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Abstract

Missing feature theory has been proposed as a solution for
either ignoring or compensating the unreliable components of
feature vectors corrupted mainly by bandlimited background
noise. Since the corruption often occurs in the frequency
domain, and it is smeared by the discrete cosine transform
used to obtain cepstral features, algorithms utilizing the
missing feature theory are usually restricted to spectral
features. In many cases cepstral features might be preferable.
We propose an algorithm for performing the missing feature
operations in the frequency domain while utilizing standard
Mel-cepstral features. The algorithm is based on transforming
the cepstral difference operation into the Mel-spectrum
domain, weighting (marginalizing) it there, and transforming it
back into the cepstrum domain. The algorithm was tested in a
German connected digit recognition system. Experimental
results are shown first with artificially corrupted speech and
then with speech corrupted using more realistic noise. While
the results with data having clearly localized frequency
domain corruption prove the viability of the proposed method,
the results with car noise with more wideband-like
characteristics were disappointing.

1. Introduction

Voice dialing is nowadays probably one of the most widely
spread speech recognition applications. It is typically used in
the car environment. Car noise is characterized by high
intensity and relatively wide bandwidth, but it is fairly
stationary. Several techniques have been proposed for coping
with stationary wideband background noise. However, in some
cases, the signal-to-noise ratio (SNR) of certain frequency
bands of the speech signal may be so low that virtually no
information is left. We observed this kind of a situation when
a fairly dramatic reduction of the performance of an otherwise
robust connected digit recognizer was caused by a severely
corrupted frequency region of the input speech signal.

One approach for handling bandlimited noise is so-called
sub-band speech recognition (see, e.g., [1] or [2]). The basic
principle is to divide the speech signal into sub-bands and
employ independent speech recognizers in each sub-band.
Decision logic is needed for the combination of the
recognition results.

Missing Feature Theory (MFT) has also been proposed as
an alternative solution for handling situations where the
incoming data is partially corrupted. An overview of MFT is
given in [3]. In the most straightforward approach, which is
called marginalization, the summation (or integration) is
performed over the difference of the reliable feature and model
vector components, while ignoring the unreliable ones.
Measuring the  reliability of feature vector components is a
challenging topic, but using an on-line estimate of the SNR
has been the most widely used method. Marginalization

typically involves hard-decisions; a component is labeled
either reliable or unreliable. Soft-decision techniques have
been applied to MFT, e.g., in [4], where some performance
gain was obtained. Data imputation is a more elaborate
approach to MFT, where the missing data is inferred from the
neighboring feature vector components by means of
interpolation techniques.

The MFT techniques in general suffer from the need to
perform the operations in the feature vector domain, which is
not necessarily where the corruption of the data takes place.
For example, bandlimited noise in the frequency domain is
smeared by the discrete cosine transform (DCT) used to obtain
widely used cepstral feature vectors. This has precluded the
use of cepstral feature vectors with the MFT techniques.
Marginalization in the cepstrum domain does not really make
much sense since noise seldom affects only certain cepstral
coefficients.

The main objective of the proposed approach is to
experiment with the advances made in the domain of missing
feature theory when using Mel-frequency cepstral coefficient
(MFCC) feature vectors, and feature vector normalization, in a
connected digit recognition system. Our speech recognition
framework has been presented in [5]. We assume spectrally
localized corruption of speech signals. We propose a
straightforward approach for canceling the effect of corrupted
frequency regions while operating on MFCC features.
Although we concentrate on marginalization, implementation
of data imputation techniques is also possible. The proposed
approach is called Cepstral Distance Weighting (CDW)
algorithm.

The paper is organized as follows. We first present our
speech recognition framework and the basic CDW algorithm,
and how it relates to missing feature theory. Second, we
discuss the practical implementation of the algorithm. Then we
present our experimental results and finally conclude the paper
with some discussion on potential directions for further
research on the subject.

2. Cepstral Distance Weighting Algorithm

2.1 Speech Recognition Framework

We use the standard Hidden Markov Model (HMM) speech
recognition framework and a Mel-Frequency Cepstral
Coefficient (MFCC) based front-end with 39 components (13
static, 13 delta, and 13 delta-delta components). The front-end
uses an 8 kHz sampling frequency and a 10 ms frame period.
Gaussian mixture density HMMs are used by the back-end.
The Viterbi algorithm is implemented using the token passing
scheme. The basic system is described in more detail in [5].

