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Abstract

In this paper, we propose a new method for speech recognition
in the presence of non-stationary and unpredictable noise by ex-
tending PreFEst [4]. The method does not need to know noise
characteristics in advance and does not even estimate them in
its process. A small set of pre-evaluations demonstrates the fea-
sibility of the method by demonstrating good performance with
a signal-to-noise ratio of 10 dB.

1. Introduction

In establishing a framework for robust speech recognition in
the usual noisy environment, at least the following two require-
ments should be considered: First, that prior information on
background noise or its modeling is not required, because back-
ground noise is usually non-stationary and unpredictable; and
second, that it is well connected with conventional automatic
speech recognition (ASR) techniques. The missing data ap-
proach proposed by Cooke et al. satisfies both of those require-
ments [1]. In the Cooke et al. approach, the auditory spec-
trogram of the speech source is identified by using computa-
tional primitive auditory scene analysis. Next, the unreliable
parts of the spectrogram are identified. In the marginalization
approach, speech recognition is performed based solely on the
reliable data. In the data imputation approach, unreliable parts
are estimated using hidden Markov Model (HMM) state dis-
tributions. This approach might be further considered as an
attempt to combine the bottom-up and top-down processes of
speech recognition.

With human speech perception, top-down and bottom-up
processes are used together to perceive speech. However, the
top-down process is so active in generating ”expectation” of
the existence of a particular speech that it biases the process-
ing mechanism so as to produce an answer consistent with the
expectation, whereas a passive process compensates for the in-
complete part of the bottom-up processing result using linguis-
tic knowledge [2].

In this paper, we propose a framework for speech recogni-
tion that permits the active intervention of the top-down process
in speech estimation by extending the PreFEst (Predominant-F0
Estimation Method) [3] [4]. The conventional ASR possesses
standard spectral envelope data. By making use of these data as
top-down information in our process, our process can be incor-
porated into the conventional ASR.

2. Outlines
2.1. Extension of PreFEst[3][4]

The PreFEst represents spectral components of the observed
signal as a probability density function (PDF). This PDF is gen-
erated from a weighted-mixture model of tone models for all
possible fundamental frequencies. The PDF of the m-th tone
model whose fundamental frequency is F is described as fol-
lows:

p(x|F,m,µ(t)(F,m)) =

HX
h=1

p(x, h|F,m,µ(t)(F,m)) (1)

where
p(x, h|F,m,µ(t)(F,m)) = c(t)(h|F,m)G(x|F,h), (2)

H denotes the number of harmonics taken into consideration,
and G denotes the Gaussian distribution that has its maximum at
h ·F . The observed PDF p

(t)
ψ (x) is generated from a weighted-

mixture model p(x|θ(t)) of p(x|F,m,µ(t)(F,m)),

p(x|θ(t)) =

Z Fh
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w(t)(F,m)p(x|F,m,µ(t)(F,m))dF

(3)
where Fl and Fh denote the lower and upper limits of the pos-
sible fundamental frequencies, respectively, and w (t)(F,m) de-
notes the weighting value of a tone model.

We now have phonemic knowledge (that is, standard spec-
tral envelope information) as prior knowledge, and want to esti-
mate the model parameters based on prior distribution generated
by using the prior knowledge.

To estimate parameter θ(t) of model p(x|θ(t)) of the ob-
served PDF based on prior distribution p0(θ

(t)), each itera-
tion in the EM algorithm updates the old estimate θ ′(t) =

{w′(t), µ′(t)} to obtain the new improved estimate θ (t) =

{w(t), µ(t)} for estimation of the maximum a posterior prob-
ability of θ(t) based on the prior distribution (for details see
Goto[4]).
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and
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where w
(t)
ML(F,m) and c

(t)
ML(h|F,m) are the maximum likeli-

hood estimates when noninformative prior distribution is given,
and ω

(t)
0 (F,m) and c

(t)
0 (h|F,m) are the most probable param-

eters given in advance.

c
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0 (h|F,m) is generated using standard speech envelopes
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β
(t)
ω determines how much importance is attached to

ω
(t)
0 (F,m), and β

(t)
µ (F,m) determines how much importance

is attached to c
(t)
0 (h|F,m).

