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1 Introduction

Many computer applications require long computations lasting anywhere from several days to
even years. Examples, to name just a few, include cryptography, combinatorial optimization, and
asymptotics of stochastic processes. In the scenario studied here, a user starts a program and then
leaves the machine unattended; at intervals thereafter the user returns to check on the progress
of the computation. On the time scale of the above applications, machine failures or unforeseen
shutdowns are sufficiently probable that fault-tolerant programs become necessary. In the method
studied here, a program protects itself against undue losses resulting from machine failures by saving
its state at certain intervals on a reliable storage device. Failures may occur during saves, but a
state successfully saved is perfectly secure thereafter. Then, when the program is restarted after a
failure, its new initial state is the last state successfully saved before the failure. Failures (faults,

errors, shutdowns) become known to the user only at check times.

As discussed later the ability to determine whether or not a save is successful is a distinctive
feature of the system modeled here. For example, in computations of traveling salesman tours,
detecting whether a failure occurred during a save may consist simply of determining whether the
tour saved is a valid one. To be assured that a successful save exists, one may assume that the
program always retains the last two saves; if the most recent one is flawed, then the earlier one may

be taken as successful, and hence a valid point at which to restart the program.

Saves are themselves time consuming, so any strategy for scheduling saves must strike a balance
between the computing time lost during saves and the computing time that is occasionally lost,

because of a failure since the last successful save.

Under a given failure law, the objective here will be to derive a schedule of saves that maximizes
the expected amount of work successfully done before a given check time, assuming that the process
starts in a recoverable state, and that the process will not complete before the check. The latter

assumption approximately models situations where the intervals between checks are small relative
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to the total computation time. The assumption is exact in those cases where the program never
halts voluntarily; the program is halted by the user at some check time when he or she decides that

the program has run long enough, e.g., adequate convergence of some process has been observed.

The problem studied here is related to the “checks-and-saves” problem analyzed by Boguslavsky
et al. [1]. However, there is one essential difference: in [1] it is assumed that when an error is
revealed by a check, the instant the error occurred remains unknown; it is known only that the error
occurred since the last check. Thus, there is no point in making a save not immediately preceded
by a successful check. Another difference, but one that is not essential, is that in [1] errors could

not occur during saves.

Other studies of optimal stochastic checkpointing can be found in [2, 6]. In these models, the

((user’”

which may be a system control program, recognizes failures at the times they occur, as in a
computer interrupt system; the response to a failure begins immediately after its occurrence. The
large literature on checkpointing is discussed extensively by Trivedi [7], Tantawi and Ruschitzka [5],
Goyal et al. [3], and Kulkarni, Nicola, and Trivedi [4]. Most previous research concerns queueing

models, with jobs of random sizes arriving at random times.

2 Preliminaries

To formalize the problem, suppose that saves are to be scheduled in the interval [, 7 + ¢], with
T+ ¢ the next check time. As noted earlier, the state at time 7 is recoverable and the remaining time
of the computation is at least ¢. For convenience, we put 7 = 0 and let F'(¢), ¢+ > 0, be the failure
law, i.e., the probability of a failure in [0,¢]. Let n be the number of saves to be made in [0, ¢], each
of fixed duration s > 0. Then ns < ¢ may be assumed. Define z; as the computing time before

the first save, and z;, 1 < i < n, as the computing time between the (i — 1)st and ith saves. The

computing time between the last save and the progress check is 41 =¢c—ns—21 —---—z,. Any
vector x,, = (21,...,2,) in the simplex S, defined by x1,..., 2, >0, > i, x; < ¢ — ns, is called a
strategy.

With ¢, s, and F given, W(x,,) denotes the work done under strategy x,,. The term “work done”
refers to the computing successfully done, excluding saves and the time lost, if any, because of a
failure. Formally, let y; = Zle(xz + ), 1 < j < n, denote the times at which the computation is

resumed following saves, and define yo = 0 and y,4+1 = ¢. Then conditioned on a failure at time ¢,
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the work done 1s

j—1
Wi(xn) = > @i yia<t<y, 1<j<n+l
=1
n+1

= sz t>yng1=c.
i=1

Figure 1 illustrates the definitions.

