
ABSTRACT

It is well known that hidden Markov models (HMMs) can only
exploit the time-dependence in the speech process in a limited
way. Parametric trajectory models have been proposed to exploit
this time-dependency.  However, parametric trajectory modeling
methods are unable to take advantage of efficient HMM training
and recognition methods. This paper describes a new speech rec-
ognition technique that generates a speech trajectory mean using
a HMM-based speech synthesis method. This method generates
an acoustic trajectory by maximizing the likelihood of the trajec-
tory taking into account the relation between the cepstrum, delta-
cepstrum, and delta-delta cepstrum. Speaker dependent and
speaker independent speech recognition experiments showed that
the proposed method is effective for speech recognition.

1. INTRODUCTION

It is well known that HMMs can only exploit the time-depen-
dence in the speech process in a limited way, because in HMMs,
an acoustic parameter vector is produced by a piecewise station-
ary process, and the probability of a given acoustic parameter
vector is independent of the sequence of acoustic parameter vec-
tors preceding and following the current vector. The sequence of
moving points of the speech signal in the acoustic parameter space
is referred to as a speech trajectory. Several attempts to introduce
the trajectory concept into speech recognition have been pro-
posed to improve the recognition performance [1][2][3][4][5].
Some of these, referred to as parametric trajectory modeling
methods, or segmental modeling methods, represent the speech
trajectories as linear or polynomial functions to treat the time-
dependence in the speech signal. Such functions act as “trajec-
tory means” that are used to model observed trajectories [3][4][5].
However, segmental modeling methods are unable to take ad-
vantage of efficient HMM training and recognition methods. In
this paper, we propose a new speech method that generates a
speech trajectory mean using conventional HMMs. Iyer et al.
have demonstrated that HMMs, by and large, produce trajecto-
ries that are representative of the input data [5]. However, they
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pointed out that HMMs model these trajectories without the
knowledge of the inherent trajectory structure in the input fea-
tures [5]. We think it is possible to introduce time-dependence
into the trajectory generated from the HMMs, if the relations
between the cepstrum, delta-cepstrum, and delta-delta cepstrum
are properly used. Recently, a technique that generates smooth
speech parameter sequences using trained HMM parameters has
been introduced in the field of speech synthesis [6][7][8]. The
technique maximizes the likelihood of the generated speech tak-
ing into account the relation between the cepstrum and the dy-
namic cepstral coefficients (delta cepstrum and delta-delta
cepstrum), assuming that the state sequence and Gaussian dis-
tributions are given. Given this procedure, the generated trajec-
tory explicitly has time-dependency. The technique can obtain
the most likely acoustic parameter trajectory for any HMM state
sequence. This means that when the state sequence is given, a
representative parameter trajectory can be generated. In our
method, the cepstrum trajectory generated by the technique is
then used as a trajectory mean for speech recognition. In the
following sections, we present the generation of cepstrum tra-
jectory means and then evaluate recognition performance when
using the generated trajectory means for speaker dependent and
independent speech recognition

2. SPEECH SYNTHESIS USING HMM

In this section, we present the synthesis method based on the
studies of Tokuda et al. and Masuko et al. [6][7][8]. Here it is
assumed that each state of the HMM has only a single Gaussian
distribution (it is easy to extend the number of Gaussian com-
ponents in the state mixture), that the speech parameters con-
sist of cepstrum, delta-cepstrum and delta-delta cepstrum, and
that all HMMs have already been trained using a sufficient
amount of data. It is also assumed that the HMM state sequence
is given. Let
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T respectively. Let 1 2 3{ , , ,... }TS s s s s=  be the given state
sequence. The joint probability of O , O∆ ,

and
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given the parameters of the Gaussian distributions is given by
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quence, the delta-cepstrum mean vector sequence, and the delta-
delta cepstrum mean vector sequence of the Gaussian distribu-
t i o n s  a l o n g  S ,  a n d
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cepstrum variance vector sequence, the delta-cepstrum variance
vector sequence, and the delta-delta cepstrum variance vector
sequence of the Gaussian distributions along S , and , 1t ta +  is
the transition probability from time t to time t+1. O , O∆ , and

