
Proofs and Details for the paper
“A Generative-Discriminative Hybrid Method for

Multi-View Object Detection”

1 Proof of Theorem 1

Proof. We start from the posterior probabilityp(X|O, H = 1). According to the
Bayes rule

p(X|O, H = 1) =
1
C

p(O|X, H = 1)p(X|H = 1)

whereC is the normalization term, which is the positive likelihoodp(O|H = 1):

C = p(O|H = 1) =
∑

X

p(O|X, H = 1)P (X|H = 1) (1)

Next, let us rewrite the posterior probabilityp(X|O, H = 1) as the following

p(X|O, H = 1) =

∏
u f+

B1
(yu)

∏
uv f+

B2
(yuv)

CZ

p(O|X, H = 1)p(X|H = 1)Z∏
u f+

B1
(yu)

∏
uv f+

B2
(yuv)

(2)
Using the independence assumption

p(O|X,H = 1) =
∏
uv

p(yuv|x1u, x1v, ..., xNu, xNv,H = 1)
∏
u

p(yu|x1u, ..., xNu,H = 1)

and plugging in the parameter mapping equations (also in the page 4 section 2.2 of
the main paper)

p(yu|x11 = 0, ..., xiu = 1, ...,H = 1) = fi(yu)
p(yuv|x11 = 0, ..., xiu = 1, xjv = 1, ...,H = 1) = fij(yuv)

and

p(yu|x11 = 0, xiu = 0, ..., xNM = 0,H = 1) = f+
B1

(yu)

p(yuv|x11 = 0, xiu = 0, ..., xNM = 0,H = 1) = f+
B2

(yuv)
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Comparing to the term in the Gibbs distribution in Eq.(8)(main paper), we note for
every matchingX, we have

p(O|X, H = 1)p(X|H = 1)Z∏
u f+

B1
(yu)

∏
uv f+

B2
(yuv)

=
∏

iu,jv

ςiu,jv(xiu, xjv)
∏

iu

ηiu(xiu)

Since the spaces of all matchings ofp(X|O, H = 1) and the Gibbs distribution in
Eq.(7)(main paper) are the same, the normalization constant should be also equal,
i.e.

CZ∏
u f+

B1
(yu)

∏
uv f+

B2
(yuv)

= Z ′

Therefore the positive likelihood is

p(O|H = 1) = C =
Z ′

Z

∏
u

f+
B1

(yu)
∏
uv

f+
B2

(3)

and the likelihood ratio is

p(O|H = 1)
p(O|H = 0)

=

∏
u f+

B1
(yu)

∏
uv f+

B2∏
u f−B1

(yu)
∏

uv f−B2

Z ′

Z
= σ

Z ′

Z
(4)

It would be also easy to show that for the integer-based representation of matching,
we would have the same result.

2 Proof of Lemma 1

Proof. We first prove a special case whenN ≤ M for the unpruned MRF. We first
enumerate the matchings where there arei nodesnI1 , nI2 ...nIi in the RARG being
matched to the nodes in ARG, where1 ≤ i ≤ N ,andI1, I2...Ii is the index of the
RARG node. The corresponding summation is

M(M − 1)(M − 2)...(M − i + 1)zI1zI2 ...zIi =
(

M

i

)
i!zI1zI2 ...zIi

For all matchings where there arei nodes being matched to RARG, the summation
becomes

(
M

i

)
i!

∑

1≤I1<I2<...<Ii≤N

zI1zI2 ...zIi =
(

M

i

)
i!Πi(z1, z2, ..., zN )

Where
Πi(z1, z2, ..., zN ) =

∑

1≤I1<I2<...<Ii≤N

zI1zI2 ...zIi
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is a shorthand notation known asElementary Symmetric Polynomial. ThereforeZ
can be written as the following form and satisfies the inequality

Z =
N∑

i=0

M(M − 1)...(M − i + 1)Πi(z1, z2, ..., zN ) ≤
N∑

i=0

M iΠi(z1, z2, ..., zN ) (5)

The equality holds whenN/M tends to zero. And we have the following relation-
ship

N∑

i=0

Πi(z1, z2, ..., zN ) = 1+z1+z2+...+zN+z1z2+...+zN−1zN+... =
N∏

i=1

(1+zi)

and
M iΠi(z1, z2, ..., zN ) = Πi(Mz1,Mz2, ...,MzN )

Therefore, the RHS in equation 5 can be simplified as the following

N∑

i=0

M iΠi(z1, z2, ..., zN ) =
N∑

i=0

Πi(Mz1,Mz2, ...,MzN ) =
N∏

i=1

(1 + Mzi)

The above function in fact is the partition function of the Gibbs distribution if we
remove the one-to-one constraints. Likewise, for the general case and unpruned
MRF, the partition function is upper-bounded by the partition function of the Gibbs
distribution if we remove the one-to-one constraints, which for pruned MRF, by
enumerating the matchings, can be written as