T2

s s
[

t = failure time
i
ijl z; = amount saved

Figure 1 — An example

Define the expected value E(x,) = E(W(x,)) = fooo Wi(x,)dF(t). In the following sections the
main objective is a characterization of the function E(n) = supx cg, F(xn). A strategy xj, is
an optimal n-save strategy if F(xY) = F(n); it is called simply an optimal strategy if F(x}) =
max,,>o £(m). To compute optimal strategies, characteristics of the functions F(x,) and E(n) are

needed. Elementary properties following easily from definitions are presented next.

Write W(x,,) = Z?:-I_ll x:%i, where y; = 1 if the computation during ; is successful, and y; = 0

otherwise, 1 < ¢ < n+4 1. The work during z; is done if and only if the first failure time satisfies

t > y;, soin terms of G(z) =1 — F(x),

n+1

E(x,) = Z%’G(yi) ; (2.1)

which is conveniently put in the form

n

E(xn) =Y i[G(y) = Gtns1)] + (¢ = n8)G(Yn41) -

i=1
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Assume hereafter that F' has a continuous density f on its support; this assumption is for
convenience only. Next, suppose that F(n) is attained at x,. If x, € S;F, where S} is the interior

of the simplex S,,, then

OE (%)

B G(Yi) — G(Ynt1) — k;xkf(yk) =0, 1<i<n. (2.2)

Subtracting the (i 4+ 1)** equation from the i then proves

Lemma 2.1 Ifx, € S} is an optimal n-save strategy, then

Gyi) — GWit1) =i f(yi), 1<i<n. (2.3)

The following three sections treat the uniform failure law. The normalization ¢ = 1 is convenient
in this case, so the failure law is F'(¢) = at, 0 < ¢ < 1/er, with 0 < o < 1 to avoid trivialities. A
principal result will be that F(n) is unimodal in 0 < n < 1/s. Calculations lead to explicit formulas
for E(n) and optimal n-save strategies. For other F'(¢), the solution to (2.3) is not elementary in
general. This is true even for the exponential failure law covered in Section 6. The computation
of E(n) is relatively simple, but the functions involved seem difficult to analyze. Tn particular, the

unimodality of F(n) is an open question for this case.
3 Failures Uniform on [0, 1]

Recall that ¢ = 1 applies to this and the next two sections. Accordingly, this section analyzes
the case F(t) = ¢, 0 <t < 1. The next section considers the general case, F'(t) = at, 0 <t < 1/,
O<a<l.

Observe that & = 1 implies G(yn+1) = G(1) = 0, so with probability 1 a failure occurs before
the check at time 1. Later results for general 0 < o < 1 are easily expressed in terms of those for

a=1 Wemay assume 0 < s < 1,1 <n<1/s.

FEquation (2.1) becomes
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Theorem 3.1 If N = N(s) > 1 is the largest integer n such that n(n + 1) < 2/s, ie., if N =
{%J then

1 n s 52
F =F = - — = — 1 2 1<n<N. 2
(n) (n,s) St 271—1— 2471(71—1— )(n+2), <n< (3.2)

E(n) is strictly increasing in 1 < n < N — 1 and strictly decreasing in N < n < 1/s. Also,
E(N —1) < B(N) with equality if and only if i AVAS A} V21+8/s is an integer.

Remark. A more complicated formula applies to F(n) for n > N. Since it is not needed in the

proof, it is omitted.

Proof. We first prove a lemma that describes F(x,) as a function extended over all of R". We

have

n n 2 n
i=1 i=1 i=1

1<i<j<n

Then Zl<i<j<n z;x; is clearly positive definite, so (3.1) yields
Lemma 3.1 F(x,) attains its global mazimum at a unique point in R".

