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1. Introduction

Consider the bin packing problem in which a list L, of n items, with sizes drawn from
the unit interval, is to be partitioned into a smallest collection of blocks such that, for each
block, the sum of the sizes of the items in the block is at most 1. With applications in mind,
a partitioning algorithm solving this problem is said to pack the items of L,, into a minimum
number of unit-capacity bins. The problem is NP-hard, so a great deal of effort has gone into
the analysis of efficient approximation algorithms. The analysis of primary interest here is
probabilistic, or average-case analysis (see [5] for a recent book on the subject).

This paper analyzes the expected behavior of what are perhaps the two best known off-line
algorithms, First-Fit Decreasing (FFD) and Best-Fit Decreasing (BFD), described as follows.
Both FFD and BFD pack the items in order of decreasing size into a sequence By, By, ... of
initially empty bins, and both begin by packing the largest item into By. Thereafter, FFD
places the next item to be packed into the first, i.e., lowest indexed, bin having sufficient space
for it, whereas BFD places the item into a bin in which it fits best, i.e., minimizes the space
left over. Ties under BFD are resolved in favor of the lowest indexed bin.

In the past, the probabilistic analysis of FFD and BFD [1, 7] has assumed that item sizes
are drawn from a continuous distribution on [0, 1], even though models of many, if not most
applications require distributions on discrete sets of item sizes. The assumption is that contin-
uous distributions are likely to simplify the analysis while serving as reasonable approximations

to discrete distributions on large sets. The goal of our analysis of FFD and BFD is to assess
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this approximation, to see what properties it hides, and to measure the errors it makes in
standard performance metrics, such as expected wasted space.

As in the continuous case [1, 7], we focus on uniform distributions. In the discrete case this
refers to the distributions U{j;k}, 1 < j < k, which denote uniform distributions on the sets
{i/k; 1 <i < j} of item sizes. As we will see, the continuous model fails to reveal a variety
of intricate (and interesting) aspects of FFD and BFD behavior that appear in the discrete
model. Moreover, there are major differences in the average-case results for wasted space in
the two models.

To illustrate this last point, let A(L, ) denote the number of occupied bins in a packing by
algorithm A, let s(L,) denote the sum of the sizes of the items in L,, (the occupied area of any
packing of L,), and let WA(L,) = A(L,) — s(L,) denote the wasted space under algorithm
A. In [1] it is shown that, if U(0,u) is the uniform item-size distribution on the real interval
[0, u], then E[WYTFD(L )]s ©(n'/2)if u = 1, O(n'/3)if 1/2 < u < 1, and O(1) if u < 1/2.
(A further analysis of the case u = 1/2 can be found in [7].) By contrast, we will prove that, if
U{j; k} is the item-size distribution, then expected waste can even be linear in n. In particular,
we find that E[WFFD(LH)] is either ©(n), ©(n'/?), or O(1), depending on j,k. Moreover,
O(n'/?) occurs whenever j € {k — 1,k}, which corresponds to the u = 1 case, but expected
wastes O(1) and O(n) both occur for specific pairs j, k with j/k < 1/2 and with j/k > 1/2.

More detailed versions of these asymptotic results are given in Section 2, after certain key
combinatorial properties of FFD and BFD packings are introduced. Section 3 then delves into
the problem of classifying pairs j, &k in terms of the expected waste under the distributions
U{j,k}. Section 3 also presents a tight upper bound on the expected waste over all pairs j, k.
The probabilistic analysis of this paper is confined largely to Section 4, where we prove the
asymptotic bounds presented in Section 2. The proof of the upper-bound stated in Section 3
is rather long and is given in Section 5.

This paper is one in a series of papers, all based on the results reported in [2], and all having
the common theme of average-case analysis of bin-packing under discrete item-size distribu-
tions. Other papers in the series examine the average-case behavior of optimal algorithms and
the on-line algorithms First-Fit [3] and Best-Fit [4] (these are the FFD and BFD algorithms
but with the order of packing items being the given order of the list I,,.

We conclude this section with some notational conventions. The letters j, k, and n will be

reserved throughout for the purposes given in this section, i.e., with j, & defining the set of



- 3.

item sizes (the constraint j < k always applies), and with n being the number of items to be
packed. We will use m = n/j consistently, when n is divisible by j. Small letters toward the
beginning of the Greek and Roman alphabets are used generically to denote constants (their

meaning in one place need not be the same as in another).
2. Asymptotic Bounds on Expected Waste

For given j, k and n, with n a multiple of j, let V,, = V,,(4, k) denote the perfectly uniform
list consisting of n/j items of each size 1/k, ..., j/k. The asymptotic behavior of FFD and BFD
will be expressed in terms of simple combinatorial properties of the FFD and BFD packings of
uniform lists. This section first defines these properties and then states and briefly discusses
our main asymptotic result.

For each j, k there exists a sequence of values of n such that the FFD packings of V,, take
a particularly simple, normal-form structure. A similar statement applies to BFD, but the
structures and sequences may differ in the two cases. To describe these structures it is helpful
to study an example. Consider the pair j = 6, £ = 13 and suppose that n = mj, where m is a

multiple of 24. The FFD and BFD packings of V,, are the same and constructed as follows.
Size-6/13 Items: These m items go two per bin into m/2 bins, leaving m/2 gaps of size 1/13.
Size-5/13 Items: These m items go two per bin into m/2 bins, leaving m/2 gaps of size 3/13.

