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Abstract

This paper reports effects of increasing modalities in under-
standing three simultaneous speeches with two microphones.
This problem is difficult because the beamforming technique
adopted for amicrophone array needs at | east four microphones,
and because independent component analysis adopted for blind
source separation needs at least three microphones. We inves-
tigate four cases, monaural (one microphone), binaural (two
microphones), binaural with independent component analysis
(ICA), and binaural with vision (two microphonesand two cam-
eras). The performance of word recognition of three simultane-
ous speeches is improved by adding more modalities, that is
monaural, binaural, and binaural with vision.

1. Introduction

“Listening to several things simultaneously”, or computational
auditory scene analysis (CASA) may be one of the important
capabilities for next generation automatic speech recognition
systems (ASR) [1, 2, 3]. Since we hear a mixture of sounds
under real-world environments, CASA techniques are critical
in applying ASR for such applications.

This paper addresses the problem of separation and auto-
matic recognition of three simultaneous speeches with two mi-
crophones. According to the theory of beamforming, by using
n microphones, n — 1 dead angles can be formulated [4]. If
sound sources are mutually independent, n sound sources can
be separated by Independent Component Analysis (ICA) with
using n microphones [5, 6]. In real-world environments, how-
ever, thisis often the case that the number of sound sources is
greater than that of microphones, and that not all sound sources
are mutually independent.

We investigate the effects of increasing modalitiesin sound
source separation, that is, monaural (one microphone), binaural
(two microphones), binaural with ICA, and binaural with vision
(two microphones and two cameras). The key aspect in thisin-
vestigation is how to extract the sound source direction and how
to exploit it. The extraction of the direction is based on the dif-
ference of some features between two channels, such as inter-
aural phase difference (IPD), and interaural intensity difference
(11D).

For monaural input, we use HBSS, which uses harmonic
structures as a clue of sound source separation [3]. It first ex-
tracts harmonic fragments by using aharmonic structure asclue,
and then groups them according to the proximity and continuity
of fundamental frequency. This works well when fundamental
frequencies do not cross. Suppose that one fundamental fre-
quency is increasing while the other decreasing and they are

crossing. With a single microphone, it is difficult to discrimi-
nate the case that they are really crossing from one that they are
approaching and then departing.

To solve this ambiguity, two microphone, that is, a dummy
head microphone is used. For binaural input, we use BiHBSS,
which uses directional information as an additional clue [7]. It
first extracts apair of harmonic structure for left and right chan-
nels and then calculates the IPD and IID to obtain the sound
source direction. Finally it groups them according to the prox-
imity and continuity of the sound source direction and funda-
mental frequency. This calculation of the sound source direc-
tion is based on the fundamental frequency, and thus is called
feature-based matching borrowed from stereo vision. BiHBSS
is applied to recognition of two simultaneous speeches to im-
prove the recognition performance [8].

Although such spatial information improves the accuracy
of sound source separation, there remains ambiguities because
the direction obtained by BiHBSS carries ambiguity of about
+10°. To overcome this kind of ambiguity in the sound source
direction, we exploit the integration of visual and auditory in-
formation, since the direction obtained by visual processing is
much more accurate [9].

Therefore, we present the design of a direction-pass filter
that separates sound signals originating from a specific direc-
tion given by visual or auditory processing. The direction-pass
filter does not assume either that the number of sound sourcesis
given in advance and fixed during the processing, or that the po-
sition of microphonesis fixed. Thisfeatureis critical for appli-
cations under dynamically changing environments. The idea of
obtaining the sound source direction is probabilistic reasoning
in terms of the set of IPD and |1D obtained from each subband.
This calculation is based on the area-based matching borrowed
from stereo vision.

For binaural input, we aso developed the system that in-
tegrates BiHBSS and ICA (Independent Component Analy-
sis). BiHBSS generates one harmonic structure and the residue.
Since the residue is considered to consist of the remaining har-
monic structures and non-harmonic parts, it is separated by
ICA. This is based on our observation that ICA works better
than BiHBSS for a mixture of two speeches.

2. Direction-Pass Filter

The direction-pass filter has two microphones and two cameras
embedded in the head of arobot. The block diagram of its pro-
cessing is shown in Fig. 1. The flow of information in the sys-
tem is sketched as follows:

1. Input signal is sampled by 12KHz as 16 bit data, and
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Figure 1: Block diagram of direction-pass filter which extracts sounds originating from the specific direction

analyzed by 1024-point Discrete Fourier Transformation
(DFT). Thus, the resolution of DFT is about 11 Hz.

2. Left and right channels of each point (subband of 11Hz)
are used to calculate the IPD, A¢, and 11D, Ap. Please
note that the suffix indicating subband is not specified.

3. The hypotheses are generated by matching A¢ and Ap
with the reference data of a specific direction or every
direction.