For the sake of the simplicity of presentation of the
algorithm, we are now assuming the use of only one single-
state, single-mixture HMM. Extension into multiple models,
multiple states per model and multiple mixtures per state is



straightforward. The log-likelihood (Mahalanobis distance) of
the input feature vector f given the model { }÷â,=ã  (where

µµµµ denotes the mean vector and ΣΣΣΣ the covariance matrix) is
calculated as

)(½)(),( 1 â÷ fdd÷df −=−= −TcD ã , (1)

where c(ΣΣΣΣ) represents the constant term of the log-likelihood
estimation formula.

In order to improve the robustness of the recognizer,
recursive feature vector normalization is used as in [5]. The
normalization algorithm is described in more detail in [6]. To
summarize, the main objective is to increase the robustness of
the feature vectors by normalizing the short-term mean and
standard deviation of each component to zero and unity,
respectively.

2.2 CDW Algorithm Using MFCC Features

In the standard MFT approach, where spectral features are
used, the effect of a single corrupted frequency component is
canceled by marginalization, i.e., the Mahalanobis distance is
evaluated only on the reliable frequency components.
Marginalization can be implemented in our framework by the
addition of a weighting matrix W, which is a diagonal matrix
with one weight wi  (typically between zero and one, or exactly
zero or one as in the case of marginalization) for each
frequency component i. Delta and delta-delta components
have their own frequency-dependent weights in a similar
fashion. The Mahalanobis distance is now evaluated by

Wd÷Wdf ÷ 1½)(),( −−= TTMFT cD λ . (2)

The main problem of the classical MFT is that if cepstral
features were used, spectrally localized corruption of the
speech signal would be smeared by the discrete cosine
transformation matrix1 C, and the benefit of MFT would be
lost.

A simple modification of (2) enables us to use spectrum
domain marginalization with cepstral features, as shown by
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where C-1 = CT. The best interpretation of (3) is obtained by
observing the right-hand side of the inverse covariance matrix
ΣΣΣΣ−1. The cepstral difference vector d is first reverted back to
the log-Mel-spectrum domain (a smoothed version is obtained
if truncation was applied after the forward DCT), where
marginalization, or some other kind of weighting, is
performed. After this, the weighted distance vector is
transformed back to cepstrum domain. A few additional
observations that can be made from (3):
1. Inverse DCT of µµµµ reverts the model mean vector into

spectrum domain which enables the use of
marginalization.

2. Since the weighting operates on the difference vector d,
there is no need to obtain an accurate "clean" estimate of
either the feature vector or the model mean in the noisy
environment. These are typically required by feature
enhancement and model compensation schemes,
respectively.

                                                          
1 C is actually block-diagonal with the same transformation
sub-matrix for static, delta, and delta-delta components.

3. Since delta and delta-delta operations are linear, it is
possible to obtain spectrum domain estimates for each of
them by means of the inverse DCT, which enables the use
of CDW.

We have also experimented with using Minimum
Classification Error training of the relationship between the
SNR and the weights. Our early results did not produce any
significant improvements, which is probably due to the
apparent hard-decision nature of the weighting process. This is
illustrated in Figure 4 in the Experiments section of the paper.

2.3 CDW Algorithm Using Feature Vector Normalization

The use of feature vector normalization changes the
interpretation of (3). By applying the inverse DCT to d after
the normalization operations (normalization is a lossy
process), we are no longer able to revert back to the Mel-
spectrum domain. However, we make the assumption that
normalization does not significantly change the localization of
noise in the frequency domain. Experimental results presented
later in this paper verify this assumption at least to some
degree.

3. Implementation of the CDW Algorithm

The implementation of (3) in a practical system with hundreds
or thousands of mixture vectors is next to impossible because
of the extensive matrix operations. If the weights are changed
less frequently than the normal frame rate (i.e., decimation is
used), some performance savings can be obtained.

When MFCC features are used, we can save a Mel-domain
version of the input feature vector that removes the need to
perform the inverse DCT on it. When feature vector
normalization is used, it is imperative to first calculate the
normalized feature vector and then obtain the Mel-domain
version by means of the inverse DCT.

Instead of performing (3) on distance vectors
corresponding to every mixture, the feature vector and the
mixture mean vectors should be weighted separately and saved
for later use. The complexity of the weighting operation on the
mixture means (by far the most expensive part) is then reduced
roughly according to the decimation rate. Decimation may be a
good idea also from the algorithm performance viewpoint as
too rapidly changing weights might cause problems.

