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Abstract

This paper presents a study on a specific signal processing tech-
nique, the warped linear prediction (WLP), interpreted here from
an auditory perception point of view. WLP is a signal modeling
technique that can approximate the frequency resolution prop-
erties of the human ear. WLP is shown in this paper to have
system-level similarities with signal analysis found in the pe-
ripheral auditory system. Several phenomena in auditory mod-
eling are addressed where WLP-based spectral modeling and
residual processing are useful. Pitch analysis, including multi-
pitch analysis, segregation of harmonic signals by pitch-predicti-
ve means, and other processing techniques (synthesis, recogni-
tion) are shortly discussed.

1. Introduction to WLP
Frequency-warpedlinear prediction (WLP), first introduced sys-
tematically by Strube [1], exhibits some interesting properties
from the viewpoint of auditory modeling and related applica-
tions. In this contribution we discuss different aspects of WLP
and its applications.

Warped linear prediction is a signal analysis and model-
ing technique, similar to ordinary linear prediction [2], but in
a manner where the frequency resolution of spectral modeling
is controllable by a single warping parameter [3]. The idea of a
warped frequency scale and related resolution is based on using
allpass sections instead of unit delays in DSP structures, i.e.,

z̃−1 = D1(z) =
z−1 − λ

1− λz−1
(1)

where λ, −1 < λ < 1, is a warping parameter and D1(z)
is a warped (dispersive) delay element. With a proper value
of λ the warped frequency scale shows a good match to the
psychoacoustically defined Bark scale, thus optimizing the fre-
quency resolution from the point of view of auditory perception
[4]. For example with a sampling rate of 22 kHz, Bark warping
is obtained using λ ≈ 0.63. WLP analysis is easily realized by
modifying only the autocorrelation computation using a version
where unit delays are replaced by allpass sections. The same
holds for inverse filtering to obtain the residual (excitation) sig-
nal. The synthesis filter A(z) is

A(z) =
1

1 +
�N

i=1 aiD1(z)i
(2)

where ai are feedback coefficients of the recursive structure.
This cannot, however, be realized in a straightforward man-
ner since in recursive structures the replacement of Eq. (1) re-
sults in delay-free loops. Techniques to avoid this problem are

discussed for example in [5] and [6]. Otherwise, in most as-
pects WLP and frequency-warped signal processing are easily
derived from traditional techniques1.

2. Basic properties of WLP
Among interesting properties of WLP are the ability of spectral
modeling similar to loudness density spectrum (auditory spec-
trum) estimation, and the fact that information in the (inverse-
filtered) WLP residual resembles the overall information in the
auditory nerve firing. The latter fact is achieved by the WLP
filter coefficients and a gain factor so that the residual shows
spectral flattening and level compression similar to the adapta-
tion of firing rate in the auditory nerve. Depending on the type
of processing desired, a WLP front end for residual computation
may be followed by a filterbank to separate the signal into crit-
ical bands. Often such separation is not needed at all in further
processing.

The following figures illustrate the basic properties of WLP
when applied to speech signals. Figure 1 shows a compari-
son of ordinary and warped linear prediction for different fil-
ter orders as applied to a vowel (Finnish /a/). While LP exhibits
frequency-independent inherent spectral resolution, Bark-scaled
WLP focuses best resolution on frequencies below 500 Hz and
decreasing resolution above it. While LP order of about 24 is
needed for sample rate of 22 kHz (and 46 for 44 kHz) in order
to model average formant frequency density of 1 per kHz, much
lower WLP orders are enough for the same resolution at lowest
signal frequencies (about 14 for sampling rate of 22 kHz). Then
the higher formants are not fully resolved anymore, correspond-
ing to the auditory resolution principle2. Although there is no
explicit auditory model involved in WLP, the obtained auditory
spectrum exhibits relatively accurate excitation spreading and
spectral masking properties, as demonstrated in [3] for WLP-
based audio coding.