Size-4/13 Items: These m items go three per bin into m/3 bins, leaving m/3 more gaps of

size 1/13, for a total of 5m/6 such gaps.

Size-3/13 Items: The first m/2 of these items go into the gaps of size 3/13 created by size-
5/13 items. The remaining m/2 go four per bin into m/8 bins, leaving m/8 additional gaps of

size 1/13, for a total of 23m/24.

Size-2/13 Items: These m items go six per bin, leaving m/6 more gaps of size 1/13, for a

total of 9m/8.

Size-1/13 Items: These items fill m of the 9m /8 gaps of size 1/13 in previous bins, leaving
m/8 gaps unfilled in bins with 6 size-2/13 items. The final wasted space is then m/8k =
n/8jk = n/624.

Because of our assumption that 24 divides m, “transition” bins do not appear in the final

packing. For example, if m had been odd we would have had one bin with a size-6/13 item and
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a size-5/13 item, and if m had not been divisible by 3 we would have had one bin with both
size-4/13 and size-3/13 items. For many values of n, the last bin would also be a transition
bin, since it would have a gap at least as large as its smallest item. The bin types created by
the above procedure are repeating types; the number of bins of each one of these types grows
in proportion to m as m increases through multiples of 24.

FFD (BFD) packings of uniform lists that have no transition bins are said to be normal-form
packings under FFD (BFD). It should be clear, based on the above procedure, how to design
an algorithm that takes a pair j, k as input and outputs the smallest m such that n = mj yields
a normal-form packing. We call such an algorithm a fluid FFD or BFD algorithm, because
initially the algorithm treats the number n of items as if it were infinitely divisible. The output
of a fluid algorithm can be bounded as a function of 7 and k, but it seems difficult to find a
reasonably simple bound that does not grossly overestimate the output.

It is easily verified that the number of repeating bin types in an FFD or BFD packing is
at most j. Correspondingly, in any FFD or BFD packing there are at most j transition bins.

The pairs j, k give three qualitatively different types of normal-form packings.

Type 1. Just before the size-1/k items are packed, the sum of the gap sizes exceeds m/k, so

not all gaps can be filled (as was the case for the pair 6,13).

Type 2. Just before the size-1/k items are packed, the sum of the gap sizes is less than m/k,
so all gaps will be filled and a nonzero number of bins will be filled with size-1/k items. This

happens, for instance, for the pair 6,11.

Type 3. Just before the size-1/k items are packed, the total sum of gap sizes is precisely m/k,
so that these become filled with size-1/k items with none left over. This happens, for instance,
for the pair 12,13.

Observe that no space is wasted in Type-2 and 3 normal-form packings, but that wasted
space grows in proportion to m for Type-1 normal-form packings.

We say that a pair 7, k is of Type ¢ under FFD (BFD) if it leads to FFD (BFD) normal-form
packings of Type ¢. The theorem below shows that the type of j, k completely determines the

asymptotic expected wasted space under the distribution U{j;k}.

Theorem 2.1 Let A denote either FFD or BFD. For any pair j, k let L, be an n-item list with
sizes drawn independently from U{j;k}. If j, k is of Type 1 under A, then E[WA(L,)] ~ cn

as n — oo, where ¢ is the constant of proportionality for the wasted space in normal-form A
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packings. If j, k is of Type 2 under A, then E[WA(L,)] = O(1), and if j, k is of Type 3 under
A, then E[WA(L,)] = ©(n'/?).

Our proof of this theorem, given in Section 4, shows that E[W#(L,)] is estimated up to
a O(nl/z) term by the waste in normal-form packings, if 7,k is of Type 1 or 3 under A, and
up to a constant term if j, &k is of Type 2 under A. The theorem follows immediately from
these estimates. Although the proof does not yield any closed-form formula that might help
to explain the behavior in Theorem 2.1, extending the output of the fluid algorithms gives us
procedures that, given j, k, determine which of the three options applies, and in the case of
linear expected waste, computes the constant of proportionality.

For Type-1 pairs, we can also obtain a formula for the limiting expected ratio RY =
Jim_ RA, where RA = E[A(L,)/s(Ly)]. In Section 4 we show that, for A either FFD or BFD
and j, k of Type 1,

2k
(2.1) RA =142

17

with ¢ as defined in Theorem 2.1.
3. Analysis of Pair Types

A computer program implementing fluid FFD and BFD algorithms was written to evaluate
pair types and, in the case of Type 1 pairs where linear waste occurs, to determine constants of
proportionality. Computer runs not only revealed the intricate behavior of FFD and BFD, but
also simplified theoretical results (see Theorem 3.4). This section begins by proving theorems
that helped limit the computations that had to be made. We then discuss the results of the
computer runs. The section concludes by stating and briefly discussing a theorem that supplies
a sharp upper bound on linear expected waste over all pairs 7, k.