We consider separately the cases n < N and n > N.
(n < N). By (3.1) the point at which F(x,) assumes its global maximum in R" is given by

OB (x,,)

or; =l—-si—(v1+ - +wi—1+2z;+x1+ - +2,)=0, 1<i<n. (3.4)

Adding the n equations gives Y\, z; = 747 — 3n, whereupon (3.4) yields
xi—n_i_l—i—s(g—i), 1<i<n (3.5)
Tpp1=1l—ns—w1— - —x, =2, . (3.6)

From (3.5), it follows that 21 > - - - > x,. Hence the point (21, ..., #,) defined by (3.5) is a strategy,
i.e., lies in Sy, provided x, > 0. This assertion is equivalent to n(n + 1) < 2/s and hence n < N.
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Using (3.3), rewrite (3.1) as

n

n n n 2
E(Xn):le—SZwl—%fo—%(Zl‘z) . (3.7)
i=1 i=1 i=1

i=1

Let the z; be given by (3.5). Computations give

Zn:" _n n3 4+ 3n2 4+ 2n
' ix; = 5 5712 ,
=1
(3.8)
Zn:l}z _ n . n +52n3—|—2n.
— (n+1)? n+1 12

For n < N, F(n) = F(xp) with x,, given by (3.5). Then (3.7) and (3.8) yield (3.2). Finally, (3.2)
yields

1 [s%n(n+1) 1 s [2/s — n(n+1)]
sl 1 Tamrn 1T amrn "

so the theorem for n < N is proved.

For the case n > N the following two lemmas will be useful.

Lemma 3.2 Let x, be an optimal n-step strategy. Then x, = p41.

Remark. If x, € S;i’ then Lemma 3.2 becomes (3.6). Lemma 3.2 states that the result also holds
if x, € 35, where 35,, denotes the boundary of S,,.

Proof. Write

n—1
E(xn):in(l—si—xl—~~~—xn)—|—xn(w—xn) ,
i=1
where w=1—sn—uxy— - —xp_1. With 21,...,2,_1 fixed, 2, varies from 0 to w. But z,(w —z,)
attains its maximum at @, = w/2, $0 Tp41 =W — x, = /2 = xy,. [ ]

Lemma 3.3 if x, is an optimal n-step strategy, and if x; = 0 for some 1 <i < n, then z;41 = 0.
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Remark. Lemmas 3.2 and 3.3 imply that if the expected work done attains its maximum over S,
at x, € 05, then the set of indices i for which #; = 0 is a consecutive string of integers, the first

being at most n and the last being n + 1. In particular, z, = £p41 = 0.

Proof. If ¢ = n, then Lemma 3.3 follows from Lemma 3.2. Next, suppose to the contrary that

z; = 0, but that ;414 > 0 for some 1 <i<n—1. Let
X(t) :E(xla"'axi—lata xi-l—l_ta xi+2a"'axn)a OSthH—l .

By (2.2), X'(0) = %ﬁf") — % = s+ 241 > 0. Hence, for small ¢ > 0, X(¢) > F(x,), which

contradicts the n-save optimality of x,,.

(n > N). The remainder of the proof shows that F(n) < F(n—1), n > N. When n > N, the point
at which %xxl—"l =0, 1< i< n, lies outside S,. Then F(n) is attained at a point x,, € 85,. By
the remark following Lemma 3.3, 2, = 2,41 = 0. This means that the last two saves are scheduled
in [1 —2s,1]. The last save cannot save work not already saved, so it can be eliminated. This means

that F(n) = E(xp) = F(#Zn-1), where z,_1 € Sp_1, zi = 2;, 1 <i<n—1,and z, = s.