Figure 2 plots the spectra of vowel /a/ and fricative /s/ on the
(normalized) Bark scale of Bark-WLP. Now the inherent reso-
lution is uniform on the Bark scale. Thus this representation can
be considered as an auditory spectrum, especially if the transfer
functions of the external and middle ear were included before
WLP analysis and the dB scale were encoded to loudness (sone)
scale.

The WLP residual (input signal inverse-filtered by WLP
predictor filter) for vowel /a/ is depicted in Fig. 3b along with
the original signal waveform Fig. 3a. The residual looks much
like an ordinary LP residual. It is sharply peaked at the glottal

1A Matlab toolbox for warped signal processing is available
in http://www.acoustics.hut.fi/software/warp.

2The overall spectral resolution depends on the WLP order
and windowing used for autocorrelation computation.
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Figure 1: (a) LP and (b) WLP spectra of vowel /a/ for different
filter orders.
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Figure 2: WLP spectra of (a) vowel /a/ and (b) fricative /s/ on a
normalized Bark scale.

closure time and shows ripples after that, but the oscillation due
to strong low-frequency formants of the original waveform is
clearly reduced.

Spectral properties of the WLP residual are illustrated in
Fig. 4b. Spectral whitening is obvious (as in ordinary LP), al-
though lowest valleys of spectrum are not fully flattened. This
spectral flattening tendency resembles the adaptation process
taking place in auditory nerve firing rates.

An interesting finding is that the residual, although spec-
trally flattened, still conveys speech-related information in ad-
dition to pitch and periodicity. Although sounding buzzy, it
conveys features of individual speaker and to some degree also
phone identity: the spoken message can in most cases be rec-
ognized even when listening to the residual only. From such
experiments it may be assumed that the time-frequency analy-
sis carried out in the auditory system is roughly equivalent to
the combination of the spectral information of WLP spectrum
and the temporal fine structure of the WLP residual.

The residual represents roughly the overall information car-
ried by the auditory nerve fibers. It can be split into critical
bands by a simple bandpassfilterbank if needed in further anal-
ysis. In some applications it is enough to split the residual into
two parts. Below about 1–2 kHz the neural firings in the au-
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Figure 3: (a) WLP residual signal and (b) vowel /a/.
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Figure 4: Spectral flattening of WLP residual: (a) spectrum of
vowel /a/ and (b) WLP residual spectrum of the same vowel.

ditory nerve are (in statistical sense) synchronous to half-wave
rectified and low-pass filtered critical band signals. Together
this frequency range conveys information that is similar to the
low-pass filtered WLP residual. Figure 5b illustrates this for
the case of vowel /a/ with 1 kHz low-pass filtering. Figure 5a
depicts the high-frequency part of WLP residual half-wave rec-
tified and then low-pass filtered. This resembles the overall
neural information of high-frequency neural channels that are
not anymore fully synchronized to critical band waveform but
rather to its temporal envelope.

3. Auditory spectrogram throughWLP
Figure 6 illustrates the use of WLP in auditory spectrogram
computation. WLP of order 24 has been computed in this case
with a hop-size of 2 ms (and 25 ms window) for high presenta-
tion resolution. Notice that the linear prediction gain parameter
is not taken into account so that a level normalization (0 dB
average) in the spectrogram takes place.

In time-varying signals, particularly in onsets and transient
sounds the auditory system exhibits two complementary forms
of temporal processing: overshoot in neural firing rate prior
to adaptation to steady-state level and temporal integration in
loudness formation. In order to include this in a WLP analy-
sis system, an adaptive version of WLP is needed. Notice that a
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Figure 5: Residual from vowel /a/ split into two parts: (a) 1.0
kHz high-passfiltered, rectified, and then 1 kHz lowpassfiltered
(= envelope following); (b) 1 kHz low-passfiltered (= waveform
following).
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Figure 6: Word /kaksi/ (top), its auditory spectrogram by WLP
(middle), and WLP residual (bottom).

straightforward adaptive WLP does not implement neither over-
shoot and temporal integration nor proper spectral changes. A
feedforward control of WLP inverse filter by solving the filter
coefficients from temporally smoothed warped power spectrum
is a better strategy for this. The realization of such a property
remains a future task.

