

Final Project Report
E3390 Electronic Circuits Design Lab

The Seeing Natcar

Peter Fredrickson
Federico Garcia

Antonio Gellineau
Steven Mon

Submitted in partial fulfillment of the requirements for the
Bachelor of Science Degree

December 16th , 2008

Department of Electrical Engineering
Columbia University

1 ELEN E3390

Table of Contents

1) Executive Summary

2) Block Diagram, Design Targets, Specifications

3) Individual Block Descriptions

4) Bill of Materials

5) Health, Safety, and Environmental Issues

6) Final Gantt Chart

7) Assessment of the Course

8) Appendix

2 ELEN E3390

1. Executive Summary

The aim of the project is to build an autonomous car that can be
entered into the NATCAR competition held in University of California –
Davis. The challenge of the competition is to create a car capable of
racing a track autonomously. The track is comprised of a wire with an
AC signal beneath white tape on a dull carpet. The car can use any
means within budget to follow the track as quickly as possible without
going out of bounds.

Most teams employ inductors in order to track the AC signal in the

wire. This design works well as small variations in the signal employ
good feedback towards controlling the car. However, for our project
we wanted to attempt a different and interesting approach that had
the potential to improve on this design. Our goal was to create a
“Seeing NATCAR”; a car that would track the difference in the color of
the tape versus the carpet.

We accomplish this by using IR photodiodes and photosensitive BJTs

in a reflective package in order to “see” the track. This is then analyzed
by the A/D converters of the microprocessor which sends control
signals to the circuitry which powers the car.

The final phase of this project would be to produce a car that is

competitive at UC Davis.

3 ELEN E3390

2. Block Diagram, Design Targets, Specifications

Figure 1 - H Bridge

Figure 2 - Sensor Circuit

4 ELEN E3390

Figure 3 - MUX Logic (Direction Selection-Left/Right)

Figure 4 - 5V Voltage Regulator

5 ELEN E3390

Figure 5 - Full Block Diagram

6 ELEN E3390

3. Individual Block Descriptions

i. Microcontroller
The microcontroller serves as the primary unit to take in all the

sensor signals and output all control signals. For a variety of reasons,
the specific chip chosen for this project is the PIC16F74 from
MicroChip Inc. Free samples were obtained from MicroChip and
the software and hardware necessary for programming was
already available in the Mechatronics Lab. The microcontroller has
a wide operating range and can tolerate input voltages from our
DC Converter Circuit between 2.5V and 5.5V. It also runs at low
power consumption, typically less than 2mA when at a 5V supply.
The chip has 33 digital input/output pins available to use, as well as
the ability to use 8-bit analog-to-digital conversion and output a
Pulse Width Modulated signal.

We configured a full 8-pin port of the microcontroller to handle
the analog inputs coming from the photosensors. Since we were
handling low voltage inputs, one of the eight pins was set to the
minimum reference voltage of 2.5V. With the minimum VRef of 2.5V
and digital conversion values from 0 to 255, we had a digital
resolution of approximately 10mV.

Before programming the microcontroller to manage the car in its
entirety, we first designed two test programs. For the first one, we
built a circuit and wrote a simple program to test the analog-to-
digital conversion. The circuit successfully converted any of the
chosen seven inputs and displayed the conversion on 8 output pins
indicated with LEDs. Secondly, we verified that the two PWM
output pins functioned at operating voltages and frequencies that
would work for our control logic. With these checks complete, the
PIC16F74 was ready to be programmed to interface with the full car.

The program to run the car went through several revisions during
testing and experimentation with each revision adding some new
functionality to the microcontroller. In the primary set up, the
microcontroller sweeps through the five inputs from the
photosensors and stores each value. It then uses conditional logic
to compare the values and see which sensor had the highest
response, and therefore would have been on top of the track. This

7 ELEN E3390

is then used to select a direction to go; either straight ahead, slightly
left/right, or sharp left/right. Each direction has an associated duty
cycle for speed, steering, and if necessary for turning, a digital
output to control left/right. It was also programmed to reduce the
speed while turning. This helped increase control and reduce the
chances of running off the track.