Tt remains to prove that F(z,_1) < F(n —1). If z,_4 = 0, then z,_1 # 2, and by Lemma 3.2,
Fn_1(#Zn-1) < E(n —1). Thus suppose z,_1 > 0, and hence by the remark following Lemma 3.3,
2>0,1<i<m,ie,z,_1 €SI . 1fn>N+1,then n—1> N so that F(n—1) is attained on the
boundary 05, _1. Then again, F(z,_1) < F(n—1). Finally,ifn = N+1, then EF(n—1) is attained at
a point u,,_1, where u; = %—1—5 (% - i), 1<i<n—1. But2/s < (N+1)(N+2) = n(n+1), which is

equivalent to u,_1 < s. Then uy = p_1 # 2n, 80 Up_1 # Zy_1 and again F(z,_1) < E(n—1). N

The two corollaries below are the main results of this section; they follow immediately from

Theorem 3.1.

Corollary 3.1 The strategy xn with the x;’s given by (3.5) and (3.6) is uniquely optimal, unless
“IV148/s V;I_S/s 1s an integer, in which case there are precisely two optimal strategies, xn and xn_1.
Next, consider the behavior of an optimal strategy as a function of s. Let F(s) = F(N,s) =

max,>1 F(n,s).
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Corollary 3.2 Let N run through the positive integers. Then

=t Ny T N+ 2 <s<— 2 (3.9)
VEON+1 2 T CINA DN +2) S TS NN+ W
FE(s) is a continuous, strictly decreasing function in 0 < s < 1 with E(1) =0 and
1 7
E(s) = §—E\/§+O(5) as s—0. (3.10)

Proof. Equation (3.9) follows immediately from Theorem 3.1. The intuitive fact that F(s) is
continuous and decreasing with F(1) = 0 follows easily from (3.9). The asymptotics in (3.10)

are also readily derived from (3.9). TIn particular, lims;_q F(s) = % is the mean of the uniform
distribution on [0, 1]. This result can be proved directly without formulas and generalizes to all

distributions. [ |

4 Failures Uniform on [0,1/a]

The analysis for 0 < o < 1 is easily expressed in terms of that for &« = 1. With « a parameter,
let E(n,a) denote the maximum-expected work done with n saves. Let E(n) = E(n, 1) continue to
have the meaning in the last section. Note that the conditional probability distribution of a failure

time in [0, 1], given that one occurs there, is uniform on [0, 1]. Then

En,a)=aFn)+(1—a)(1—ns), 0<n<1/s, (4.1)

where F(0) = 0, consistent with (3.2). Note that, in contrast to Section 3, the case of n = 0 saves
makes sense when o < 1. As shown below there are values of s such that F(0,0) = 1 — o =

maxy,>o F(n, @) and the policy of no saves is optimal.

We have

En,a)— E(n—1,a)=a[F(n)—En—-1)]—s(1 —a), 1<n<1/s. (4.2)
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Theorem 3.1 and (4.2) show that E(n,«) is strictly decreasing for n > N. For n < N, (3.2) and

(4.2) yield
2

E(n,a)— E(n—1,a) = %q(n(n +1)), (4.3)
where
q(y):q(y,s,oz):yz—g(%—1)3}—1—?—2. (4.4)

Now ¢(y) has two positive roots y1, ya satisfying y; < 2/s < ya, where

ylzgy(a), y(a)zz—l— (3—1)2—1. (4.5)

By calculus one checks that y(«) increases on [0, 1] with y(0) = 0 and y(1) = 1. Equations (4.2) and
(4.3) then give

Theorem 4.1 Let 0 < s <1 and 0 < a < 1. If s > y(o), then F(n,«) is strictly decreasing in n
for0<n <1/s. If for some N, 1 < N < oo, s satisfies

2y(@) 2y(@)
N+ )N +2) S SN+

(4.6)

then FE(n,«) is strictly increasing in 0 < n < N — 1 and strictly decreasing in N < n < 1/s. Also,
E(N —1,a) < E(N,a) with equality if and only if equality holds in (4.6).