4. WLP support for source segregation
The ability to segregate sound sources is one of the advanced
features of auditory perception that has been difficult to simu-
late by machines. We have applied WLP analysis to the task of
segregating voiced speech signals, although this is only partially
motivated by auditory principles.
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Figure 7: Multi-pitch analysis of a mixture of three harmonic
sounds: (a) summary autocorrelation function (SACF), (b) en-
hanced summary autocorrelation (ESACF), see text.

The first part of the task is to do multi-pitch analysis, as-
suming that the signal is an additive mixture of harmonic sounds.
In [7] we have proposed a multi-pitch analysis method that first
applies WLP whitening of the input signal, and then does the
following procedure. WLP residual is split into two parts as
described above at the end of Section 2. A special version of
autocorrelation is computed for both low-frequency and high-
frequency parts and these are summed (SACF = summary au-
tocorrelation). A technique to remove the periodic structure of
autocorrelation leads to enhanced SACF (ESACF) function that
is a useful periodicity lag representation for multi-pitch anal-
ysis. Figure 7 depicts an example where three harmonic sig-
nals with different fundamental frequencies are resolved by this
technique.

In [8] we demonstrated a method to separate two vowels
of different fundamental frequency. The goal was to estimate
the individual spectra of the vowels. After estimating each one
of two pitches of a mixture, pitch-predictive canceling of one
excitation signal was applied to achieve the other one. This was
repeated for the second second excitation in a similar way. Then
the excitations were applied to the WLP synthesis filter and the
resulting signals were again LPC-modeled in order to estimate
the individual spectral envelopes.

Here we just demonstrate the ability of WLP residual to
help in the segregation process. Figure 8a plots the full WLP
residual of the mixture signal of Finnish vowels /a/ and /i/. When
the WLP residual is split into low- and high-frequency compo-
nents they look as in Figures 8b and c. Now the two sequences
of excitation peaks are more clearly observable since the for-
mant structure of the vowels does not disturb so much and the
temporal fine structure of full residual is reduced, which helps in
further processing, such as in different segregation techniques.

5. Other WLP applications
The auditory properties of WLP processing have already been
utilized in many speech and audio applications [3]. In speech
processing the principle has been applied for example to speech
synthesis [9] where the main advantage is due to reduced syn-
thesis filter order in source-filter modeling of speech signals.
This helps in generating the control parameters of the synthesis
filter.

Another application is speech recognition where we have
shown that WLP-type of preprocessing is a useful method [10].
We have found that WLP processing is a method competitive in
efficiency and accuracy with mel-cepstral coefficients.
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Figure 8: /a/ & /i/ mixed WLP residuals: (a) full residual, (b)
low band residual, (c) high band residual.

Warped linear prediction can be used furthermore in speech
coding [1] and particularly in audio applications [3].

6. Discussion and Conclusions
This paper has discussed the properties of warped linear predic-
tion in relation to auditory signal processing. It is demonstrated
that Bark-WLP is able to approximate some of the main audi-
tory features, such as representing spectral information on the
Bark scale and representing the overall auditory nerve firing rate
information (or critical band firing rates if a filterbank is added)
including spectral flattening in steady-state signals. Since WLP
is a relatively straightforward DSP method resembling ordinary
linear prediction, it is a potential technique where auditory prin-
ciples have to be integrated in conventional DSP frameworks.

The examples given in this paper illustrate selected cases
where the properties of WLP are prominent. In complex cases,
especially in source segregation and auditory scene analysis ap-
plications, more advanced versions of the principles described
here are needed. Many special cases have also to be worked out
to find the capabilities and limitations of the technique. Such
cases include for example: application of WLP to source sepa-
ration and modeling for object-based audio coding (extensions
to audio coding discussed in [3]), analysis and modeling of re-
verberant signals (separation of source and acoustic environ-
ment), robust segregation of voice from background noise for
speech recognition, etc.

In conclusion, WLP is found to be a versatile DSP tech-
nique that combines traditional DSP and basic auditory proper-
ties in a flexible way.
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