.

In contrast to the other, more elaborate applications of Kolmogorov-Smirnov statistics, the sim-

plicity of (2.6) permits a direct approach. In particular, we can use the Chernoff bounds
P{o(Ly) >z} < e 12 P{o(L,) < —av/n} <e /2, (2.8)

where o(L,) = o(L,) — E[6(L,)] and F(z) is any distribution on [—1,1]. With —z/n = —n/4 in
(2.8), we have

7_1)} < P{o(Ln,)—n/2 < —n/4} <e™n/32

n
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3 Final remarks

Here we mention

variants such as 2-dimensional packing, dual bin packing
perfect packing problems
discrete sets of item sizes

open problems.
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