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Abstract

This paper describes a method of using localisation
information for separation of concurrent speech signals. In
such a condition, although speech sounds overlap in time and
frequency, their localisation is a specific cue which can be
exploit. The study includes design and analysis of a double
speech corpus of stereophonic recordings. We examine the
statistical relation between the estimated TDOA in
time/frequency regions, and the local relative level between
the two sources (known a priori), varying the size of each
time/frequency region. Using this observation, we propose a
model of local estimation of the signal/noise ratio based on
this cue, with the aim of reconstructing the components of the
mixture by weighting the time/frequency domain.

1. Introduction

We know that the auditory system uses the localisation
cue mainly thanks to interaural time and level
differences. For humans, this helps the auditory scene
analysis to discriminate one sound source to increase
speech intelligibility in the cocktail party condition
[Bronkhorst, 2000]. To model this effect, one way is to
assign to each time-frequency region of the spectrogram
a label, which is specific of the source, and then to group
the regions belonging to each source, according to these
labels (this is a segmentation of the spectrogram). In our
model, for each time frequency region, we estimate as a
label the Time Delay of Arrival (TDOA) which is
related to the azimuth of the source. According to the
properties of this estimation process, the delay which is
retrieved is a function of the SNR: this is non-linear and
close to the delay of the energetically dominant source
[Tessier et al., 1999]. So, knowing the current
localisation of the target sources, this is a way to
estimate the SNR, or the relative level (RL) of two
sources, locally in the time-frequency representation.
This continuous information is then used to reconstruct a
target source and to segregate different sources by
weighting. This method is similar to a Wiener filtering
[Bodden, 1993] and this is an improvement of the
discrete segmentation of the spectrogram provided by
the labelling. Comparatively to the model proposed by
Bodden, we have a simplified and motivated pre-
processing stage, composed of a few frequency
channels. This is in order to improve the SNR estimation
and to study the trade-off between the accuracy of the

SNR estimation and the filterbank resolution required
for the decomposition of a binary mixture of speech
sources overlapping in frequency.
In this paper, we first describe the design and the
analysis of the StNumbers95 database. This permits us
to determine the relationship between estimated TDOA
and the local relative level, known a priori. Fitting the
statistical data obtained, we use the inverse relation to
estimate the relative level from an estimated TDOA and
a target delay corresponding to the desired source. This
one is used in a model of segregation of several speechs
signals by weighting the mixture spectrogram.

2. The StNumbers95 database

In order to simulate a cocktail-party situation, we
recorded at ICP a stereo corpus (StNumbers95) based on
sentences of the OGI Numbers95 database. These
sentences were recorded using two loudspeakers and two
microphones (static positions left and right), first in
isolation (left or right loudspeaker), and then mixed by
pairs (one sentence per loudspeaker is played). A more
precise description of the set-up can be found in [Tessier
et al, 1999]. Thus, we can compute a precise reference
of the a priori Relative Level (RL) existing between the
two sources.
A preliminary analysis of the corpus consisted in
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Figure 1: Extract of pair of sentences from the StNumbers
corpus. The spectrograms corresponds to the sentences

recorded in isolation from loudspeaker left (S1), right (S2)
and the mixture (S1 and S2).



quantifying the time overlap between the sentences.
Using frames of 25ms (half-overlapped Hanning
windows), and the phonetic transcription and labelling
of the sentences, we can detect regions of silence, voiced
or non-voiced-speech. Table 1 shows the results
obtained over the 613 pairs of sentences (representing
more than 17mn of recordings). For the speech/speech
condition, the overlap ratio (without silences) is
relatively important 64% compared to 41% for a more
natural database: ShATR [Crawford et al., 1994] (using
a similar technique, [Tessier, 2001]).
Figure 1 give an example of two sentences recorded in
isolation and simultaneously. Although the time overlap
is important, there exist unmasked frequency regions
(for example around 0.5s: “three” + “four”).
Although the global relative level between the two
sentences is 0dB, the relative level increases while
evaluated locally (see figure 2 for an example of
time/frequency decomposition, frame of 50ms and 8
sub-bands).
To quantify this increase we have evaluated the mean of
each local relative level for different sizes of the
time/frequency region. The time decomposition consists
in half-overlapped Hanning windows of different
duration : 20ms, 40ms, 80ms and 160ms. For the
frequency decomposition, we use sub-bands formed by
grouping adjacent filter from a filterbank having 24
filters. Each filter is composed of half-windows which
are complementary with their adjacent filter. This
grouping principle allows us form 1, 2, 3, 4, 6, 8, 12 and
24 comparable filters (see figure 3, for an example of 4
sub-bands).
The figure 8 (diagram A) shows the results of the mean
of the local relative level for the 32 different

configurations over all 613 sentences of StNumbers. The
relative level increases with a diminution of the size of
the time/frequency region with a plateau for number of
more than 4 sub-bands.

