Final Project Report E3390 Electronic Circuits Design Lab

RFID Access Control System

Jeffrey Mok Joseph Kim

Submitted in partial fulfillment of the requirements for the Bachelor of Science Degree

May 11, 2007

Department of Electrical Engineering Columbia University

Table of Contents

- 1. Executive Summary
- 2. Block Diagram, Design Targets, and Specifications
- 3. Individual Block Descriptions
- 4. Bill of Materials
- 5. Health, Safety, & Environmental Issues
- 6. Final Gantt Chart
- 7. Criticism of This Course

Appendix – software code

1. Executive Summary

RFID is a contactless identification technology based on the transmission of radio frequency waves. Its advantage over its predecessor, the barcode system, is its increased range and increased data storage capacity. The typical RFID system consist of three main components, the transponder (or tag), the reader, and the application.

The tag is the data storage component. The tags we will use in this project will be passive tags, meaning they do not have an internal power supply. The reader activates, powers, and communicates with the tag using electromagnetic waves. Once activated, the tag will respond to the reader with the information that is stored in its memory. The reader extracts this information and sends it the application component for processing.

Our project demonstrates a low-cost RFID access control application. Tags will be used as keys, with the system able to configure tags to be "allowed" or "denied".

2. Block Diagram, Design Targets, and Specifications

Block Diagram

Figure 1: RFID Access Control System Block Diagram

Design Targets and Specifications

RFID Tag – Purchased since a practical (small and portable) tag is out of our manufacturing capabilities.

RFID Tag Reader – Constructed using discrete components and IC's.

Microcomputer programming – Programmed on PIC16F7X MCU in assembly language using Microchip's MPLAB.

User Interface – This includespushbuttons (read command), switches (configure, change operation mode – normal or setup).

Alerting System – This includes LEDs to indicate "accept" or "reject", error indicator (or might have it just blink between accept and reject lights), display RFID's unique code.

Mechanical System – Locking mechanism. Not implemented at this time.

3. Individual Block Descriptions

RFID Tag

Atmel read-only TK5530 tags were chosen for this system. These tags respond to a 125 kHz wave with an 125 kHz AM wave containing a 64-bit rolling code at 3.9kbps. The code contains an 8 bit header followed by a unique ID code. The data is encoded using Manchester encoding.

These tags were chosen because of our knowledge of how to demodulate AM compared to tags that use other kinds of schemes such as FSK or PSK. Also, our application did not require. Also, we did not require the increased functionalities of more expensive Read/Write tags.

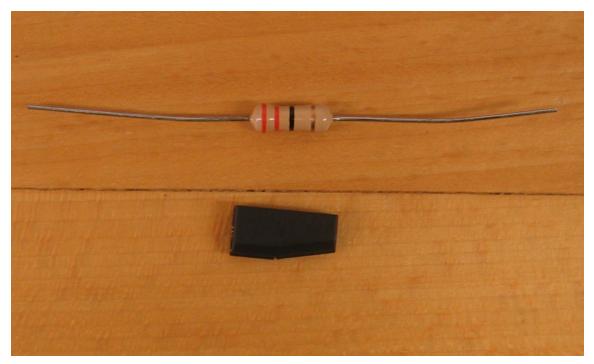


Figure 2: Atmel TK5530 Tag (with resistor for size comparison)

RFID Tag Reader

The purpose of the Reader component is to activate and power the tag, demodulate the response, and prepare the signal for the microcontroller. The components of this reader are: the antenna, signal generator, peak detector, low pass filter, and voltage comparator.

Antenna

Many antenna configurations were constructed for testing. Each had limited range and were difficult to use because the coils would come out of place. In the end, we settled on a pre-made antenna that consisted of two coils wrapped around a ferrite coil in a transformer configuration. The inductance of the coils were measured, and an appropriate capacitor was chosen to tune the antenna to the resonant frequency using the parallel tank circuit equation:

$$f = \frac{1}{2\pi \sqrt{LC}}$$

This antenna still had very limited range. The range was no farther than one. But with this configuration it was possible to rest the tag directly on the antenna, allowing for a consistently good signal.