Normal-form packings were computed for all combinations of j, k with & < 1000. The fluid

algorithms were needed only for pairs j, k, j < k/2, as a result of the following easy theorem.

Theorem 3.1
(a) All pairs j,k with j =k —1 or k are Type 3 under both FFD and BFD.

(b) A pair j, k with k/2 < j < k — 2 has the same type under FFD (BFD) as the pair
k—j—1,k has under FFD (BFD).
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Proof. When 5 = k—1, FFD and BFD normal-form packings of n = mj items contain m bins
for each matched pair (i/k,1—i/k),i =j,7—1,...,[k/2], except for the last pair (¢ = [k/2])
when k is even, in which case there are m/2 bins pairing size-1/2 items with each other. The
same prescription holds for j = k if we imagine size-1 items being paired with fictional size-0
items. This proves part (a).

If /2 < j < k—2 then the FFD and BFD normal-form packings begin as described above,
but after packing bins with matched pairs, the items of sizes 1/k,...,1—(j +1)/k, m of each,
are left over. The remainder of the packing will then be a normal-form packing for the pair
k—j—1, k. Part (b) follows. [

Note that for Type-1 pairs j, k with £/2 < j < k — 2, the constants of proportionality in
the expected waste under FFD (BFD) are easily computed from those in the expected waste
under FFD (BFD) for the corresponding pairs k — j — 1, k. Interestingly, the computer runs
showed that there were no Type-3 pairs with j < k — 2, for any £ < 1000 under either FFD or
BFD. The existence of such Type-3 pairs for £ > 1000 remains an open question.

The next result shows that the fluid algorithms are needed only for pairs j, k with kY2 <
< k— kY2

Theorem 3.2 For all j, k with j < kY% or j > k — k'Y/2, the FFD and BFD normal-form
packings are of Type 2, and hence E[WEFD] and E[WEFD] are both O(1) when item sizes

are drawn independently from the distributions U{j, k} based on these pairs.

Proof. By Theorem 3.1 we need only consider the case j < k'/2. Note that for each i,
1 < i < j, the size-i/k items go at least k'/2 per bin, creating at most m/kl/2 gaps of some
specified size g. A simple induction can thus be used to show that, when we pack items of size
g, no gaps of size greater than ¢ remain, and that the total number of gaps of size ¢ itself is
at most (m/lcl/z)(lcl/2 —1). This means that all of the size-¢g gaps will be filled perfectly, with
some items of size g left over. Since this holds true for ¢ = 1/k, the normal-form packings are
of Type 2, by definition. [ |

A somewhat weaker result of this kind can be proved for Type-1 pairs. However, it gives

no further constraints on the pairs that need to be evaluated by the fluid algorithms.

Theorem 3.3 Under FFD and BFD Type-1 pairs j,k exist for arbitrarily large values of j
with j/k both above and below 1/2.
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Proof. Consider the pairs j, k with & = 1260t + 1, j € {420¢,840t} and t > 1 arbitrary.
We first note that if j = 840t, then the FFD and BFD normal-form packings pair each of
the items of size 1/2 4 a/k, 1/2 < a < 210t — 1/2, with an item of size 1/2 — a/k, thus



Figure 1: Pairs j, k yielding linear waste.

less than 10=3n for 311,943 to 0.00160256n for 6,13. Table 1 lists the ten pairs j, k that were
found to yield the largest rates of wasted space under FFD and BFD. (For these values of j, k
the waste under FFD and BFD is the same.) The third column gives the expected waste as a
function of n, with the rate rounded to the nearest multiple of 1078, The fourth column in the
table gives the corresponding asymptotic expected ratios E[RA]. The first 9 pairs yield the
9 largest values encountered for the expected ratio; the tenth largest value is given by 22,61
rather than 20,41, the last pair listed. Note that for each entry in the table, we have k odd
and j = |[k/2]; these pairs tend to give the highest rates of wasted space.

In view of Theorem 3.3 and the computational results in Table 1, it is natural to ask whether
the pair 6,13 gives the worst linear waste for all &k > 1. The following theorem answers this
question and shows in addition that the maximum rate of expected wasted space tends to 0 as

k — oo.



gk EW]] E[RZ]

6 13 0.00160256n 1.00595238
12 25 0.00122685n 1.00471866
15 31 0.00046723n 1.00181052
18 37 0.00046694n 1.00181859
24 49 0.00043285n 1.00169676
30 61 0.00027820n 1.00109484
36 73 0.00021314n 1.00084103
27 55 0.00020804n 1.00081730
48 97 0.00018985n 1.00075163
20 41 0.00018770n 1.00073291

Table 1: Combinations of j, k with the greatest expected waste. (4 = FFD or BFD.)

Theorem 3.4 Let A denote either FFD or BFD, and let item sizes be drawn independently
from U{j;k}. Then for all j k, k> 1,

(a) E[WA] < n/624 = (.00160...)n,
the rate attained by the pair 6,13,

(b) E[W] < (.00614...)n/k/?,

the constant being determined by the pair 12,25, and

(¢) E[RL] <1.00595...,

attained again by the pair 6,13.