2
O∆   are decided by maximizing the probability. If there was

no relation between O , O∆ , and 
2
O∆ , these would be the mean

values of the Gaussian distributions. However, from the defini-
tion of the dynamic parameters, there are the following explicit
relations between those values:
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where L is the window size. To maximize equation (1) under
these conditions, by substituting equations (2) and (3) in equa-
tion (1), equation
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is calculated. By differentiating equation (4) for all to , we can
obtain simultaneous equations and solve for O , O∆ , and 2

O∆
(see the studies of Tokuda et al. and Masuko et al. [4][5][6] for
more details on these equations). An example of an obtained
speech parameter sequence (trajectory mean) using this tech- Figure 1. An example of the cepstral coefficients generated by

proposed method.

(a) 2nd order cepstrum coefficients

(b) 2nd order delta-cepstrum coefficients

nique is shown in Figure 1. Figure 1 (a) shows the second
cepstrum coefficient in a word utterance. Figure 1 (b) shows the
corresponding coefficient of the delta-cepstrum for the same
utterance. The horizontal and vertical axes indicate the frame
number (5 ms shift) and cepstrum value, respectively. The dot-
ted lines in the figure show the sequence of the mean values of
the HMM states along the given state sequence. The solid lines
show the trajectory mean synthesized by this technique. We can
see that the trajectory means are smoother than the sequences of
the HMM state mean values. At the stationary parts (where the
HMM means come from the same state), the generated trajec-
tory means are not stationary, as they are affected by the output
probabilities of the neighborhood frames. On the other hand, at
the state boundaries, they do not have discontinuities.

3. GENERATING TRAJECTORY MEANS

In Section 2, we described how to generate the trajectory mean
only when the state sequence is known. In this section, we de-
scribe how to decide the state sequence. The basic concept is
that the trajectory which is nearest to the input speech cepstrum
sequence should be selected. Let 1 2
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T
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an input speech cepstrum sequence. The following two equa-
tions were used:
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where dist() is a function that calculates the distance between
the input speech parameters and the generated speech param-
eters. However, it is hard to calculate equation (6) for all S due
to combinatorial explosion. We therefore do not calculate equa-
tion (6) for all possible state sequences, but select the best state
sequence decoded by the Viterbi algorithm with the HMMs, and
calculate equation (6) only for the state sequence, as an approxi-
mation of (5) and (6). We can easily extend this method to mix-
ture Gaussian distributions by selecting the best Gaussian dis-
tribution in the state during Viterbi decoding. However, if the
number of Gaussian components in each state mixture is large,
the accuracy of this approximation is degraded, because the num-
ber of possible Gaussian sequences increases exponentially with
the number of mixture components. Thus, we fix the number of
the mixture components at 1 in this paper.

4. RECOGNITION EXPERIMENTS

To evaluate the method here, speaker independent and speaker
dependent word recognition experiments were performed. The
experiments aimed to examine the effectiveness for recognition
of the trajectory mean generated by our method. In this paper,
we only describe how to generate the trajectory mean, not how
to generate the trajectory variance. Thus, the evaluation proce-
dure diagrammed in Figure 2 was used to evaluate the perfor-
mance only for the trajectory mean. First, input speech is recog-
nized using the HMMs, and the top three candidates are gener-
ated. State based segmentation is carried out for each candidate
to obtain putative state durations given the input utterance. The

trajectory mean for each candidate is then generated using the
method described in Sections 2 and 3. Given the generated tra-
jectory mean, frame-wise distances between the generated tra-
jectory mean and the input speech cepstrum parameters are cal-
culated, and the original candidates are reordered according to
the distance scores. These results are compared with the results
obtained from reordering the candidates according to the dis-
tances between the HMM mean vector sequences along the Vit-
erbi alignment of the candidates and the input speech cepstrum
parameters. The frame-wise distance calculation is
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where
1

λ  and 2λ  are weights for the delta-cepstrum and delta-
delta cepstrum distances. The maximum recognition rates were
obtained from n values of 1 and 2, and 

1
λ  and 2λ  values of  2,

5, and 20.