Signal Generator

A 125 kHz square wave signal generator is required to drive the antenna. We generated a signal from the MCU for this purpose, but due to time constrictions we did not have time to build a circuit to make the signal have the necessary voltage. For now, we are using a function generator as the signal generator. It is set to output a square wave at 125 kHz, 10 Vpp.

Peak Detector

The peak detector is used to extract the envelop of the AM signal. Figures 3 and 4 show the antenna input without and with the tag in proximity. Figure 5 shows the signal after the peak detector.

2.00V/ 2	3	4	£	-5.2805	2.000 /	Auto	f 📘 -
Th							
Main/Delayed 1	Menu			VV	Sample Ra	te = 200MS	me Ref

Figure 3: 125 kHz square wave

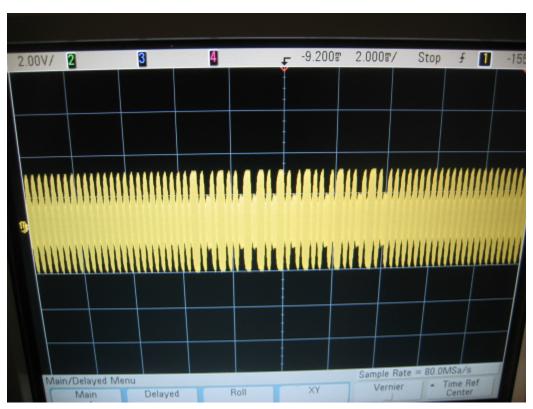


Figure 4: AM response from tag

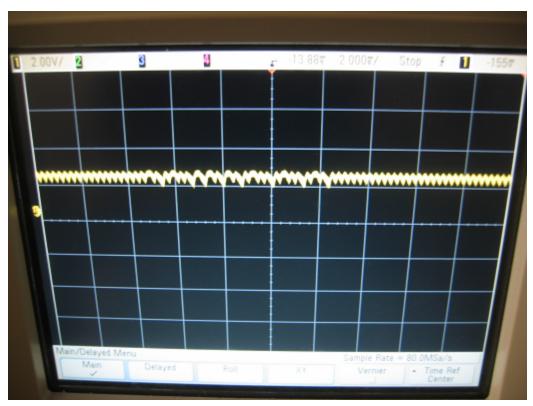


Figure 5: Output of peak detector

Low Pass Filter

A first order low pass filter with a cutoff of 10 kHz was constructed to reduce the carrier frequency. The data is at 3.9 kHz.

Voltage Comparator

The envelop signal is converted to a square wave in preparation for sending to the microcontroller. The LM411 comparator was used. Notice the noise in the signal. This noise greatly affected what the MCU was reading, causing inconsistent results in our application.

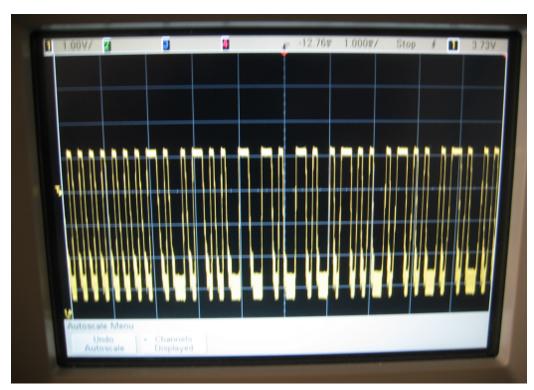


Figure 6: Output of Voltage Comparator

Two inverted Schmitt triggers were used to smooth out the edges. The resulting output was sent into the MCU.

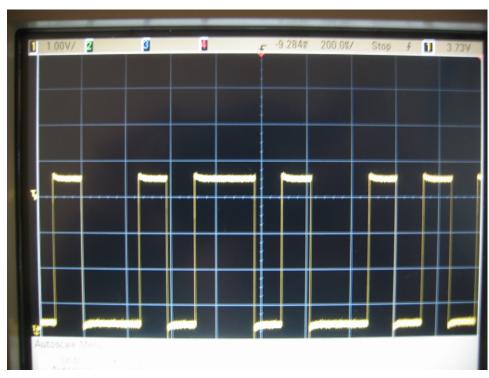


Figure 7: Output of Schmitt Triggers

Microcontroller

The PIC16F7X MCU was programmed in assembly language. The MCU is responsible for decoding the Manchester encoded data, extracting the data, controlling the LED's that indicate the ID, and managing the access control.