The constants revealed by this theorem confirm that the linear waste that FFD and BFD
can create relative to OPT under U{j; k} may well lack significance in practice.

The proof of this theorem, given in Section 5, is based on a worst-case analysis of normal-
form packings, and relies on our computational results, which show that a violation of the
theorem would have to be for some k£ > 1000. The proof involves two separate arguments,
both somewhat complicated. The first, covering the waste in bins that start with items larger
than k'/2, has something of the flavor of the analysis of FFD in [1] for the continuous case,
although edge effects that previously could be ignored must now be taken into account. The

argument for bins that start with items smaller than &'/2 must confront distinctly new issues.
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4. Probabilistic Analysis

Before getting into the asymptotic estimates of this section, we prove a useful combinatorial
lemma. With this lemma in hand, we then derive asymptotic bounds on the tails of the
distribution of wasted space under FFD and BFD. The section concludes with a proof of the

average-case behavior given in Theorem 2.1.

Lemma 4.1 Let I be a set of items with sizes drawn from {i/k; 1 < i < j}, and suppose I
is obtained from I by the deletion of a single item. If A denotes either FFD or BFD, then the
A packings of T and I' differ in at most k’ bins, i.e., the packings of I and I' have at least
max{A(I), A(I")} — k7 bins in common.

Proof. Assume that I has at least one item of size 7/k, and that I’ is obtained from T by
deleting one such item. Following the A packing of all items of size i/k or more, the packing
of I' will leave one bin less full. Now consider the packing of size-(i — 1)/k items. Some of
these, but certainly no more than £ — 1 might go in the bin that is less full. This means that
at most & — 1 other bins, which would otherwise have received items of this size, will be less
full. Thus, following the packing of these items, there are at most & bins whose contents differ
from those that would have been obtained by packing I.

The argument continues in this fashion. Suppose we are about to pack items of size s < i/k
and there are N bins whose contents differ from what they would have been if we had been
packing I. Any such bin that is less full might take up to & — 1 more items of size s, so there
might be up to £ — 1 other bins that receive fewer items of size s than would have been the
case if we had been packing /. Any bin that is more full might take up to k — 1 fewer items of
size s, so there might be up to k£ — 1 other bins that receive more items of size s than would
have been the case if we had been packing I. Consider those bins whose contents start this
phase no differently and receive exactly the same number of items of size s as they would have
received if we had been packing [I; since items of size s are identical, such bins end this phase
of the packing holding exactly the same contents as if we had been packing I. Thus at the end
of this phase there are no more than kN bins whose contents differ from what they would have
been if we had been packing I. Tt follows that there are no more than &’ bins whose contents
differ for packings of I and I'. [ |

The above bound can usually be improved for specific j, k. However, all we need from the

lemma is that the change in the packing of I is limited to a number of bins, and hence to a
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change in wasted space, that is independent of the size of I.

The probability background needed for the results below is elementary; we review it here for
convenient later reference. These preliminary results, or the techniques needed to prove them,
can be found in [6]. The chapter on basics in [5] (see Chapter 2) can also be recommended as
it is oriented specifically towards our needs.

Our chief concern is with sums of bounded i.i.d. random variables. Let (mq,...,m;)
denote the size distribution of L,, i.e., m;, 1 <i < j, is the number of items of size i/k in L,.
Then myq,...,m; has a multinomial distribution and each m; has a binomial distribution with
parameters 1/7 and n. In the usual way, we can represent m; as the sum of n i.i.d. random
variables X,, 1 < r < n, where X, = 1 if the rth item of L, has size i/k and X, = 0 otherwise.
Then since F[X,] = 1/j and 0?(X,) = (1/7)(1 — 1/j) are the mean and variance, we have
E[m;)=m =n/j and o*(m;) = n(j — 1)/j* = O(n) for fixed j, k. Classical normal limit laws
apply to m;. Then for fixed j, k and constants o, 5 > 0, standard estimates for the tails of the

normal distribution show that

(4.1) Pr{|m; — m| > an'?logf n} = O(1/n*" )
and
(4.2) Elm; —m| = 0(n'/?) .

As we are fixing 7,k and suppressing multiplicative constants, we can extend (4.1) and (4.2)
to sums of the |m; — m|. For, if Zle |m; — m| > an'/?logP n, then for one or more values of

i, 1 <i<j, we must have |m; — m| > (a/j)nl/zlogﬁ n. Then
J
Pr Z lm; — m| > an'/?logf } < j Pr{|lm; — m| > (a/j)n'/*log® n}
=1
so we can conclude that
J
(4.3) Pr Z lm; —m| > an'?log®n b = 0(1/n??) .
=1

Chernoff bounds also apply to the m; (e.g. see [5]). Simple versions of these bounds state

that, for fixed j, k and any constant a > 0, there exists another constant 3 > 0 such that

Pr{m; > (1+a)m} < e "
(4.4)

Prim; < (1—a)m} < e "
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and hence Pr{|m; — m| > am} < 2¢=°".