By Theorem 4.1 and the results of Section 3, a solution to the optimization problem can be
described as follows for any 0 < o < 1: If 5 > y(«), with y(«) given by (4.5), then the policy with

no saves is uniquely optimal. Otherwise, we can choose

N \‘—1+\/12—|—8y(0z)/5J 51 (47)

saves; choose the z;, 1 <7 < N 4 1, given by (3.5) and (3.6); and obtain the expected work done,
E(N), given by (4.1) and (3.2). This solution is unique unless the expression within the floor brackets
of (4.7) is a positive integer, in which case there are exactly two optimal solutions, the other having

N — 1 saves. Numerical examples are given at the end of the next section.
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5 Uniform Failure Law and Equal Computing Intervals

It is of interest to compare the unrestricted optimal policy with an optimal policy subject to
the constraint that all computing intervals be equal. Assume that 21 =29 =--- = 2,41 = 2. Then
(n+Dz+ns=1,0orz=(1—-ns)/(n+1). Let E(n,a), 0 < o < 1, be the expected amount of
work done by an n-save strategy x,, with z; = 2, 1 <i <n+ 1. Consider first the case « = 1, with

E(n) = F(n,1). By (3.1) and the above value of

n

~ B . nn+1) , (1—s)(1—ns) n
E(n) _;(1 si)@ S’ = 5 — (5.1)
Then
E(n)—E(n—l):lgt‘;%, r(n) =1+s—sn—sn’. (5.2)
For 0 < o < 1, (5.1) and (5.2) give
Bn,a) = abi(n)+ (1 = a)(1 —ns) = |20 2y o] (1 -y (5.3)
n,a)=al(n o ns) = 5 e o ns .
and
B(n,0) = B(n—1,a) = a[(n) - B(n - 1) — (1 = a)s = —2) (5.4)
n, o n ,a)=a[E(n n as_n(n+1), .
where
t(n) = algsr(n) —(l—a)sn(n+1)= a1_2—52 —|(1—a)s+ w n(n+1).
From (5.1)-(5.5) we obtain
Theorem 5.1 Let N = N(s,a), 0 < a < 1, be the largest non-negative integer such that
a(l —s?)
N(N+1)< (5.6)

“ 21— a)s+ as(1—s)

Then E(n, «) is strictly increasing in 0 < n < N — 1 and strictly decreasing in N < n < 1/s. Also,
E(N - < E(N) with equality if and only if equality holds in (5.6).
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Table 1 shows examples comparing the unrestricted optimal policy with one described by Theo-
rem 5.1, where 2; = (1 — Ns)/(N+ 1),1<i< N +1, with N optimal, i.e., E(N) = max;,>o E(m)
These examples, and many others that were computed, show that very little is lost by restricting

the computing intervals to be equal.

Table 1 — E(N) vs. E(N)

a=.5 a=1.0
N E(N) N EN)| N EN) N EN)
s=.001 [18 7235 17 7234 | 44 4707 31 .4689
01| 5 6713 5 6709 | 13 4107 9  .4054
A 1 5513 1 5513 |34 2500 2 .2400

Table 2 illustrates the shape of the function F(n) for 1 < n < N. When N is moderately large
the function climbs quickly to a region in which E(n) remains nearly flat up to the mode N. These
observations suggest that, even if the assumed uniform law is only a moderately good approximation,

the results for the optimal equal-computing-interval policy may still be quite good.

Table 2 - E(n), 1 <n < N, for a = 1.0.

s=.1 s = .01
1 .2025 1 .2450
2 .2433 2 .3234
3 .2500 3 .3603
4 .2500 4 3805
5 .3925
6 .4000
7 .4046
8 .4074
9 .4091
10 .4100
11 .4105
12 .4106
13 .4107