Two significant improvements were made for use in the final
code. The first one involved implementing variable speed control
with the use of an analog signal controlled by a potentiometer. The
potentiometer uses one of the remaining two analog-to-digital pins
and varies the voltage from 0V up to the reference at 2.5V. Rather
than hard-coding the speed duty cycle, the value obtained from
this pin is used as a controllable way for us to adjust the speed at
any time. The speed is still programmed to decrease by 80% and
60% when making gentle and sharp turns, respectively.

The second adjustment used the one remaining analog pin and
another potentiometer to again vary a voltage from 0V to 2.5V. This
value was then used as a baseline threshold voltage that the inputs
from the photosensors needed to pass. Before the car would make
any adjustments, the threshold ensured it was recognizing the track
itself and not just noise. This greatly improved the function of the
car. Previously, if the vehicle did not turn sharply enough and went
slightly past the track, it would move unpredictably in whichever
sensor happened to be outputting the marginally greater signal.
With this threshold, none of that noise is enough to trigger the
microcontroller to change direction and it continues to turn in the
direction it was attempting to return to the track. Once it passes
over the track again, the sensor values will be large enough to
begin triggering the controls and readjust itself on the track.

There still exist several possibilities for improvement in the
programming. One feasible idea is to implement a timer variable
that increments every time the microcontroller sweeps through and
calculates all the analog-to-digital conversions. It would be reset
whenever it detected a photosensor that surpassed the threshold to
detect the track. However, if it made multiple sweeps without
detecting any sensor above the threshold, the program could
assume it has lost the track and go into a correction mode. At this
point, we could either stop driving the car as a failsafe, or perhaps

8 ELEN E3390

even implement a sequence where it goes in reverse to try and
return to the track. Our wiring of the car did not make use of any
traveling in reverse because our primary concern was to follow a
track quickly and at relatively competitive speeds. However, it
would not be difficult to add this functionality and help the program
more rigorously account for challenges that could come with
extremely difficult tracks.

The code implemented in our final car is included in the
Appendix.

ii. Directional Control Multiplexer

This functional block switches the inputs to the H-Bridge in order
to change the direction of the DC motor which controls the steering
of the car. One input is the Pulse Width Modulated signal which
controls the amount of Power applied to the steering and the other
is the input to the multiplexer which decides whether to switch the
signal or not.

iii. Photosensors

Initially, the sensor design used five individual IR photoemitters
and five individual photodetectors. However, it soon became
apparent that they would not be suitable due to inherent variations
in angle, manufacture and position. Therefore, we decided to
replace them with the EE-SF5-B reflective photomicrosensors. These
were chosen since they solved the issue of non-uniformity and that
they contained a filter to help reduce interference from external
light sources.

The IR LED of the EE-SF5-B emits IR light at an angle which is either
reflected by the tape or absorbed by the dull carpet. The other side
of the photosensors is an open base BJT transistor. The photocurrent
turns on the BJT channel which creates a current to flow through
the Resistor connected to the emitter. The Voltage created by
these sensors is then read by the A/D convertors of the
Microprocessor. The response of these sensors was 100mV to 1V on
average. The resistance values were chosen from the included
datasheet to balance response time versus the product of the
current flowing through the BJT and the resistance in its emitter.

9 ELEN E3390

 Also, the photosensors were mounted on an adjustable
housing (Appendix Figure 1) allowed us to test the maximum
distance between the sensors and the steering.

iv. H-Bridge

Controlling the car was easily the greatest challenge. The first
design tried to control the car using switching relays and optical
isolators but relays were not able to provide adequate switching
speeds.

The second design employed H-Bridges as was recommended
by the project’s advisors. Two H-bridges were bought from Digikey
(LMD18200T-ND). These were perfect for controlling DC motors but
the voltage from the battery was simply not enough to adequately
power the device. As a result, we had to abandon the chip.

Instead we constructed two H-bridges and the required control
circuitry, which includes the directional control multiplexor and the
open collector inverters, which are detailed in this section.