The limit law for m; can be extended to more general functions of n. For example, if n is
replaced by n + ay/n or n — ay/n for some fixed constant @ > 0, then the asymptotics in (4.1)
and (4.2) still hold (only hidden constants change). To apply this fact, suppose that for some
[ < j and (positive or negative) constants a;, 1 <4 < [, we have m; = m + a;y/n, 1 < i < [.
Then as direct calculations would show, the conditional distribution of m; given the m;, + < [,
is a binomial distribution with the asymptotics in (4.1) and (4.2). It follows easily that if
€1,...,¢e; are events of the form m; — m < a;y/n (or |m; — m| < a;y/n) for given constants a;,

1 < ¢ < 7, then there is a strictly positive constant ¢ such that

(4.5) Priei,...,e;} ¢ as n— .

Estimates of ¢ are available from the normal distribution, but only the assertion above is
needed for our lower bound arguments.

Finally, we note that s(L,) is also a sum of i.i.d. bounded random variables, in this case
with

(16) Bls(z)) = LD ) = MUY

Then (4.1) and (4.2) also apply with m; and m replaced by s(L,,) and E[s(L,)], respectively.

We now use these results in a proof of the following probability bounds on wasted space.

Theorem 4.1 Let A denote either FFD or BED and let the sizes of the items in L, be
drawn independently from U{j;k}. Then with probability 1 — O(1/n), we have WA(L,) =
O(nl/zlogl/2 n) if j, k is of Type 3, and WA(L,) = cn + O(nl/zlogl/2 n) if 3,k is of Type 1,
where cn denotes the linear waste in normal-form A packings of V,.(j, k). If j, k is of Type 2
then there exists a 3 > 0 such that W(L, ) = O(1) with probability 1 — O(e=F").

Proof. Consider the A packings of items with sizes drawn from {i/k; 1 < ¢ < j}. Tt is easily
verified that if, for fixed j, %k, we can prove the theorem for n limited to multiples of some
constant, then the theorem holds for general n. Thus, as a convenience we restrict n in the
remainder of the proof to those values for which the sets V,, have normal-form packings.
Recall that (mq,...,m;) denotes the size distribution of L,. Then the total number of
items that need to be added or deleted to obtain V,, from L, is Zle |m; —m|. Thus, repeated

applications of Lemma 4.1 show that the difference §, in the wasted space of the A packings
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of L, and V,, is bounded by 4
J

(4.7) b, < K’ Z |m; —m] .
=1

By definition of é,,, we have for a Type-1 pair
J
(4.8) WAL, —en| =6, <k Z |m; —m]| .
=1
Type-3 normal-form packings waste no space, so for a Type-3 pair we have
J
(4.9) WA(L,) =6, <k Z |m; —m] .
=1
Combining (4.8) and (4.9) with the estimate in (4.3), we obtain the Type-1 and Type-3 results
of the theorem.
Now suppose j, k is of Type 2, and let 8 denote the difference in the wasted space of the
A packings of L,, and V,, just before the size-1/k items are packed. By the same arguments
leading to (4.7), we have

(4.10) 6 < kIt ZJ: lm; — m| .

=2
Next, we observe that, in the A packing of V,,, the number of bins with only size-1/k items is
bm for some b, 0 < b < 1. Then WA(L,) > 1 implies that 6% > bm/2k or m; < bm/2. For
if neither inequality held, then by definition of § the packing of L,, before the size-1/k items
were added would have a total gap size of at most bm/2k and L, would have at least bm/2
size-1/k items with which to fill the gaps; so if there were any wasted space in the packing of

L,, it would be confined to the last bin, and hence be less than 1. Thus
Pr{WA(L,) > 1} < Pr{&: > bm/2k} + Pr{m; < bm/2}

and

(4.11) Pr{WA(L,) <1} >1— Pr{§ > bm/2k} — Pr{m; < bm/2} .

For the second probability on the right of (4.11), the Chernoff bound in (4.4) shows that there
exists a 1 > 0 such that
(4.12) Pr{m; < bm/2} = O(e™"1™) .

By (4.10), we see that 6 > bm/2k implies that, for one or more values of 7, 2 < i < j, we have
|m; —m| > b'm for some b’ > b/[2(j — 1)k7]. Then

Pr{é: <bm/2k} < (j — 1)Pr{lm; —m| > b'm} ,
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so we can again use (4.4) to conclude that there exists a § > 0 such that
(4.13) Pr{6; > bm/2k} = O(e™72") .

If 3 denotes the minimum of 3, and S, then (4.12) and (4.13) yield Pr{W4(L,) < 1} =
1 —O(e=P"). The Type-2 result of the theorem follows. [
Except for the lower bound for Type-3 pairs, the average-case results in Theorem 2.1 fall

out as an easy corollary to Theorem 4.1.

Proof of Theorem 2.1. As before, we restrict n to those values for which V,, has normal-form
A packings.
Observe that n is a trivial upper bound to the wasted space in any packing of L,. Then

by Theorem 4.1 for Type-1 pairs
E[WA(L,)] = [en + O(n'/?log"? n)][1 — O(1/n)] + n - O(1/n)

and hence E[WA(L,)] ~ en as n — oc. Similar arguments show that E[W4(L,)] = O(1) if
4,k is of Type 2. From (4.2) and (4.9), we have E[W*4(L,)] = O(nl/z) if j,k is of Type 3.