6 Exponential Failure Law

As a convenient normalization, the failure rate 1s taken to be 1. The problem instance 1s then

defined by arbitrary c, s subject to ¢ > s > 0, and by the failure law Pr{failure time > ¢) = e™*,
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0<t< oo By (2.1)and (2.2), we have for 1 <n <e/fs, x, = (21,...,2n),

n
E(xn) = E zie V4w ”
i=1
n
= E zieTV +(c—ns—xy — - —mp)e ",
i=1

and hence .
E(x,) = in(e_y’ —e Y+ e (c—ns), (6.1)
i=1

with the partial derivatives,

OF (%)
8902»

n
=e ¥ e = Zxke_yk; 1<i<n. (6.2)
k=1

If we define ¢(z) =1 — e~ (47 4)(x) = 1 — e, then (6.2) yields

IF(xp) B IE(x,)
6%’ 6l‘i+1

= e Vi—eTVitl — eV = eTViG(0ip1) — ], 1<i<n—1,

(6.3)
OE(xn)
oz,

= eV —ef—ape TV = eV [Y(2ng1) — 2] -

Let ¢* denote the k™™ composition of ¢ : ¢°(x) = = and ¢*(z) = ¢(¢*~()), k > 1. Define
hn(2) = © + Zz;é ¢*(1p(x)). The functions ¢(x) and ¥(z) are strictly increasing in 0 < z < oo,
with ¥(0) = 0. Hence, h,(z) is strictly increasing in 0 < x < oo with h,(0) = ¢(0) + - - -+ ¢"~1(0),

hn(00) = oco.

Lemma 6.1 F(x,) has a critical point X, € S, where the partial derivatives all vanish, if and only

if e > ns+ hy,(0). This point is unique and given by

= (), oo = 6((a ) e = 0" (W( ) (6.4)

with xy, 1 > 0 determined by
c=ns+hp(x,, ) . (6.5)

Also, x¥ € ST if and only if ¢ > ns + hy(0).



Scheduling Saves in Fault-Tolerant Computations 13

Proof. Suppose x); € 5, is a critical point of F(x,). By (6.3), x;; = ¥(x},,), ] = é(xjy),
1 <i<n—1, which yields (6.4); (6.5) follows from (6.4) and ¢ = ns 4+ 2} 4+ -- -+ 2}, ;.

Conversely, let ¢ > ns+ hy,(0). Since h,(x) is strictly increasing in 0 < 2 < oo, there is a unique
x> 0 solving (6.5). Then the strategy defined by (6.4) is the unique critical point in S,. If
¢ > ns+h,(0), then the z}, ... 2}, defined by (6.4) and (6.5) are all strictly positive, so x}, € St
If ¢ = ns + hy(0), then 25, ., =0,s0 x5, €9S,. W

Lemma 6.2 If F(x,) attains its mazimum at x5, € 0Sy,, then the set of indices 1 < i < n+1
for which zf = 0 forms a consecutive string of integers containing n and n + 1. Furthermore,

e < ns+ h,(0).

Proof. Since x} € 95, we have 2] = 0 for some ¢, 1 < i < n+4 1. Suppose that =z} = 0, but

(3

xi > 0 for some i < n. Let

X(t)y=E(x], ... xj_q tajyy —tal,, ...z, 0<t<uaxj,.

n

By (6.3), the derivative at ¢ = 0 is

_ 0B(xy) _ 0FE(x})
o 6% 6l‘i+1

X'(0) = e V(i) >0,

where y} = 22:1(1‘2 + 5). Hence, X(t) > E(x},) for small ¢ > 0, contradicting the fact that E(x,)
attains its maximum at x;. Thus, z7,; = 0 if 27 = 0,7 < n. Similar reasoning shows that z}, ,; = 0
must hold if #} = 0. Thus, the set of indices for which 2} = 0 forms a consecutive set of integers

containing xy ;.

As shown below, the remainder of the lemma will follow once we have verified that

v <o@i), 1<i<n—1, 25 <b(ahy) - (6.6)
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By (6.3),
X'(0) = e7¥ [2] — ¢(x]14)] > 0.

Then X(t) > E(x}) for small ¢ > 0, contradicting the fact that F(x,) attains its maximum at x,.

We conclude that z} < ¢(x7, ;). A similar argument gives 7 < ¥(x} ).