”Expected” phoneme can be preferentially estimated by al-
locating more weighting values to the standard spectral enve-
lope and pitch frequency of the speech whose existence is ex-
pected from the linguistic context and prosody context, and so
on.

Because we want to know not the dominant tone model
but the dominant C

(t)
0 (x|m), we define the dominance of

C
(t)
0 (x|m) in the observed signal as follows:

W
(t)
d (m) =

Z Fh

Fl

ω(t)(F,m)dF. (7)

Here, we note that although we make use of the harmonic
structure of speech for estimating, we do not have to estimate
its fundamental frequency in advance.

2.2. Unvoiced Consonant Model

The tone model presupposes that the target speech always has a
harmonic structure. However, because unvoiced speech sounds
do not have harmonic structures, whether the tone model is suit-
able or not as an unvoiced consonant model should be tested.
We compared three types of models should be tested. One is
a tone model similar to that for voiced speech. Another is an
envelope model that has a smooth and continuous spectral en-
velope. The other is a tone model with constant component am-
plitudes. Each weighted value of the target speech estimated by
using each unvoiced consonant model is compared. As a result,
the greatest weighted value was observed in the tone model sim-
ilar to that for voiced speech. The tone models of both voiced
speech and unvoiced speech are therefore made with equation
(6).

2.3. PDF of Tone Model and Observed Signal

Standard speech envelopes are generated from a 16-element
MFCC (Mel-Frequency Cepstrum Coefficient). The envelopes
are represented on the mel-frequency axis.

The variance of Gaussian distribution used as an F0-
dependent weighting function that emphasizes regions near the
harmonics is constant on the mel-frequency axis. Therefore,
the allowable frequency-error range of a harmonic component
increases as the frequency increases. The PDF that represents
the spectral components of the observed signal is also mapped
on the mel-frequency axis.

The sampling frequency is 16 kHz, and the number of iter-
ation in the EM algorithm is five.

3. Pre-Evaluation for Application to ASR
3.1. Noisy Speech for Evaluation

A noisy environment was simulated in an anechoic room us-
ing factory noise recorded in the JEIDA noise database [6]. The
noise was non-stationary. One male speaker uttered eight names
of prefectures in Japan five times, at a level somewhat louder
than usual in the noisy environment. The speech sounds through
a headset microphone (B&K Type4035) and those through a
throat microphone (Audio-Technica AT890) were recorded into
the L and R channels of a digital audio tape recorder, respec-
tively.

The noise level at the location of the headset microphone
was adjusted to the same level as the noise was recorded. As a
result, the noise level was about 70 dB(C). Because the sound
pressure level of the speech was about 78 dB(C), the signal to
noise ratio was about 8 dB. In addition to the noisy speech, clean
speech sounds were recorded five times. One set of clean speech
sounds was used as the standard speech.

3.2. Determination of Speech Period

It is difficult, and it often decisively influences the performance
of speech recognition, to determine the speech period in the
presence of high-level noise. In an HMM-based ASR, speech
period extraction is avoided by connecting the noise HMM be-
fore and after the speech HMM. In this case, the noise model
must be presupposed beforehand, which is not realistic when
the background noise is non-stationary and unpredictable. In
the case of the dynamic programming (DP)-matching-based
ASR, an unconstrained endpoint DP-matching algorithm has
been proposed. However, calculation cost remains a problem.

The speech period is detected by sensing the glottal sound
directly using a contact microphone, such as a throat micro-
phone. When we use the speech-input device under high-
level noise, it is practical to use a portable or wearable near-
microphone such as a headset microphone; therefore, the use of
the contact microphone does not seem to annoy the speaker. We
can determine the voiced period by watching the time change of
the zero-crossing count of the short-term glottal sound, because
the count provides a cue for whether the vocal cord vibrates or
not. Although the unvoiced parts at the start or end of the utter-
ance cannot be included in the speech period detected by using
the cue, this does not pose a serious problem because the signal-
to-noise ratio at the unvoiced part is often low in the presence
of high-level noise.