To prove the lower bound for Type-3 pairs consider the event
1.
(4.14) |m; —m| <+n/(j—-1), 2<i<j, my gm—§k1\/ﬁ.

The wasted space in the A packing of V,, just before the size-1/k items are added is exactly
m/k. Thus, if (4.14) holds, the wasted space in the packing of L, just before the size-1/k
items are added is at least
J
m/k—6">m/k— k! Z lmy —m|>m/k— k0.
1=2

k.

But my <m — 35

n, so the wasted space after the size-1/k items are packed satisfies

(4.15) WALy > m/k — ki = (m _ ’“2—]\/5) Ik = %kf‘lﬁ .

The probability that the inequalities in (4.14) hold jointly for all 1 < ¢ < j is strictly positive
for all n sufficiently large, as in (4.5). We conclude from (4.15) that W4(L,) = Q(n'/?) with
positive probability. The lower bound E[W4(L,)] = Q(n'/?) follows. [

We also obtain formula (2.1) for Type 1 pairs as a corollary. We have
a_ ALy _ o WAL

"os(In) s(Ln)
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and from Theorem 4.1, WA(L,) = en 4+ O(n'/%log'/?n) with probability 1 — O(1/n). For
the sum of item sizes we apply (4.1) and (4.2) with m; replaced by s(L,) to obtain a similar
estimate: s(L,) = n(j + 1)/2k + O(n'/?log"/? n) with probability 1 — O(1/n). Now R is
bounded by a constant for all n» > 1 and all problem instances L,,, so we can conclude that, as
n — 00,

2ck

EIRN (L] = 5+ ol1)

which gives formula (2.1).

5. Proof of Theorem 3.4

A look at Table 1 shows that a violation of the theorem would require & > 1000. But for

k > 1000 we can prove the following stronger results:
(5.1) EWA < 0.0055871/]61/2 < 0.000177n

(5.2) E[R] < 1.00271 .

We prove these bounds for a variant of FFD in which no bin is allowed to have more than
one “fallback” item. In an FFD packing, the items that go into bin B; before bin B;yq is
started are called regular items. Those that are placed in bin B; after bin B;1q is started
are called fallback items. In this modified FFD (MFFD), a bin that has received a fallback
item is declared “closed” and receives no further items. In [1] it is proved that for all lists L,
FFD(L) < MFFD(L). For the analogously modified BFD (MBFD), similar proofs show that
for all L, BFD(L) < MBFD(L) = MFFD(L). Thus it suffices to prove the theorem for MFFD.

Our proof considers normal-form MFFD packings, defined in analogy with those of FFD
and BFD, and bounds the maximum cumulative gap as a function of n = mj. Note that
Theorem 3.2 also applies to MFFD, and that by it, we can assume j < k/2. We will discuss
two kinds of deficits. The initial gap in a bin is the space left after it has received its last regular
item. The residual gap is the space left after the bin has received its one allowed fallback item
(or simply the initial gap, if no fallback item is ever received). In order to obtain a bound on
E[WnFFD], we need to bound the sum W of the residual gaps, divided by n = mj. To obtain
a bound on E[ROFOFD], we bound W/s, where s = s(V,,) = mj(j+1)/2k is the sum of the item
sizes.

In what follows, we classify the bins in normal-form MFFD packings in two different ways.

The “S-class” of a bin (.5 for size) is the size of the biggest item it contains. The “M-class” of
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a bin (M for multiplicity) is the number of copies of its largest item. For instance, when j = 6
and k = 13 the first bin created contains two items of size 6/k and one of 1/k. Tts S-class is
thus 6/13 and its M-class is 2. We call a bin an (h/k)-bin if its S-class is h/k, and an i-bin
if its M-class is 2. This overloads our notation slightly, but need cause no confusion since all
S-class values are less than 1 and, by our assumption that j < k/2, all M-class values are
greater than 1.

Two bins with the same M-class are said to have different types if they belong to different
S-classes. The number of types of bins with ¢ as their M-class is simply the number of integers
h < j such that |k/(i 4+ 1)] < h < |k/j]. Note that for [k/j] <i < k'/? — 1 there must be at
least one type of i-bin created by MFFD, since k/(k'/2 — 1) — k/k'? = V2 /(EV/? — 1) > 1.
Let W4 denote the total residual waste in ¢-bins with ¢ < £'/2 — 1 under MFFD, and let Wg

denote the total residual waste in i-bins with i > k'/2 — 1. We bound W4 (and W4 /s) first.
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no further than the length M; of the longest sequence of sizes such that the total initial billing
to those sizes, as of the time the i-bins send in their bills, exceeds m times the length of the
sequence. Thus M;/k bounds the residual gap in the i-bins under MFFD.