If 3,y = 0, then 2, = 0 follows from x; < ¥(x},,,); this completes the proof of the first

assertion of the lemma. As ¢ and 1 are increasing in 0 < z < 0o, we conclude from (6.6) that

zf <¢"7N0), 1<i<n—1, (6.7)

Then the second assertion of the lemma is given by

c=ns+ai+--Fai_ <ns+¢(0)+ -+ ¢"H0)=ns+h,(0). A (6.8)

The main results of this section follow easily from Lemmas 6.1 and 6.2.

Theorem 6.1 If ns + h,(0) < ¢, then F(x,) attains its mazimum over S, at the unique critical
point given by (6.4) and (6.5). If ns+ h,(0) > ¢, then the mazimum can only be attained at a point
X, € 0S),.

Proof. Tf the maximum is attained in 95, then by Lemma 6.2 ns 4+ h,(0) > ¢. Consequently, by
Lemma 6.1, ns 4+ h,(0) < ¢ implies that the maximum of F(x,) is attained at the interior point of
Sy, given by (6.4) and (6.5). If ns 4+ hyp(0) > ¢, then again by Lemma 6.1, F(x,) has no interior
critical point, so the maximum is attained in 9S,. For ns 4+ hy(0) = ¢, the maximum occurs at
(x5,...,2}) € Sp; (6.7) and (6.8) show that (x7,...,25) = (¢"(0),...,¢(0),0), which is the critical
point defined by (6.4) and (6.5). W

Let N = N(e, s) be the largest integer n > 0 such that ns 4+ h,(0) < ec.

Theorem 6.2 We have

E(n) — 6—8—¢n_1(¢(x)) +e Cp— e_c’ 1<n<N
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where x is the unique non-negative root of ns + hy(x) = e. The computing intervals are given by

Tny1 =@ and ¥; = ¢""'(p(x)), 1 <i < n. Finally, E(n) is strictly decreasing forn > N.

Proof. The value of F(0) is clear. For 1 < n < N, we have ns + h,(0) < ¢, so by Theorem 6.1,
E(n) = E(x}) where x, is given by (6.4) and (6.5). Substitution of (6.4) and (6.5) into (6.1) and

elementary manipulations yield (6.9) with x =z ;.

Now let n > N. By Theorem 6.1, F(x,) attains its maximum at a point x* € 95,,. Thus, ¥ =0
for some i, 1 <i<n+1. If1 <i<n then the i* save is superfluous, and if i = n + 1 the n*"
save is superfluous. Remove the i*" computing interval and let z1, ..., z, be the resulting computing

intervals. Then F(x}) < F(#Zn-1), so that E(n) < E(n—1). N

For the equal-computing-interval policy let #; = (¢ — ns)/(n+ 1), 1 < i < n+ 1. Substitution
into (6.1) and simplification yields

E . Cc—ns e 6_(C+s)/(n+1) 1
(n) = il |07 1_e—<c+s>/<n+1>(

_ e—”(0+5)/(”+1)) ) (6.10)

Table 3 shows examples comparing F(n) and E(n), as n increases up to the largest value for which

ns+ hp(0) < e.

While F(n) and E(n) can differ substantially, we again see, as in the uniform case, that max,,>q F(m)
and max,,>g E(m) are quite close. Note also that the functions F(n) and E(n) are unimodal and
quite flat around the mode as in the uniform case. Based on Table 2 and many examples not shown

here, it seems reasonable to conjecture that F(n) is in fact unimodal always.
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Table 3 — E(n) vs. E(n) for the Exponential Law.
s = .1, maxima are in boldface.

