First Midterm, SIEO3658, Fall 2005

Note: Only the course notes sent to you by email can be consulted dURING THE EXAM.

1. (13 points) A building has 60 occupants consisting of 15 women and 45 men. The men have probability $1 / 2$ of being colorblind and the women have probability $1 / 3$ of being colorblind.
i) Suppose you choose uniformly at random a person from the 60 in the building. What is the probability that the person will be colorblind?
Ans:

$$
\begin{aligned}
W & =\{\text { the one selected is a woman }\} \\
M & =\{\text { the one selected is a man }\} \\
B & =\{\text { the one selected is colorblind }\} \\
P(W) & =15 / 60=1 / 4 \\
P(M) & =3 / 4 \\
P(B \mid W) & =1 / 3 \\
P(B \mid M) & =1 / 2
\end{aligned}
$$

Therefore

$$
P(B)=P(B \mid W) P(W)+P(B \mid M) P(M)=11 / 24
$$

ii) Use Bayes' rule to determine the conditional probability that you chose a woman given that the occupant you chose is colorblind.
Ans:

$$
P(W \mid B)=P(B \mid W) P(W) / P(B)=1 / 3 \cdot 1 / 4 /(11 / 24)=2 / 11
$$

2. (13 points) Consider an experiment in which a fair coin is tossed until it first yields the same result twice in succession - (heads,heads) or (tails,tails) - at which point the experiment ends.
i) Describe the sample space for this experiment. (Note that it is infinite since there is no bound on the number of tosses before getting 2 heads in a row or 2 tails in a row.)
ii) What is the probability that the experiment ends after an even number of tosses?

Ans: i) The sample space is all the sequences alternating between heads and tails except for the last two tosses which are the same.
$\{H H, T T, H T T, T H H, H T H H, T H T T, H T H T T, T H T H H, \cdots\}$.
ii) Let N be the number of tosses in the experiment.

$$
\begin{aligned}
P(N=2) & =2 \cdot(1 / 2 \cdot 1 / 2)=1 / 2 \quad \text { corresponding to HH and TT } \\
P(N=4) & =2 \cdot(1 / 2)^{4}=1 / 8 \quad \text { corresponding to HTHH and THTT } \\
P(N=2 k) & =2 \cdot(1 / 4)^{k} \quad \text { following the above argument }
\end{aligned}
$$

Therefore
$P($ the game ends after an even number of tosses $)=\sum_{k=1}^{\infty} 2 \cdot(1 / 4)^{k}=(1 / 2) /(1-1 / 4)=2 / 3$.
3. (13 points) Bob and Alice repeatedly play a game of chance which Alice has probability p of winning. Each time she loses she gives a dollar to Bob, and each time she wins she receives a dollar from Bob. There are never ties.
i) Show that the pmf of Alice's fortune W after 10 games (the number of dollars received from Bob minus the number of dollars she has given to Bob) is given by

$$
\begin{aligned}
P(W=2 u) & =\binom{10}{5+u} p^{5+u}(1-p)^{5-u},-5 \leq u \leq 5 \\
& =0, \text { otherwise. }
\end{aligned}
$$

and verify that it satisfies the normalization axiom.
ii) Find the expected value of W and show that the variance is maximized when $p=1 / 2$.

Ans: i) Let N be the number of games she wins, so she loses $10-N$ times, which means her fortune will be $W=N-(10-N)=2 N-10$ at the end; in other words

$$
P(W=2 u)=P(2 N-10=2 u)=P(N=5+u) .
$$

Now define $U=N-5$ where $-5 \leq u \leq 5$, we have

$$
P(N=5+u)=P(U=u)
$$

It is easy to see that

$$
P(N=k)=\binom{10}{k} p^{k}(1-p)^{10-k}, 0 \leq k \leq 10
$$

which is equivalent to:
$P(U=u)=P(N=5+u)=\binom{10}{5+u} p^{5+u}(1-p)^{5-u}=P(W=2 u),-5 \leq u \leq 5$.
ii) Since

$$
P(N=k)=\binom{10}{k} p^{k}(1-p)^{10-k}, 0 \leq k \leq 10
$$

we have

$$
E(N)=10 p, \operatorname{Var}(N)=10 \cdot p(1-p)
$$

Now $W=2 N-10$ so

$$
E(W)=2 \cdot E(N)-10=20 p-10
$$

and

$$
\operatorname{Var}(W)=4 \cdot \operatorname{Var}(N)=40 p(1-p),
$$

since $\sqrt{a \cdot b} \leq \frac{a+b}{2}$ and the equality only holds when $a=b$, we obtain

$$
p(1-p) \leq\left(\frac{p+1-p}{2}\right)^{2}
$$

and the equality only holds when $p=1 / 2$; hence the variance is maximized when $p=1 / 2$.
4. (11 points) A random message is received as a sequence of n bits, each of which is independently and equally likely to be 0 or 1 . Show that the event that a message with no two consecutive 1's is received has probability $g_{n} / 2^{n}$, where g_{n} satisfies

$$
g_{n}=g_{n-1}+g_{n-2}, \quad n \geq 2
$$

with the initial conditions $g_{0}=1, g_{1}=2$. We note in passing that the sequence $0,1, g_{0}, g_{1}, \ldots$ is the Fibonacci sequence. (Hint: Consider the first bit (or two) and then argue about the number of similar sequences in the remaining bits.)
Ans: Let Ω_{n} be all the messages of length n which contain no two consecutive 1's.

$$
\begin{gathered}
\left|\Omega_{n}\right|=g_{n} \\
\Omega_{0}=\phi \text { and } \Omega_{1}=\{0,1\} .
\end{gathered}
$$

We need to establish a recursive equation. Consider a sequence $\left\{X_{1}, X_{2}, \cdots, X_{n}\right\} \in$ Ω_{n} where $n \geq 2$,
(a) If $X_{1}=0$, then the remaining bits $\left\{X_{2}, X_{3}, \cdots, X_{n}\right\}$ can be any message in Ω_{n-1}.
(b) If $X_{1}=1$, then X_{2} can only be 0 , and $\left\{X_{3}, X_{4}, \cdots, X_{n}\right\}$ can be any message in Ω_{n-2}.

Therefore we have

$$
g_{n}=g_{n-1}+g_{n-2}, \quad n \geq 2
$$

Since n bits can form 2^{n} messages, the probability that a message has no two consecutive 1's is $g_{n} / 2^{n}$.