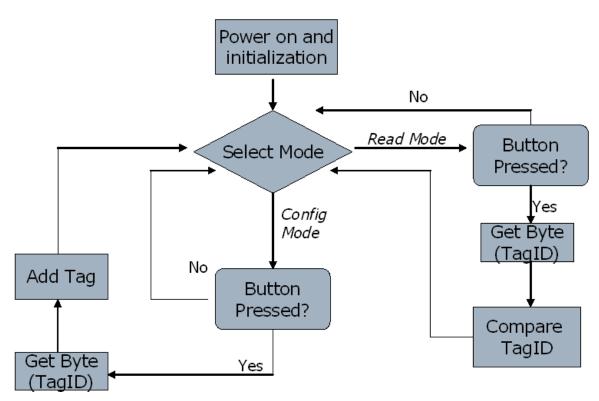
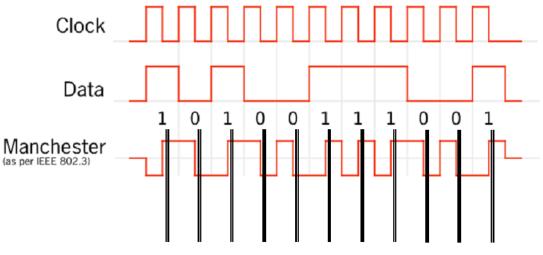


Figure 8: MCU Control Diagram

ID Extraction


The first step in reading the data is to find the header of the code. The Atmel chips have a header of E6 (11100110)

We devised a scheme to find the header as follows:

- First, phase correction:

the

- -Keep sampling input pin (every two usec) until a high is read
- -Next, keep sampling input pin until a low is read
- Finally, keep sampling input until a high is read
- Second, wait just over half a period to adjust for Manchester encoding and sample there at 3.91 kHz
 - -Sample 8-bits and check if all zeros; if not, rotate bits left and sample next bit; repeat until all zeros
- Now keep shifting 8-bit window until the first high-level is found; this and the next 7 bits make up the header
 - After the header, sample another 8-bits: this is the unique tag ID

Figure 9: Manchester Encoding

Once decoded and extracted, the data is output to the LED's. See code and Schematics for more detail.