The H-Bridge used in this project was constructed from regular
power MOSFETs in an inverting configuration and the inputs were
buffered from TTL levels to the 9.6V and 0V rails in order to make
sure the power FETs were in cut-off and current could only be
conducted across a DC Motor.

v. Voltage Regulator

The car needed a voltage regulator since the car’s battery had
a nominal voltage output of 9.6V, but needs a 5V supply for the
microcontroller and associated logic. Therefore, we used the
LM723CN which was readily available in our projects lab. However,
the regulator is not designed to power loads, so it could not directly
provide current to the IR LED’s, microprocessor and multiplexer. We
therefore added a voltage follower implemented by a power
operational amplifier. To ensure enough current was supplied for all
of our control logic, we used two power operational amplifiers, both
supplied directly from the battery.

10 ELEN E3390

vi. Speed Control
In our initial tests we determined that the speed of the car was

too fast when the battery was fully charged for our sensors to
detect the track while not very responsive while the battery was low.
Instead of hard-coding a speed into the logic of the car a speed
control was implemented.

Therefore, in our design is a potentiometer which controls the
speed of the car. The car selects its speed proportional to the digital
conversion of the analog voltage value across the potentiometer. It
is set up to ensure that no more than 2.5V sets the value of the car
as 2.5V is the max value of the A/D converter.

11 ELEN E3390

4. Bill of Materials

Part Name
Manufacturer/

Provider Part Number QTY
Unit

Price
Final
Price

Photodiodes DigiKey 160-1032-ND 10 $0.388 $3.88
IR LED DigiKey 1N6266-ND 10 $1.32 $13.20
PhotoMicrosensor DigiKey OR503-ND 15 $5.21 $78.15
Oscillators DigiKey 535-9182-5-ND 5 $0.73 $3.64
H Bridge DigiKey LMD18200T-ND 2 $14.14 $28.28
Linear Regulator Linear Technology LT3008 2 $1.71 $3.42
Negative Linear Regulator Linear Technology LT1185 2 $4.50 $9.00
4-Pack AA Batteries for
remote car testing

Energizer
NH15-2500 2 $13.99 $27.98

RC Cadillac Electric Car Hobbytron AA-69003-XQ031 2 $31.50 $63.00
Total Cost: $230.55

*Note: Shipping and tax not included in bill total

12 ELEN E3390

5. Health, Safety, and Environmental

a. Product Dangers

This product does not pose any danger if operated properly.
However, the user should be aware that the power MOSFETs, if not
biased properly, can have shoot through current which causes the
MOSFETs to draw large currents and heat up the package to
extreme temperatures. The car is properly biased so this does not
happen, but if wires are reconnected incorrectly this scenario is
possible. Therefore, one should always check to make the MOSFETS
are connected properly to the battery, and even then avoid
touching the MOSFETs shortly after operation or confining them
without adequate cooling/ventilation.

b. Health Hazards

In normal operation, only notable health hazard would take place if
someone were to recklessly operate the car in an uncontrolled
testing area. If the car was set to maximum speed and ran into an
unaware individual, it may cause some very minor injuries. This
hazard is easily managed by making sure to operate the car in a
controlled track environment with a barrier between the area of
operation and any unaware bystanders.

c. Environmental Hazards

i. This product conforms to FCC standards
ii. There is a potential shock danger if the wiring is tampered with or

the battery/battery charger is disassembled.

13 ELEN E3390

6. Final Gantt Chart

9/8/2008

9/18/2008

9/28/2008

10/8/2008

10/18/2008

10/28/2008

11/7/2008

11/17/2008

11/27/2008

12/7/2008

12/17/2008

Initial Design/Brainstorm

Photodiode Sensor Design

Reverse Engineer Car

mplementation (REPLACED)

Relay Control (ABANDONED)

DC Converter (ABANDONED)

Microcontroller Programming

Voltage Regulator

Motor Control II (H Bridge)

Inductor Sensor Design

ementation (ABANDONED)

Photosensor Implementation

MUX/Inverter Circuit

Photosenor Diode Mounting

Potentiometer/Switch

Integration

Final Refinement

Photodiode Sensor I

Motor

DC to

Inductor Sensor Impl

Date Completed Remaining

14 ELEN E3390

7. Assessment of the Course

Our group believes the main and critical component of a course such

as this one is good advising. This was handled well and whenever our
group ran into problems with our design or implementation, the assistance
and advice we received greatly helped the project to succeed.