4.1 Speaker Dependent Speech Recognition Experiment

The sampling rate was 10 kHz, the frame shift was 5 msec, and
the order of the cepstrum coefficients was 15. The numeric ut-
terances, syllabic utterances, 503 phoneme balanced sentences,
and 216 isolated words from the ATR database were used for
training data. Speaker MHT was used. Context dependent pho-
neme HMMs were trained using this data. The number of
Gaussian components was fixed at 1 for each state. 5240 words
uttered by the same speaker were used for the evaluation.

4.2 Speaker Independent Speech Recognition Experiment

This evaluation was done under more usual recognition condi-
tion. The sampling rate was 16 kHz, the frame shift was 10 msec
and the cepstrum order was 14; 503 phoneme balanced sentences
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Figure 2. Diagram of evaluation for proposed method.



uttered by 64 speakers were used for the training data. Context
dependent HMMs were trained from the data. The number of
Gaussian distributions for each state was fixed at 1. One hun-
dred place names uttered by 10 speakers were used for the evalu-
ation.

5. EXPERIMENTAL RESULTS

5.1 Speaker Dependent Speech Recognition Results

Table 1 shows the speaker dependent speech recognition results.
Column 1 of the table shows the recognition rate of the HMM
mean vector sequence using the distance computation from equa-
tion (7). The recognition rate of the proposed method is shown
in column 2. Comparing column 1 and column 2, the recogni-
tion rate of the proposed method is 2% higher than that of the
mean value sequence of the HMMs along the Viterbi alignment.
This result is very positive. In this paper, we have only described
how to generate the trajectory mean, not how to generate the
variance. Although it is not easy to obtain accurate trajectory
variance [9], if we have a good method for this, the performance
of the proposed trajectory-based method will be significantly
improved.

5.2 Speaker Independent Speech Recognition Results

Table 2 shows the speaker independent recognition results. It is
clear that our method improved the recognition rate. This shows
that the proposed trajectory mean method was also effective for
speaker independent speech recognition. In our most recent work
with this approach, we performed an experiment using HMMs
that have six Gaussian mixture distributions per state to check
the approximation described in Section 3. Table 3 shows the
results of this experiment. From these results, the recognition
accuracy of the proposed method did not indicate any improve-
ment. Looking into the Viterbi alignments of the input speeches,
we found that the ID numbers of the mixture distributions were
changing frequently within the same state during a short frame
length. Because of this, a stable trajectory could not be obtained.
To obtain a stable trajectory, we must calculate equations (5)
and (6) with a more accurate method.

6. SUMMARY

This paper describes a new speech recognition method that gen-
erates a speech trajectory mean using a speech synthesis method.
The speech synthesis method used here generates a speech
cepstrum trajectory by maximizing the likelihood taking into
account the definitional relation between the cepstrum, delta-
cepstrum, and delta-delta. The generated speech cepstrum tra-
jectory is used as the trajectory mean for recognition. We evalu-
ated our method with speaker dependent and speaker indepen-
dent speech recognition experiments. The results showed that
our method was effective for speech recognition. We will ex-
tend our method in a more general manner in the future so that it
can be used to train the trajectory variance and treat mixtures of
Gaussian distributions.

HMM mean
vector sequence

proposed
trajectory mean

86.4% 88.7%

HMM mean
vector sequence

proposed
trajectory mean

93.4% 94.4%

Table 1. Speaker dependent word recogniton rate.

Table 2. Speaker independent word recogniton rate (1 mixture
Gaussian components).

HMM mean
vector sequence

proposed
trajectory mean

96.2% 96.2%

Table 3. Speaker independent word recogniton rate (6 mixture
Gaussian components).
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