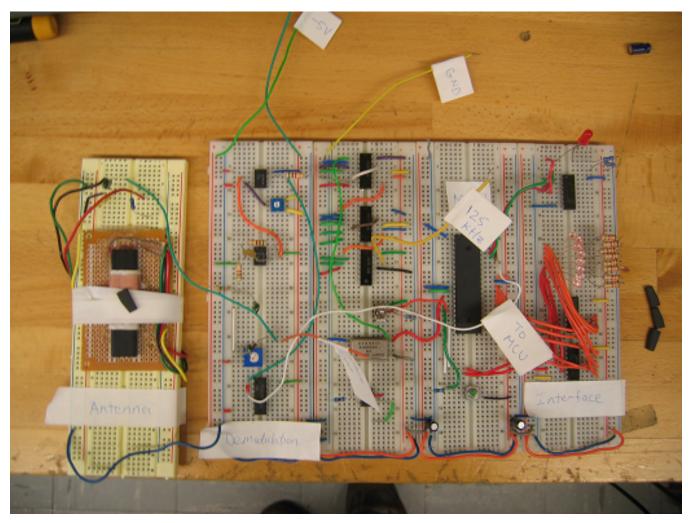
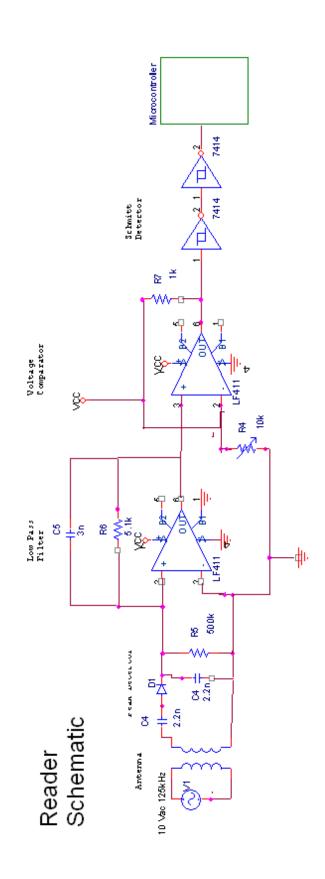
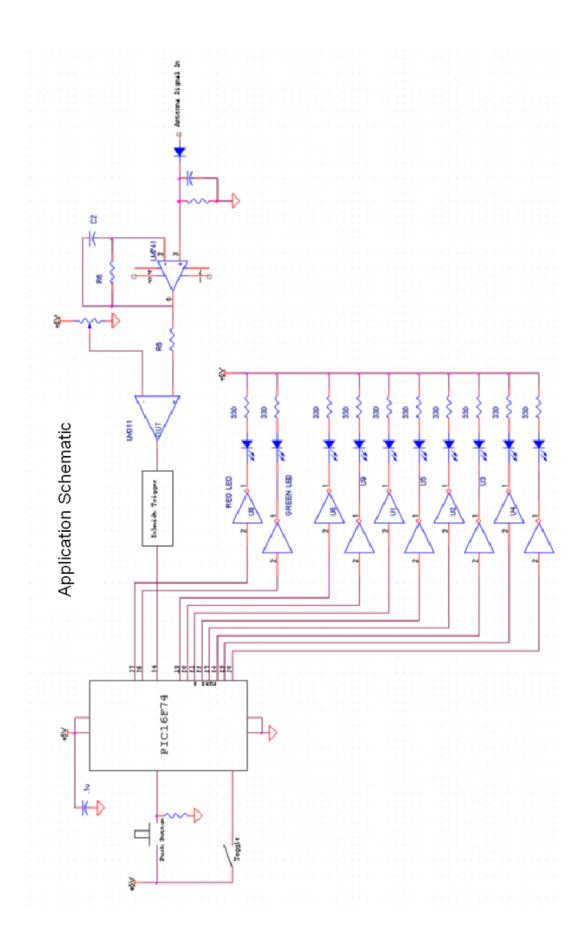




Figure 10: Final Completed System

Document Number <doc> Thureday: Max/03_2002</doc>	RFID Re	ader Stage				
	Docume <doc></doc>	nt Number				
	Thurs	day, May03, 2007	Sheet	-	of	-

4. Bill of Materials

Part	Manufacturer	#	Cost
TK5530 Tag	Atmel	5	5 * 2.60
Antenna		1	28
PIC16F7X	Microchip	1	1.50
LM411	National	2	2 * 1.50
	Semiconductor		
7414 Schmitt	Texas Instruments	2	2 * .50
Trigger			
Capacitors		3	
Resistors		4	
Total Cost			Approx. 38.70

5. Health, Safety, and Environmental Issues

a. Product Dangers

No dangers related to the use of our project are noted. Care should be taken to hook up the circuit properly and use of correct voltages.

b. Health Hazards

No health hazards associated with RFID technology have been noted.

- c. Environmental Hazards
- i. FCC regulations cover RFID devices ranging in frequency from 9kHz to 64 GHz. According to FCC Part 15, Section 15.209, the maximum E field for a device operating between .009-.490 Mhz at a measuring distance of 300m is 2400/f uV/m.
- ii. Electric Shock Problems. All wires are insulated,