1 + d1z1 + d2z2 + ... + dNzN + d1d2z1z2 + ... =
N∏

i=1

(1 + dizi)

wheredi is the number of the nodes in the ARG that are allowed to match to the
nodei in the RARG after pruning the Association Graph. Therefore we have

ln Z≤
N∏

i=1

(1 + dizi)

3 Proof of Lemma 2

Proof. The partition function can be calculated by enumerating the admissible
matching (matching that does not violate the one-to-one constraint) as the follow-
ing

Z(N ; M ; z1, z2, ..., zN ) =
∑

X

∏

iu,jv

ψiu,jv(xiu, xjv)
∏

iu

φiu(xiu) =
∑

admissible X

∏

iu

zi
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wherezi = φiu(1) is defined in the main paper section 2.2. Therefore, the partition
function is the summation of monomials whose variables have maximum power of
1. And the fact is true for both pruned and unpruned MRF. We can separate the
above monomial summation into two polynomials, the polynomial containingzi

and the polynomial not

Z(N ; M ; z1, z2, ..., zN ) = V1(z1, z2, ..., zi, ...zN ) + V2(z1, z2, ..., zi−1, zi+1...zN )

Then theoccurrence probabilityri, which is defined as the prior probability of the
occurrence of the nodei in the generated ARG, should be

ri =
V1

Z
=

zi
∂V1
∂zi

Z
=

zi
∂Z
∂zi

Z
= zi

∂ lnZ

∂zi

Where we have used the fact thatV1 is the summation of the monomials in the form
of zI1zI2 ...zIL

, which has the following invariant property

zI1zI2 ...zIL
= zIk

∂

∂zIk

(zI1zI2 ...zIL
), ∀Ik ∈ {I1, I2, ..., IL}

4 Proof of the Equation (10) in the main paper

We need to estimate the occurrence probabilityri. The overall likelihood for posi-
tive training data is defined as

L =
K∑

k=1

ln p(Ok|H = 1) (6)

whereK is the number of the positive training instances. We have the variational
approximation of the overall log-likelihood

L ≈
K∑

k=1

∑

iu

q̂(xk
iu = 1)lnzi −KlnZ(N ;M ; z1, z2, ..., zN ) + α (7)

whereα is a term independent on theoccurrence probabilityr1, r2, ..., rN . To
maximize the approximated likelihood with respect tozi, we compute the partial
derivative of the Eq.(7) tozi, and equates it to zero. With the help of lemma 2, we
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obtain

∂L

∂zi
=

∂

∂zi

[ K∑

k=1

∑

iu

q̂(xk
iu = 1)lnzi

]
−K

∂

∂zi
ln Z(N ; M ; z1, z2, ..., zN )

=
K∑

k=1

∑

iu

q̂(xk
iu = 1)

1
zi
−K

ri

zi
= 0 (8)

Sincezi is assumed to be non-zero, the above equation leads to the definition equa-
tion of ri

ri =
1
K

∑

k

∑
u

q̂(xk
iu = 1) (9)

5 The Update Equations for the Gaussian Density Func-
tions at Nodes and Edges of the RARG

Refered by the E-M step in Section 2.4 (main paper page 5), the E-M update equa-
tions are listed as the following:

ξk
iu = q̂(xk

iu = 1), ξk
iu,jv = q̂(xk

iu = 1, xk
jv = 1); ξ̄k

iu = 1− ξk
iu, ξ̄k

iu,jv = 1− ξk
iu,jv

µi =
∑

k

∑
u ξk

iuyk
u∑

k

∑
u ξk

iu

Σi =
∑

k

∑
u ξk

iu(yk
u − µi)(yk

u − µi)T

∑
k

∑
u ξk

iu

µij =

∑
k

∑
uv ξk

iu,jvy
k
uv∑

k

∑
uv ξk

iu,jv

Σij =

∑
k

∑
uv ξk

iu,jv(y
k
uv − µij)(yk

uv − µij)T

∑
k

∑
uv ξk

iu,jv

µ+
B1

=
∑

k

∑
u ξ̄k

iuyk
u∑

k

∑
u ξ̄k

iu

Σ+
B1

=
∑

k

∑
u ξ̄k

iu(yk
u − µi)(yk

u − µi)T

∑
k

∑
u ξ̄k

iu

µ+
B2

=

∑
k

∑
uv ξ̄k

iu,jvy
k
uv∑

k

∑
uv ξ̄k

iu,jv

Σ+
B2

=

∑
k

∑
uv ξ̄k

iu,jv(y
k
uv − µij)(yk

uv − µij)T

∑
k

∑
uv ξ̄k

iu,jv

wherek is the iteration index, andµi and Σi are mean and covariance matrix
of the Gaussian R.V. at the nodes of the Random ARG,µij and Σij are mean
and covariance matrix of the Gassian R.V. at the edges of the Random ARG.
µ+

B1
,µ+

B2
,Σ+

B1
,Σ+

B2
are the corresponding parameters of the Gaussian R.V. for mod-

elling background.
The above equations are obtained by maximizing the variational approximation

of the overall likelihood of the positive training data, as defined in equation (6).
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