With this in mind, the only shortcomings of this course would be the
space and equipment. The space was an issue since there were probably
seven or so groups trying to use the same projects lab.

Equipment was an issue because it was very hard to find parts without

assistance. Also, one of the main difficulties we encountered came from a
faulty breadboard. The tape backing was removed to connect the board
to platform of the car but it could not hold up to connections. (See Figure
2)

Since new space has been allocated to Senior Design, we are

confident that our criticisms have been acknowledged and that work is
being done to improve the course.

15 ELEN E3390

8. Appendix

Microcontroller Code

#include<pic.h>
 __CONFIG(11111110110010);
/**
Natcar5.c

 This program uses the PIC16F74 Microcontroller. It takes in
 5 analog signals from photodiode sensors and takes the AtoD
 conversion of each. By finding the highest value of those signals,
 it decides a direction to turn if any, and a speed to drive the
 car at. The steering is controlled by a PWM wave output at 19.53kHz
 as well as a single digital signal to control the direction. The
 driving is controlled by the second PWM wave, also at 19.53kHz with
 an independently controllable duty cycle.

 Port C bits will be defined as follows:
 0-Digital Output-Controls the direction of the steering
 1-CCP2:PWM Output to control steering
 2-CCP1:PWM Output to control driving speed

 The analog signals will be defined as follows:
 AN0(Pin2)-Signal from far left sensor
 AN1(Pin3)-Signal from close left sensor
 AN2(Pin4)-Signal from center sensor
 AN3/Vref(Pin5)-Reference voltage set to 2.5V
 AN4(Pin7)-Signal from close right sensor
 AN5(Pin8)-Signal from far right sensor
 AN6(Pin9)-Signal from a potentiometer to control speed
 AN7(Pin10)-Signal from a potentiometer to control ambient threshold

**/

/*Variable declarations */

#define PORTBIT(adr,bit) ((unsigned)(&adr)*8+(bit)) //Gives descriptive

//names of bits

 static bit Direc @ PORTBIT(PORTC,0); // Map bit 0 of PORTC->

// control direction

 char Temp; // Variable for AtoD delay loop
 char L2; // Variable for far left sensor
 char L1; // Variable for close left sensor
 char Center; // Variable for center sensor
 char R1; // Variable for close right sensor
 char R2; // Variable for far right sensor
 unsigned char Pot; // Variable for Potentiometer
 unsigned char Amb; // Variable for ambient threshold

16 ELEN E3390

void SetupDelay (void) // Delay Loop for AtoD Aquisition
{
 for (Temp=1; Temp > 0; Temp--) {} // ~17 us delay
}

void AcquireAtoD (void)
{

ADCON0=0b01000001; // select 8* oscillator, analog input 0,
// turn on

 SetupDelay();
 ADGO = 1; // Start A/D
 while (ADGO== 1) {} // Waiting for conversion to finish
 L2 = ADRES; // Store value for far left sensor

 ADCON0=0b01001001; // select 8* oscillator, analog input 1,

// turn on
 SetupDelay();
 ADGO = 1; // Start A/D
 while (ADGO== 1) {} // Waiting for conversion to finish
 L1 = ADRES; // Store value for close left sensor

 ADCON0=0b01010001; // select 8* oscillator, analog input 2,

// turn on
 SetupDelay();
 ADGO = 1; // Start A/D
 while (ADGO== 1) {} // Waiting for conversion to finish
 Center = ADRES; // Store value for center sensor

 ADCON0=0b01100001; // select 8* oscillator, analog input 4,

// turn on
 SetupDelay();
 ADGO = 1; // Start A/D
 while (ADGO== 1) {} // Waiting for conversion to finish
 R1 = ADRES; // Store value for close right sensor

 ADCON0=0b01101001; // select 8* oscillator, analog input 5,

// turn on
 SetupDelay();
 ADGO = 1; // Start A/D
 while (ADGO== 1) {} // Waiting for conversion to finish
 R2 = ADRES; // Store value for far right sensor

 ADCON0=0b01110001; // select 8* oscillator, analog input 6,

// turn on
 SetupDelay();
 ADGO = 1; // Start A/D
 while (ADGO== 1) {} // Waiting for conversion to finish
 Pot = ADRES; // Store value for speed control