4. Satisfying subbands are collected to reconstruct a wave
form by Inverse DFT (IDFT).

2.1. Stereo Visual Processing

The visual processing calculates the direction by the common
matching in stereo vision based on the corner detection algo-
rithm [10]. It extracts a set of corners and edges, and then con-
structs a pair of graphs. A graph matching algorithm is used
to find corresponding left and right images to obtain the depth,
that is, the distance and direction.

From this direction, the corresponding IPD and 1D are ex-
tracted from the database, which are calculated in advance from
the data of the head-related transfer function (HRTF). In thispa-
per, the HRFT is measured at every 10° in the horizontal plane.

2.2. Hypothetical Reasoning on the Direction

The integration system first generates hypotheses IPD and I1D,
Phsy(0) and Int, (0) of thedirection, 6 for each subband. The
suffix of subband is not specified due to readability. The dis-
tance of IPD hypothesis, Phsy (0), and the actual value A, is
calculated as follows:

dy(0) = (Phsi(0) — Ag)® @)

Similarly, the distance of 11D hypothesis, Int;, () and Ap,
is calculated as follows:

di(0) = (Inty(0) — Ap)® @)
Then, two belief factors are calculated from the distances

using probability density function as shown in Eqg. (3), instead
of taking the minimum value of dp(6) and d; ().

4 (8)—m
P.(0) = v \/%ef%wzd:c (3)

where & indicates p (for IPD) or ¢ (for IID). m and s is the
average and variance of dj, (), respectively. n isthe number of

candidates of direction. In this paper, only each 10° ismeasured
and thus n = 36.

Next, acombined belief factor of 11D and IPD is defined by
using Dempster-Shafer theory asis shown in Eq. (4).

Poti(0) = Bp(0)Pi(0) + (1 — Po(0)) Pi(0)
+P(0)(1 = Pi(0)) 4

Finally, & with the maximum P, ; is selected as the sound
source direction. Thisisthe way how to determine the direction
of each subband.

2.3. Reconstruction of Sigals by Subband Selection

When the direction 6 is given, the system determines that the
subband originates from 0 if P,1,(0) is greater than 0.7. The
value of this constant is empirically determined. The system
collects satisfying subbands and converts them to a wave form
by applying Inverse DFT.

Usually, the direction is given by visual processing. In
some cases where such information is not available due to oc-
clusion, the direction is determined solely by auditory process-
ing. That's why this complicated way of determining the sound
source direction and extracting sounds originating the specific
direction is adopted.

3. BIHBSS& ICA

BiHBSS and blind source separation are integrated to exploit
each merits and overcome each weak points. The idea is very
simple. Since blind source separation can separate better than
BiHBSS for amixture of two sounds, BiHBSS generates a mix-
ture of sounds. The whole system is depicted in Fig 2. We use
the “on-line agorithm” for blind source separation developed
by Murata and Ikeda [6], and have confirmed that it separates
each speech from a mixture of two speeches with successful
results.

3.1. On-linealgorithm for Blind Source Separ ation

Blind source separation by ICA is sketched roughly. Let source
signals consisting of n. components (sound sources) be denoted
by the vector (1), and observed signals by n sensors (micro-
phones) be denoted by the vector (2) specified as below:

"73"(t))T7 t:071727"' (5)
"7mn(t))T7 t:071727"~ (6)

Each component of s(¢) is assumed to be independent of each
other, that is, the joint density function of the signals is factor-



ized by their marginal density function
p(s1(t), -, sn(t)) = p(s1(t)) X -+ X p(sn(t)).

In addition, observations are assumed to be linear mixtures
of source signdls:
xz(t) = As(t)
Notethat A isan unknown linear operator.
Leta,;(7) beaunitimpulse response from source j to sen-
sor ¢ with time delay 7. The observation at sensor i can be rep-
resented as

Tmawx

where, a;i, * s (t) = Z air(7T) * si(t — )
r=0

Thus, A can be represented in matrix form as [a;; (t)].
The goal of ICA isto find alinear operator B(t), such that
the components of reconstructed signals

y(t) = Bxa(t)

are mutually independent, without knowing the operator A(t)
and the probability distribution of source signa s(t).

Ideally we expect B(t) to be the inverse operator of A(t),
but there remains indefiniteness of scaling factors and permuta-
tion due to lack of information on the amplitude and the order
of the source signals.

“On-line ICA” algorithm [6] separates source signals from
amixture of signalsin the following steps:

1. First, mixed signals are converted to the spectrogram by
the windowed DFT with the Hamming window of 128
points.

2. Then, on-line ICA (Independent Component Analysis)
is applied to the frequency components of the non-
symmetric 65 points.

3. Next, the correspondence of separated components in

each frequency is determined based on temporal struc-
ture of signals.
Since the output of ICA carries ambiguities in permuta-
tion of the frequent components and in the amplitudes,
the permutation of components is determined on the ba-
sisof correlation between their envelops.