c=1.0 c=4.0 c=10.0

n E(n) Z?(n) n E(n) Z?(n) n E(n) Z?(n)
0 .367879 367879 | 0 .073263 .073263 | 0 .000454 .000454
1  .426560 .425173 | 1 386473 286749 | 1  .333275  .031951
2 411336 .410993 | 2 504736 .428479 2 464714 116752
3 378701 .374961 | 3 559605 .510634 | 3 .529929 211038
4 342015 329528 | 4  .5b86640 .558569 | 4 565607  .293649
5 599756 586111 | 5  .5b86131  .361197
6  .605500 .600722 | 6  .598270  .415377
7 .607282 606676 | T  .605565 .458702
8  .606982 .606570 | 8  .609988  .493413
9 .605661 .602063 | 9  .612683  .521293
10 .603919  .594264 | 10 .614328  .543720
11 615330 .561751
12 615939 576197
13 616307  .587690
14 616526  .596726
15 616654 .603699
16 616727 .608922
17 616766 .612652
18  .616785  .615097
19 616792 .616428
20 .616793 .616789
21 .616791  .616299
22 616787  .615059
23 616782 .613154

Table 4 illustrates optimal computing-interval sequences, and shows how closely they appear
to approach the uniform sequence #; = (¢ — Ns)/(N +1), 1 <7 < N+ 1, as N becomes large.
Note that for fixed s, either the sequence 1s monotonically increasing or 1, ..., zx is monotonically
decreasing with zx < zn4+1. With s fixed, the latter property appears to hold for all ¢ sufficiently
large. Indeed, this property can be proved analytically.
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Table 4 — Optimal Computing Intervals for Examples in Table 3.

c=1.0

Li
.395945
.504089

0 =~ O Tt = LN e

c=4.0

2
.384901
385973
387716
.390559
395213
402879
415636
.b37231

c¢c=10.0
1 383179
2 383177
3 383173
4 383167
5  .3831567
6 .383141
7 383115
8  .383073
9  .383005
10 .382894
11 382715
12 .382424
13 381953
14 381191
15 379958
16 377968
17 374764
18 .369626
19  .361442
20 .3485b42
21 .428543

17
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7 Final Remarks

In a natural generalization of the problem here, there is a sequence of check intervals with given
durations ¢y, ¢s,...,¢m, along with parameters describing the check operation itself, e.g., a time
to make a check and, if the check shows that the machine 1s down, a time to make a repair. The
problem of scheduling saves seems to be substantially more difficult, especially when the failure law
does not regenerate at the beginning of each check interval. The corresponding problems in [1, 2]

also remain open for general failure laws.

With a failure law that regenerates at the beginning of each check interval, the above check-
and-save problem would decompose into independent single-interval problems, if one could assume

that

(i) the probability of a failure during a check is negligible, as in [1, 2], and

(ii) as part of each check, the current state is recorded.

Then the analysis of preceding sections would apply.

However, if these assumptions do not hold, the earlier results do not apply directly. For, if a
failure occurs between a check time and the end of the next save, then it may be necessary to restart
in the state of the last successful save of the preceding check interval. This would be inconsistent
with the earlier assumption that, if a failure does not occur in [0, ¢], then all of the computing time,
including xp41, is successfully done. Given a sufficiently simple model of a check operation under
assumption (ii), an extension of the earlier model to include the check itself would appear to be a
promising line of research. Note, however, that if the computing intervals are small compared to
check intervals, then a decomposition into independent check intervals and check operations may

well yield a good approximation to optimal design.

Acknowledgements. We gratefully acknowledge helpful discussions with D. S. Johnson and P. W.
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provided the motivation for the problem studied in this paper.
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ABSTRACT

Computer users with very long computations run the risk of losing work because of machine
failures. Such losses can often be reduced by scheduling saves on secure storage devices of work suc-
cessfully done. In the model studied here, the user leaves the computation unattended for extended
periods of time, after which he or she returns to check whether a machine failure occurs. When a
check reveals a failure, the user resets the computation so that it resumes from the point of the last

successful save.

Saves are themselves time consuming, so that any strategy for scheduling saves must strike
a balance between the computing time lost during saves and the computing time that is occasionally

lost, because of a failure since the last successful save.

For a given time to the next check and given constant save times, this paper computes
schedules that maximize the expected amount of work successfully done before the next check,
under the uniform and exponential failure laws. Explicit formulas are obtained for the uniform law.
A recurrence leads to routine numerical calculations for the more difficult system with an exponential

failure law.