Consider how large M; can be. The total billing to a sequence of M item sizes can be
bounded as follows: The sizes billed by i-bins increase by i/k as we go from one type to the
next, since (k—i(h —1))/k— (k—th)/k = i/k. Thus the total number of sizes in a sequence
of M bins that can be billed by i-bins is at most [M/i], with each being billed for at most
m/i. To begin the analysis, let us assume that j > k/3, so that 2-bins exist. In this case, as
we have already observed, we cannot have M; > 1 until 2 > 4. Moreover, note that although
the 4-bins can cause the bill to an individual item size to reach ((5/6) + (1/4))m > m, at least
(1/6)(1/4) = 2/3 of that bill will be paid, so that only 1/3 of those bins will actually have
residual gaps. Those residual gaps will be of size 1/k. This is because [2/t] =1 for all ¢ > 2,
so we cannot have M; > 2 until S>'_,(1/¢) > 2, which does not occur until i = 11.

Now consider a sequence of three item sizes. These can be billed from two different types
of 2-bin, but can be billed by at most one type of ¢t-bin, t > 2. Thus we cannot have M; > 3
until 14 2¢_5(1/t) > 3, which does not occur until i = 19. Thus when j > k/3 we can bound
Wa/mj by the following expression (in which &’ denotes |k'/2 — 1]):

i

Wy 1 k 1 k 1 a 3 1
m—j<k_j(3-42-5+ﬂ+;<i2(i+1)+?)+z (i?(i+1)+?))

=11

i (e o)

Noting that i < i?(i 4+ 1) and that 37 ,(1/7) < In @, this can be simplified to

Wy )
1=19

1
m—j<}(12000 Z2z+1 ZQ@—I—l—I_Z
1k M —2
(5.3) +3(7+Z i )

=19

To bound the M; — 2, ¢ > 19, note that each M; must satisfy
LM M- 1 SN A
M; - 1— < — < (M; -1 — —-.
Tl Tlen T o nnEe )
Observing that S°50,(1/t?) < .645, this implies

S, L~ 645 —.710

5.4 M. — 2
(5.4) < 355

1
<281T) < 2817Mi .
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Substituting 2.8171n4 for the first M; — 2 in (5.3), we find that

UMy -2 SN 2817Ind [0 281TInidi [ 2817 [, . 1\
> <ZM</ M:[_ 87<ln2—|—1)] < 01474 .

3 3 : 3 2
=19 " i=19 " =18 ! 2 18

Next, we substitute for the second M; — 2 and use the relations &' = [k'/2 — 1] and k > 1000

to arrive at

iMi—Q y /k 2817Ini di_ [ 2.817(1 .)2]’“’
1.409 1.409
— ((In(k'? = 1))2 = (In 18)? —2(11.930 — 8.354) < .00473 .
- ((m( )2 - (n18)?) < Tgg (11:930 — 8.354) < .00473

Substituting into (5.3), noting that In k/k < .00691 for £ > 1000, and bounding the remaining

infinite sums, we then obtain

Wa < .00425 4 .02133 4+ .00426 4 .01474 + .00691 4 .00473

mj J
.05622 .00534

j < k1/2 ’

(5.5)

since, by assumption, j > k/3 and k > 1000, so 1/5 < (3/1000'/2)(1/k'/?) < .09487k"/2,
For this case (j > k/3), bounding Wy /s is straightforward:

W W 2k 00534 _ (6)(.00534) 03204
. _ - 00102 .
(5-52) s T miGE0/2k Sl kZ ST R iz <0010

Let us now consider the situation where [((k/(k—1))(k"/?+ 1) < j < k/3. Let d > 0 be
the integer such that k/(4+ d) < j < k/(3 + d). We argue much as in the case for j > k/3,
deriving a bound on Wy /mj that is maximized when d = 0.

First, consider the case d = 0. By looking at the sums Y ¢_5(1/t) for various i > 3, we can
verify that there will be no residual gap in any ¢ bins for i = 3,4,5,6 (since 1/3+1/44+1/5+
1/6 < 1). Similarly, the gap will be at most 1/k for 7 < ¢ < 18, and will be at most 2/k for
19 <@ < 50. (Note that with j < k/3, each string of 3 item sizes can receive bills from at most
one type of i-bin for each i.)

When d > 0, it is not difficult to see that there is no residual gap in an i-bin until ¢z > 74 2d.
This is because Zzigid(l/t) < 1, which can be proved by an induction based on the inequality
1/(3+d) > 2/(74 2d+ 1). Similarly, the gap is at most 1/k until ¢ > 19 4 6d, and cannot
exceed 2/k until i > 51 4+ 17d.

The analogue of the bound (5.3) can now be derived. Here, we get a further simplification

by bounding [k/(i*(i 4+ 1))] by 2k/i* rather than k/(i*(i + 1)) + 1. We also do not make a
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special case out of the first ¢+ with a residual gap. We immediately bound all the summations

by the appropriate integrals and obtain

Wa L 2di [ 2di | [ 5.634Ini di
— < = T -3 T I —
mj 7] 1=6+2d 1 1=1846d 1 1=504+17d ?
4+4d 1 1 70425 4+ 1.4091n (50 + 17d)
+ + ,
ko \(6+2d)2 " (18 +6d)? (50 + 17d)?

where we make use of our assumptions that j > k/(4 + d). But note that this sum is clearly

maximized for d = 0, in which case we have

Wy - 1 (1+i+ '70425+ (1.409)(3.9121))
mj 31.62k1/2\9 © 81 625 625

11111 4.01235 4 .00113 4 .00882 .00422

(5.6) 31.62k1/2 < E1/2

This is seen to be less than the bound (5.5) computed for the case j > k/3, so the former
provides a universal bound on Wy (when k£ > 1000).