4. Finally, separated spectrogram of the source signals is
constructed.

3.2. Integration of BIHBSSand ICA

The flow of processing is roughly sketched as below:

1. When BiHBSS gets input signals, its Harmonic Frag-
ment Extractor extracts harmonic fragments, which Har-
monic Grouping Agent groups to harmonic groups.

2. The Coordinator agent always watches the processing
of Harmonic Grouping Agent and bookkeeping infor-
mation on harmonic groups. When Harmonic Group-
ing Agent finishes all processing, Coordinator gen-
erates a mixture of two speeches, and gives it to
ICA. This mixture usually consists of the latestly sep-
arated two speeches. Independent Component Ex-
tractor extracts independent components and Permuta-
tion/Grouping Agent calculates a correct combination of
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Figure 2: Integrated Systems with BiHBSS and ICA

independent components and reconstructs speeches. In
this stage, information on independent componentsisfed
back to Coordinator, which bookkeeps the information.

3. Finally, speeches separated by BiHBSS and ICA are
given to Conflict Resolver, which checks whether speech
separated by ICA has a corresponding speech sepa-
rated by BiHBSS. If found, BiHBSS s output is adopted.
Otherwise, Conflict Resolver calls Harmonic Grouping
Agent to do regrouping according to ICA.

Since a mixture of two speeches Coordinator gives to
ICA may contains errors, the system gives precedence to
BiHBSS over ICA.

4. Experiments
4.1. Benchmark Sounds

The task is to separate simultaneous three sound sources by
HBSS, BiHBSS, BiHBSS& ICA, and direction-pass filter. The
benchmark sound set consists of 200 mixture of three concur-
rent utterances of Japanese words, which is used for the eval-
uation of sound source separation and recognition. Although
a small set of benchmarks were actually recorded in an ane-
choic room, most mixture of sounds were created analytically
by using HRTF. Of course, we confirmed that the synthesized
and actually recorded data don’'t cause a significant difference
in speech recognition performance.

1. All speakersarelocated at about 1.5 meters from the pair
of microphonesinstalled on a dummy head.

2. The first speaker is a woman located at 30° to the left
from the center (-30°).

3. The second spesker isaman located in the center.

4. The third speaker is awoman located at 30° to the right
from the center.

5. The order of utterance is from left to right with about
150ms delay. This delay is inserted so that the mixture
of sounds was to be recognized without separation.

Each separated speech stream is recognized by a Hidden
Markov Model based automatic speech recognition system [11].
The parameters of HMM were trained by a set of 5,240 words
uttered by five speakers. More precisely, each training data is
analytically converted to five directions, +£60°, +£30°, and 0°,
by using HRTF. The training data is disjoint from the utterances
included in the above benchmarks.
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4.2. Recognition of Three Simultaneous Speeches

200 benchmarks are separated by direction-pass Filter with
Vision, HBSS, BiHBSS, and BiHBSS&ICA. Then, separated
speeches are recognized by automatic speech recognition sys-
tem. The 1-best and 10-best recognition rates for each speaker
are shown in Fig. 3.

The direction-pass filter shows the best performance. The
recognition rates for the first speaker are amost the same as
those for asingle speaker. Those for the third speaker are better
than for the second speaker unlike the other three systems.

The second best system is BIHBSS& ICA. The recogni-
tion rates for the first speaker are the same in BiHBSS and
iHBSS& ICA. However, those for the other speakers are much
improved, because the remaining signals given to the ICA are
distorted due to spectral subtraction in BiHBSS. By compar-
ing the performance of HBSS and BiHBSS, the effect of sound
source direction, or monaural vs binaural, is apparent.

5. Conclusion

In this paper, we report that increasing modalities, from monau-
ral, binaural, to binaural with vision, improve the performance
of understanding three simultaneous speeches by using two mi-
crophones. The mgjor contribution of thiswork isthat the effect
of visual information in improving sound stream separation is
made clear. While many research has been performed on inte-
gration of visual and auditory inputs, this may be the first study
to clearly demonstrate that information from a sensory input
(e.g. vision) affects processing quality of other sensory inputs
(e.g. audition).

The remaining work includes searching for other modalities
to improve sound source separation. |CA with directional infor-
mation may be one of promising candidates. Higher lever infor-
mation should be also exploited; speaker identification, speaker
adaptation, and domain-dependent language model for auto-
matic speech recognition. Real-time processing is essential to
apply real-world problems. We are currently attacking real-time
processing and hierarchical integration of audition and vision,
and have already obtained some promising results [12].

We thank Tomohiro Nakatani of NTT Communication Sci-
ence Laboratories for his help with HBSS and BiHBSS, and Dr.
Shiro Ikeda for providing us his on-line blind source separation
system.
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