3. Time/frequency analysis on the database

Figure 4 shows the schematic diagram of the model. The
TDOA estimated in each time/frequency region can be
used as source detector. This can be extracted using the
cross-correlation between the temporal envelopes of the
two microphone signals. Half-rectifying and low-pass
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 Figure 3: Example of grouping of 4 adjacent filters from a
24 filterbank to form  4 sub-bands. The center frequencies

are equally spaced in Bark scale.
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Figure 2: Example of decomposition of the time/frequency
domain in 8 sub-bands, with frames of 50ms.The spectrogram
of mixture is obtained by thresholding isolated spectrograms
to detect components of each sentence (light and dark gray)

and interfering regions (black).
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Figure 4: Schematic diagram of the reconstruction model. The signal is first decomposed into sub-bands. Then, in each
time/frequency region, we use the localisation cue (through the TDOA detected) to estimate the local relative level. This one is used

to reconstruct the weighted spectra.

Table 1: Recovering duration of mixtures of sentences for
different types of signals: silence, voiced and non-voiced

speech.

Sentences Silence Voiced Non-voiced Total
Silence 11 12 4 26
Voiced 12 33 10 53

Non-voiced 4 10 4 18
Total 27 55 18 100



filtering the sub-band wave performs this envelope
detection. The position of the maximum of the cross-
correlation function depends on the azimuth of the
sources, the type of sound source (bandwidth and
coherence), and the relative level between the sound
sources (cf. [Tessier, 2001], chp. 3).
The estimation of the TDOA and the knowledge of the a
priori relative level over all 613 sentences, for each
time/frequency resolution, allows us to analyse
statistically the relation between the TDOA estimated
and the relative level. Figure 5 shows the distribution of
the estimated TDOA and the relative level in the case of
an analysis with frames of 40ms and 8 sub-bands. At
high relative levels, the estimated TDOA corresponds to
the target delays (loudspeaker left or right) and TDOA
distributions are peaky.  Nevertheless, for low relative
levels (around ±6dB), the TDOA distributions are flatter
(strongly dependent of the number of sub-bands).
In order to compare the different configurations, we
consider that the standard deviation of the estimated
TDOA for relative levels > 12dB is representative of the
global distribution of the TDOA for the considered
configuration. Figure 8 (diagram B) shows the
comparison results of the mean of the estimated TDOA
standard deviation for different time/frequency
resolutions. We observe a great increase of this index,
and then a loss of accuracy of localisation, for a number
of sub-bands superior to 4.
The TDOA estimates are converted in RL estimates
thanks to a non-linear fit of the data (see figure 6). The
resultant values are used to enhance the desired signal
by a linear weight, which is applied in the same regions
of the FFT spectrogram. Finally, the signal is re-
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Figure 6: Mean curves of relative level (values∈ [0; 1])
between the two sentences for different numbers of sub-

bands as a function of the estimated TDOA. The weighting
curves (in bold) fit the statistical data.
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Figure 7: Example of separation of two sentences from a mixture using our model. The lower bottom image represents the
weights of each time/frequency (T/F) region. The weight is derived from the local TDOA estimation, as a Relative level

estimation. This representation is use to mask the mixture spectrogram to reconstruct the sentences S1 and S2 (using the
complement weights).
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Figure 5: Bi-dimensional distribution of TDOA as
afunction of the local relative level known a priori.



synthesized by inverse FFT. Figure 7 shows different
stages of the process of segregation of two sentences.
With a small number of sub-bands, we sharply decrease
the frequency resolution of the SNR estimation, and the
possibility to weight differently close frequency
components belonging to different sources. But, on the
other hand, we improve the dominance effect and we
increase the accuracy of the SNR estimation. Then we
improve globally the gain of the filtering. In order to
find a good compromise, we vary the size of the
time/frequency regions and we apply a quantification of
the enhancement process.

4. Results

In order to establish the efficiency of the enhancement
method, we use two indices. The first one is the distance
between the output spectrogram and the reference
recorded in isolation, which we name Reconstruction
Accuracy (RA). This index corresponds to the energy
ratio between the original signal and the difference
between the original and the reconstructed signal.
Results of the comparisons between configurations are
shown in figure 8 (diagram C). We observe a bell
shaped relationship between the number of sub-bands,
with a maximum at 4 sub-bands. Increasing the number
of sub-bands (i.e. the frequency resolution) leads to an
increase in the standard deviation of the TDOA
estimation and then a lower accuracy of the RL
estimation. The best performances are obtained with a
low frequency resolution (4 sub-bands). So, a Wiener
technique using such an acoustic estimate is improved
when the weighting is applied in wide sub-bands, and
not at the (fine-grain) spectral component level (e.g., at
the FFT bin level, or for each channel of a 32-channel
filterbank).

5. Conclusions

This technique of enhancement and its evaluation could
not be realised without the use of specific features of our

database StNumbers95. This allows us to compare the
enhanced sources with the same sources recorded in
isolation. In our simulations, we varied the main factors
of the enhancement process. Our experimental set-up
allows ideal conditions for such an analysis: the
recordings were carried out in an Antioch room and the
sources and microphones were static and spatially
distinct. For different conditions (echoic room, moving
sources), we could expect some degradation to be
analysed better in further experiments. Compared to a
blind separation technique applied on the same database
[Choi et al., 2001], this technique has lower
performances, but it theoretically allows us to separate
more than two sound sources in dynamical conditions
because it operates at the short time-frame level.
This work is supported by the EEC contract LTR
RESPITE.
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Figure 8: Results of the analysis of the 613 pairs of sentences from StNumbers, varying the size of the time/frequency
regions. A) Mean of the local relative level (dB); B) Mean of the standard deviation of the estimated delay (samples); C)

Mean of the reconstruction accuracy (dB).