6. Gantt Chart

RFID Reader

Jeffrey Mok, Joseph Kim

	30-	0.5.4	13-	20-	27-	0.14-1	13-	
	Jan 1	6-Feb 2	Feb 3	Feb 4	Feb 5	6-Mar 6	Mar 7	-
Research RFID Types, Existing Apps (Jeff, Joe)	1	2	5	4	5	0	1	1
Research RFID Designs (Jeff, Joe)								1
Determine which parts to buy (Jeff)								1
Determine subsystems to design (Jeff, Joe)								-
Meet with Prof Stolfi; working with MCU (Joe)								1
Improve Antenna Design and Reader subsys (Jeff)								
Program Microcomputer (Joe)								
Design/Assemble User interface (Jeff, Joe)								
Mechanical Subsystem if time? (Joe)								
Form factor design (Jeff, Joe)								
System Debugging (Jeff, Joe)								
Project Presentation								
Final Report								
	27-		10-	17-	24-	1-	3-	10-
	Mar	3-Apr	Apr	Apr	Apr	May	з- May	May
		3-Apr 10				-	-	
Research RFID Types, Existing Apps (Jeff, Joe)	Mar		Apr	Apr	Apr	Мау	Мау	May
Research RFID Types, Existing Apps (Jeff, Joe) Research RFID Designs (Jeff, Joe)	Mar		Apr	Apr	Apr	Мау	Мау	May
	Mar		Apr	Apr	Apr	Мау	Мау	May
Research RFID Designs (Jeff, Joe)	Mar		Apr	Apr	Apr	Мау	Мау	May
Research RFID Designs (Jeff, Joe) Determine which parts to buy (Jeff)	Mar		Apr	Apr	Apr	Мау	Мау	May
Research RFID Designs (Jeff, Joe) Determine which parts to buy (Jeff) Determine subsystems to design (Jeff, Joe)	Mar		Apr	Apr	Apr	Мау	Мау	May
Research RFID Designs (Jeff, Joe)Determine which parts to buy (Jeff)Determine subsystems to design (Jeff, Joe)Meet with Prof Stolfi; working with MCU (Joe)Improve Antenna Design and Reader subsys	Mar		Apr	Apr	Apr	Мау	Мау	May
Research RFID Designs (Jeff, Joe)Determine which parts to buy (Jeff)Determine subsystems to design (Jeff, Joe)Meet with Prof Stolfi; working with MCU (Joe)Improve Antenna Design and Reader subsys(Jeff)	Mar		Apr	Apr	Apr	Мау	Мау	May
Research RFID Designs (Jeff, Joe)Determine which parts to buy (Jeff)Determine subsystems to design (Jeff, Joe)Meet with Prof Stolfi; working with MCU (Joe)Improve Antenna Design and Reader subsys(Jeff)Program Microcomputer (Joe)	Mar		Apr	Apr	Apr	Мау	Мау	May
Research RFID Designs (Jeff, Joe)Determine which parts to buy (Jeff)Determine subsystems to design (Jeff, Joe)Meet with Prof Stolfi; working with MCU (Joe)Improve Antenna Design and Reader subsys (Jeff)Program Microcomputer (Joe)Design/Assemble User interface (Jeff, Joe)	Mar		Apr	Apr	Apr	Мау	Мау	May
Research RFID Designs (Jeff, Joe)Determine which parts to buy (Jeff)Determine subsystems to design (Jeff, Joe)Meet with Prof Stolfi; working with MCU (Joe)Improve Antenna Design and Reader subsys (Jeff)Program Microcomputer (Joe)Design/Assemble User interface (Jeff, Joe)Mechanical Subsystem if time? (Joe)	Mar		Apr	Apr	Apr	Мау	Мау	May
Research RFID Designs (Jeff, Joe) Determine which parts to buy (Jeff) Determine subsystems to design (Jeff, Joe) Meet with Prof Stolfi; working with MCU (Joe) Improve Antenna Design and Reader subsys (Jeff) Program Microcomputer (Joe) Design/Assemble User interface (Jeff, Joe) Mechanical Subsystem if time? (Joe) Form factor design (Jeff, Joe)	Mar		Apr	Apr	Apr	Мау	Мау	May

7. Criticism of this Course

The most positive thing about this course was the sense of achievement when the project was complete. We took a kind of technology that we did not any experience with before, but were able to use relatively simple ideas from our classes to implement commercial technology.