All of the clean or noisy speech sounds for the evaluations
described in this section were automatically extracted from
recorded tapes by using this method.

3.3. DP-matching based on Dominance

The tone models that compose a weighted-mixture model at
time t are prepared by using several pieces of spectral envelopes
included in the adjustment time window from each standard
speech. The cumulative summation of the dominance, which
is called ”the word dominance”, is obtained using the DP-
matching algorithm [5] based on the dominance of C

(t)
0 (x|m)

at each time.

3.4. Word Dominance of Candidate Word

Figure 1 shows the mean word dominance of candidate words
for noisy speech recorded in the quasi-noisy room. The horizon-
tal axes show the spoken words and the vertical axes show the



Figure 1: Word dominance for noisy speech recorded in noisy
environment

word dominance of the candidate words. The results demon-
strate that the dominance of the correct word is greater than
those of the other words.

3.5. Relation between Word Dominance and Signal to Noise
Ratio

We created some noisy speech artificially by adding a part of
the factory noise to clean speech at several signal to noise ratios
(SNR) to evaluate the difference in performance according to
the SNR. Figure 2, 3, 4 and 5 show the results obtained for clean
speech and several kinds of noisy speech. The results show
that the word dominance of the correct word and the margins
(namely, the differences from those of the other words) become
smaller as the SNR decreases.

4. Application to Discrete-HMM-based
ASR (DHMM-ASR)

4.1. Incorporating the Proposed Method into DHHM-ASR

Figure 6 shows an outline of a general Discrete-HMM-based
ASR(DHHM-ASR) for word recognition. A short-term seg-
ment of speech is frequency-analyzed and its spectrum is rep-
resented by MFCC that are vector-quantized using a codebook.
The recognition word is determined using the quantized vec-
tor and the word-level HMMs with the maximum likelihood
method.

Combining the proposed method with a DHMM-ASR is
achieved by replacing the part enclosed by a broken line in Fig.
6 with the whole presented in Fig. 7. The standard spectral
envelopes used as prior knowledge in the proposed method are
mapped into centroids on the codebook used in the DHHM-
ASR. By regarding the centroid whose dominance is the max-
imum as an observed code, decoding along the conventional
HMM-based ASR algorithm will be possible.

In this way, the proposed method will be used as a part of
an HMM-based ASR without great modification or re-learning
of the model.

5. Discussion
We proposed a new framework that is an extension of the
PreFEst to achieve speech recognition in the presence of non-
stationary and unpredictable noise. A small set of evaluations
shows the feasibility of the proposed method.

The proposed method has parameters to estimate ”ex-
pected” phonemes or fundamental frequencies preferen-
tially, although the effective use of the parameters has
not been achieved in this report. Several psychological
studies[7][8][9][10] have shown the possibility of improved
performance of the ASR in the presence of noise by effectively
using information about linguistic context or prosody context,
and so on.

Figure 2: Word dominance for clean speech

Figure 3: Word dominance for noisy speech (SNR = 20 dB)

Figure 4: Word dominance for noisy speech (SNR = 10 dB)

Figure 5: Word dominance for noisy speech (SNR = 0 dB)

As we mentioned, it is important that a presupposition
about background noise is not indispensable. However, if noise
characteristics are available, they may be used for estimation
of the target speech. In the proposed method, the information
about background noise can be used by adding to a weighted-
mixture model as a noise model.

Finally, we note the relationship between the proposed
method and a speech perception model. de Cheveigné and
Kawahara proposed a missing-data model of vowel identifica-
tion. They treated vowel identification as a process of pattern
recognition, and data in matching were restricted to regions
near harmonics. Our proposed method corresponds to an ex-
tended example of the frequency-domain version of their model
because, in our proposed method, whether or not representa-
tions obtained by emphasizing the spectral envelopes of speech
at multiples of the F0 seems to be contained in the observed sig-
nal is estimated.
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Figure 6: Outline of a general discrete HMM for word recogni-
tion.

Figure 7: One method for introducing the proposed method into
DHMM-ASR.
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