 ADCON0=0b01111001; // select 8* oscillator, analog input 7,

// turn on
 SetupDelay();
 ADGO = 1; // Start A/D
 while (ADGO== 1) {} // Waiting for conversion to finish
 Amb = ADRES; // Store value for ambient threshold

17 ELEN E3390

}

//$$

void main (void)
{

//%%

 // Configure input and output ports

 TRISC = 0B00000000; // Sets PortC all outputs
 ADCON1 = 0B00000001; // Sets all analog pins inputs and AN3=Vref

 CCP1CON = 0B00000000; // CCP1 Module is off
 CCP2CON = 0B00000000; // CCP2 Module is off
 TMR2 = 0B00000000; // Clear Timer2
 PR2 = 0B11111111; // PR2 = 255

 PIE1 = 0B00000000; // Disable peripheral interrupts
 PIR1 = 0B00000000; // Clear peripheral interrupts Flags

 TMR2ON = 1; // Turn on Timer2

//%%

//&&

 while(1)
 {
 AcquireAtoD(); // Acquire all 5 values from sensors

 if (L2>=L1 && L2>=Center && L2>=R1 && L2>=R2 && L2>Amb) //Sharp Left
 {
 Pot = Pot*.6; // Reduce speed by 60%
 CCPR1L = Pot; // Driving Duty Cycle from Pot
 CCP1CON = 0B00001100; // PWM mode, 2LSBs Duty cycle = 00
 CCPR2L = 0B11100000; // Steering Duty Cycle = 87.5%
 CCP2CON = 0B00001100; // PWM mode, 2LSBs Duty cycle = 00
 Direc = 0; // Turn left
 }
 else if(L1>=L2 && L1>=Center && L1>=R1 && L1>=R2 && L1>Amb) //Slight Left
 {
 Pot = Pot*.8; // Reduce speed by 80%
 CCPR1L = Pot; // Driving Duty Cycle from Pot
 CCP1CON = 0B00001100; // PWM mode, 2LSBs Duty cycle = 00
 CCPR2L = 0B11000000; // Steering Duty Cycle = 75%
 CCP2CON = 0B00001100; // PWM mode, 2LSBs Duty cycle = 00
 Direc = 0; // Turn left
 }
 else if(Center>=L2 && Center>=L1 && Center>=R1 && Center>=R2 && Center>Amb)

//Center
 {

18 ELEN E3390

 CCPR1L = Pot; // Driving Duty Cycle from Pot
 CCP1CON = 0B00001100; // PWM mode, 2LSBs Duty cycle = 00

 CCP2CON = 0B00000000; // Turn off PWM for steering
 }
 else if(R1>=L2 && R1>=L1 && R1>=Center && R1>=R2 && R1>Amb) //Slight Right
 {
 Pot = Pot*.8; // Reduce speed by 80%
 CCPR1L = Pot; // Driving Duty Cycle from Pot
 CCP1CON = 0B00001100; // PWM mode, 2LSBs Duty cycle = 00
 CCPR2L = 0B11000000; // Steering Duty Cycle = 75%
 CCP2CON = 0B00001100; // PWM mode, 2LSBs Duty cycle = 00
 Direc = 1; // Turn right
 }
 else if(R2>=L2 && R2>=L1 && R2>=Center && R2>=R1 && R2>Amb) //Sharp Right
 {
 Pot = Pot*.6; // Reduce speed by 60%
 CCPR1L = Pot; // Driving Duty Cycle from Pot
 CCP1CON = 0B00001100; // PWM mode, 2LSBs Duty cycle = 00
 CCPR2L = 0B11100000; // Steering Duty Cycle = 87.5%
 CCP2CON = 0B00001100; // PWM mode, 2LSBs Duty cycle = 00
 Direc = 1; // Turn right
 }

 }

//&&

}

19 ELEN E3390

Figure 1: Extension for sensors

20 ELEN E3390

Figure 2: Breadboard without backing

21 ELEN E3390

Figure 3: Track Construction

22 ELEN E3390

Figure 4: Top View

Figure 5: Profile View

23 ELEN E3390

24 ELEN E3390

Figure 6: Front View