We may have spent too much time at the beginning of the semester defining our project. Perhaps this is good in that it reflects the detailed planning required in industry before a project is undertaken. But I think we would have benefited from a stricter schedule. Also, the possibility of this course becoming a two semester course should solve that problem.

A review of some electronic circuits material would have helped too. Again, a two semester course would help with this. It would also be interesting to see how some of the material from the other EE tracks could be part of the projects.

Appendix _____

Software Code

LIST P=16F74 title "Main Operator" _____CONFIG B'1111110110010'

****** **RFID MCU Program** 3-2007 Joseph Sungee Kim JSK2105@COLUMBIA.EDU OSC1 freq (clock in) = 4MHzInstruction cycle approx 1 usec ****** #include <P16F74.INC> , . , Variable Declarations Count equ 20h Temp equ 21h State equ 22h 23h TagID equ Cycle1 24h equ Cycle2 25h equ Cycle3 26h equ Tag1 equ 27h Count2 28h equ Count3 29h equ ;Reset Vector 00h org initPort goto ;Interrupt Vecotr 04h org

	goto	isrSer	vice	;goto i	nterrup	ot routi	ne		
	org		05h			;Begin	nning of F	Program Storag	ge
;%%%%%%% ; Port Initiali		0%0%0%0%	6%%%%	%%%%%	<u>/0%0%0%</u>	6%%%%	6%%%%%%%	%%%%%%%%%%%%	
initPort	clrf clrf bsf clrf bsf movw clrf bcf clrf clrf movw	TRISI Count Temp	C B STAT TRISE B'1111 TRISC STAT	11111'	; Push ; DIN() ; set al ; Port	buttor (b0-OU (b0-OU ; set E ; Port D - all	tys (OUT) is (IN) JT),DOU' TB as out DOUT as if C - all inj outputs $f_1 = '1111$	T(b1-IN) tput input puts	
finished ; ;%%%%%%%%	5%%%	%%%%%	6%%%	0 <u>/0</u> /0/00/0/	/ <u>0%0%</u> 0%	6%%%	<u>6%0%0%0%0%0</u>	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	
; ; main driver									
	call	cycleI	LED						
ModeSelect ; high)	bsf bcf btfsc goto goto	PORT cMode initCo	e	B,3	;if con	;if cor	; green le ; red led k config nfig high		٢
;***** cMode	btfss goto	PORT initCo	2						

	btfss PO goto cM call Swi	ode	;check green button ;if low cycle ;debounce
	call get movfw movwf bcf	FagID TagID Tag1 PORTB,4	;red LED off
	movf Tag movwf	1,W PORTD	; move TagID to W ; display on LEDs
	bsf call tDe bcf call tDe bsf call tDe bcf call tDe bsf call tDe bsf call tDe bcf call tDe bcf call tDe	PORTB,3 lay PORTB,3 lay PORTB,3 lay PORTB,3 lay PORTB,3 lay	
IDreject	bcf bsf	PORTB,3 PORTB,4	;green LED off ;red LED on
initComm ; first, flash l	LEDs on/off	twice to indica RTC,1	te initComm start
		Comm tchDelay TagID Tag1 JD,F JD,F	;check green button ;if low, cycle ;debounce

	goto IDreje bcf bsf goto initCo	PORTB,4 PORTB,3	;ID rejected	;red LED off ;green LED on
getTagID ; ;	movlw movwf movlw movwf bcf	B'11111111' Cycle1 9Bh Cycle2 State,1	; clear	tagFound bit
	call tDela movlw movwf call tDela movlw movwf call tDela	B'11111111' PORTD y B'000000000' PORTD y B'11111111' PORTD y B'00000000'		
seq2	ICHRONIZE			
Hscroll Lscroll	btfsc PORT goto Hscro btfss PORT goto Lscro	bll ГВ,1		
;;mov ; ;	movlw movwf ye forward a ha call hDela call grabE	D'64' Count2 alf-period (man ay Byte 4header ag		GNOSTIC!