To get the corresponding bound for W4 /s, we first note that if j exceeds k/(4 + d), then
so does j 4 1, and hence 2k/(j + 1) < 2(4 + d). Thus,

s k

Wa _2(4+d)? ( Lo 1 70425 1409 (50 + 17d))
(6+2d)2 " (18+6d)2 " (50 + 17d)> (50 + 17d)?

Observe that the first three terms are again maximized for d = 0, but the fourth and final

term is maximized for d as large as possible, which in this case is k'/2 — 5. Thus we obtain

R ACE G AT E /2

Wa 1 (8 8 5.634) 11.272 (1.4091n(17k1/2))
The last term is strictly decreasing for k£ > 1000. Thus its value when k£ > 1000 is dominated

by the value at £ = 1000, and we have

W4  .03153  .018048.859  .03153 4 .00506 _ .03659

(5.62) 72 T R 3162 © 5YE = T

in this case slightly worse than the bound (5.5a) obtained when j > k/3.

Let us now turn to bounding the waste Wg in i-bins with i > k'/2 — 1. As argued
earlier, there is at most one bin of each type, and indeed there are at most k'/2 + 2 such
types present over all. This is because the regular item size in such ¢-bins can be at most

1/(k"2 =1) < (k"2 42)/k, so there are at most k'/2 4+ 2 item sizes available. This means that
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the only bin types we can have are (h/k)-bins, 1 < h < k'/2 4 2. We bound the residual waste
in each of these types of bins.

First, note that the M-class of an (h/k)-binis |k/h| > (k—h + 1)/h, so the total number
of (h/k)-bins is at most m/|k/h| < mh/(k—h+1). If G is an upper bound on the maximum

residual gap in these bins and 7 is the minimum of j and k/2 + 2, we then have

WB g Z h - 1.0327gr(r + 1) 1.0327g(r 4 1)
Jimk—h+1 2kj 2k

B5164g kY2 + 2 5491¢

k1/2 k1/2 < k1/2

.k > 1000 .

An easy bound on ¢ follows from ¢ < My /k. Applying (5.4) with ¢« = k, we conclude that
no gap is bigger than (2.817Ink + 2)/k. That, however, is an overestimate, as it assumes that
all i-bins, 1 <7 < k, are present. A more detailed analysis takes into account the missing ¢’s,

and concludes that, for &£ > 1000,

k1/2q

1 m
M, < 242817

1/2
< 242817 (ln(k1/2 — 1)+ 1.0327 (’”5’;—16%))

Ink
< 242817 (—-I— 6012) < 1.4091Ink + 3.6936 .

Hence g < My /k < .01343 for k > 1000. Thus,

Ws _ (-3491)(.01343) _ 00738

(5'7) mj k1/2 < k1/2

< .000233 .

Combining (5.7) and (5.5), we can conclude that when & > 1000, the total residual waste is at

most

.00558

S < 000177,

Wi+ Wg <

as claimed by the theorem.
In analyzing Wg/s, we must be a bit more subtle. By the first inequality we displayed for

Wpg, we know that

Ws - .Qk 1.032797‘(7‘{— 1) _ 1.0327¢ (f) <7j—|—1)
5 J+1 2kj J+1
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where g < .01343 is the maximum gap and r = min{j, kY2 4 2}. Suppose j > 3k'/2 4+ 8. Then
we would have both j > 3r and j+ 1 > 3(r + 1), so we would have

Wp  (1.0327)(.01343
(5.7a) Ws | )9( ) < 00155 .
S

On the other hand, suppose j < 3k'/2 + 8. Then the smallest i for which an i-bin exists is
greater than |k/(2k'/2 +5)] > [k/2.1582k'/?] > .46335k'/2 — 1. From this we conclude that
My, must satisfy

kY21

Mt —1 ’ h
M, < Z 5 + Z
t=.46335k1/2—1 ! h=1 k—h+1
00 1 k1/2 1 1
< (M=1) X S+ ) S+ 60
t=.46335k1/2-1 t=.46335k1/2-1
M —1 1
— 4 (In(.4002k"%) + 6012
< ez g TN )+
2.499( M — 1) 2.499( My — 1)
iz 4+ .9158 + .6012 = -z + 1.5170
Thus we obtain
1.5170 — 2.499%~1/2 1.5170 1.5170

k< < 1.6474 .

< <
1—2.499k-1/2 1—(2.499)/(31.62) ~ .9209

But since M) must be an integer, this means that M; < 1, so the maximum gap satisfies

g < 1/k. We conclude that

Wg r\ (r+1\ | 1.0327
. —B < 1.03279( = 00104 .
(5.8) Z <103 79(],) (j+1)< <0010

Thus (5.7a) is the dominant bound. Combining (5.7a) and (5.5a), we conclude that

W oW, W
= AL DB 001164 .00155 < 00271,
S S S

as claimed. This completes the proof of the theorem. [ |
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