····· ››››› nextBit decfsz Count2 goto ModeSelect movf Temp, TagID rlf TagID,F call c2Delay TagID,0 bcf btfsc PORTB,1 ; if DIN low, skip next bsf TagID,0 c2Delay call check4header ;HEADER movlw b'11001110' movf TagID, Temp subwf TagID,F incf TagID,F decfsz TagID,F goto nextBit c2Delay call ····· ››››› ;Scroll until byte is all zeroes: diagNB rlf TagID,F call c2Delay TagID,0 bcf btfsc PORTB,1 bsf TagID,0 diag1 TagID,F incf decfsz TagID,F diagNB goto goto diag2 ;;find first high: diagNB2 rlf TagID,F call c2Delay TagID,0 bcf btfsc PORTB,1 bsf TagID,0 diag2 btfss TagID,0 diagNB2 goto

;;next 7:	call grabByte call c2Delay	;DIAGNOSTIC
diag3	call grabByte goto dispID	;DIAGNOSTIC
	movlw D'7' movwf Count3	
diagNB3	rlf TagID,F call c2Delay bcf TagID,0 btfsc PORTB,1 bsf TagID,0 decfsz Count3 goto diagNB3 goto dispID	
;256 cycles <	<==> 1/(125000/32)	
readTag	call grabByte call cDelay	
;checkID ; ; tagFound	incfsz TagID,W bsf State,1	; increment TagID ; if TagID was not all high, set
	btfsc State,1 goto dispID decfsz Cycle1, F goto seq2	; if tagFound bit cleared, loop ; else display ID
dispID	movlwB'10101010'movwfPORTDcalltDelaymovlwB'01010101'movwfPORTDcalltDelaymovlwB'10101010'movwfPORTD	

call tDelay movlw B'01010101' movwf PORTD movf TagID,W ; move TagID to W movwf PORTD ; display on LEDs return cycleLED movlw B'0000001' movwf PORTD call tDelay movlw B'0000010' movwf PORTD tDelay call movlw B'00000100' movwf PORTD tDelay call movlw B'00001000' PORTD movwf tDelay call movlw B'00010000' movwf PORTD call tDelay movlw B'00100000' movwf PORTD call tDelay movlw B'0100000' PORTD movwf call tDelay B'1000000' movlw PORTD movwf call tDelay movlw B'0000000' movwf PORTD call tDelay return ; debounce switch: SwitchDelay movlw D'20'

dolov	movwf	Temp	
delay	decfsz Temj goto delay return		; 60 usec delay loop
;~tenth-secc tDelay	ond delay:		
-	movlw movwf movlw movwf	01h Cycle1 98h Cycle2	
tloop	decfsz Cycle goto tloop decfsz Cycle goto tloop return	e2, F	
;~255 cycle cDelay	S		
cloop	movlw movwf	D'84' Cycle3	
cloop	decfsz Cycle goto cloop return		
c2Delay	movlw	D'81'	
c2loop	movwf decfsz Cycle goto c2loc return		
c3Delay	movlw	D'83' Cycle3	
c3loop	movwf decfsz Cycle goto c3loc return		

;half a perioo hDelay	d		
5	movlw D'41 movwf Cyc		
hloop	decfsz Cycle3,F goto hloop return		
grabByte			
	clrf TagID btfsc PORTB,1 bsf Tagi call cDelay	-) IN low, skip next
	btfsc PORTB,1 bsf Tagl call cDelay	-	IN low, skip next
	btfsc PORTB,1 bsf Tagl call cDelay	-	IN low, skip next
	btfsc PORTB,1 bsf Tagl call cDelay		IN low, skip next
	btfsc PORTB,1 bsf Tagl call cDelay		IN low, skip next
	btfsc PORTB,1 bsf Tagl call cDelay		IN low, skip next
	btfsc PORTB,1 bsf Tagl call cDelay		IN low, skip next
	btfsc PORTB,1 bsf Tagl return		IN low, skip next
 ,,,,, Equit			
Fault		RTB,3 RTB,4	;green LED ;red LED

goto Fault

;**** isrService

goto isrService

END