3.1 Weight Estimation Algorithm

The idea is to weight the Mahalanobis distance according to
SNR of the Mel-bands. First, we assume that noise is
stationary. The update of the weight parameters is only done
once in the beginning of the utterance, after a reasonable noise
estimate has been obtained. The noise estimate for each of the
sub-bands is based on the average of the 20 first frames. The
speech power is estimated from the previous utterance, i.e., we
assume that the power of the speech between two successive
utterances is changing rather little. The SNR is then calculated
based on these speech and noise estimates.

The separation between unreliable and reliable sub-bands
is done based on the difference between the highest and lowest
SNR of the Mel-bands. If the difference is small, CDW is
disabled. If the difference is above the threshold, CDW is
enabled and the weights are linearly interpolated between the
minimum and maximum values of the weight, i.e., between 0.3
and 1.0. The weight zero (corresponding to marginalization)
was actually found to be too extreme.



One test having more dynamic changing of the weights was
done. The weights were updated every 5th frame according to
SNR. Since this produced only small improvements in the
very low SNR ranges (around -10 dB) and the system became
more complex, this was not included in the tests.

4. Experiments

Recognition tests were performed on German digit sequences
corrupted both with artificially generated and recorded car
noise. The Mel-spectra of the corrupted utterances are shown
in Figure 1. The spectra have been calculated by taking the
inverse DCT of the unnormalized cepstral features.
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Figure 1: The Mel-spectrum of the noisy speech
sample. a) The speech is corrupted by car noise
(mostly around sub-band 10). b) Sub-bands 10…14
are set to a constant value in the front-end.
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Figure 2: The Mel-spectrum of the noisy speech
sample (Inverse DCT of normalized cepstral features).
a) The speech is corrupted by car noise (mostly around
sub-band 10). b) Sub-bands 10…14 are set to constant
in the front-end.

The noise robustness of the recognition system is improved by
using feature vector normalization and hence we wanted to
utilize normalization also with the weighting algorithm. Since
we do not have reasonable inverse normalization procedure,

the weighting has to be done for spectral features that
correspond to the normalized cepstral features.

Figure 2 illustrates how feature vector normalization,
which is done in the cepstrum domain, changes the speech
spectrum. The speech sample used in these graphs is the same
as in Figure 1. The spectrum is obtained by taking the inverse
DCT of the normalized cepstral features. The corruption is
visible in the right-hand side figure, between sub-bands 10 and
14, also after feature vector normalization, although the
dynamic range of the spectrum is significantly reduced.

4.1 Results with Artificially Corrupted Mel-bands

In order to show that the CDW algorithm works in practice, a
simple test was carried out, where the number of artificially
corrupted sub-bands was gradually increased. The actual
speech data was recorded in a quiet environment and the
corruption was done in the front-end simply by setting some of
the Mel-bands to a small constant value.
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Figure 3: Word recognition rate with and without the
weighting algorithm when the number of artificially
corrupted sub-bands was increased (the indices of the
corrupted bands are shown). Normalized and
unnormalized features are also compared.

CDW was done only for those sub-bands that were corrupted.
First, only the 12th sub-band (around 1.3 kHz) was corrupted
and the recognition rates were computed both with and
without weighting. The tests were continued by corrupting
more and more sub-bands and checking the rates after that
with and without weighting. Significant improvements were
obtained by using the CDW algorithm. When the number of
corrupted sub-bands increases, the recognition rate degrades
much faster if no weighting is used than if a small weight is
given to the corrupted sub-bands during the recognition phase.

When testing with normalized features, the recognition
rate improvements were quite similar to the ones obtained
using unnormalized features. The conclusion is that the
normalization process does not disturb the CDW algorithm
significantly. Since it makes the system more robust to many
other kinds of noises, feature vector normalization is used for
the car noise experiments presented later in this paper.

The recognition performance is presented in Figure 4 as a
function of the weight parameter value. The sub-bands 9…15
are corrupted in the front-end and the weight of these sub-
bands is changed between 0.0 and 1.0. Two different levels of
corruption were tested. First, the Mel-bands were set to a small
constant (=3.0) as before, and then to zero. It can be seen that



when a small weight is used both unnormalized and
normalized features work well with both corruption types. The
performance of the normalized features (dashed lines) does not
depend at all on the level of corruption in this test. When the
weights are larger than about 0.1, and the corruption is severe,
the performance of the unnormalized features degrades
rapidly.
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Figure 4: Word recognition rates using different
weight values when sub-bands from 9 to 15 were
corrupted.

4.2 Results with Car Noise

The performance of the CDW algorithm was also evaluated
with car noise simulations. Feature vector normalization was
used in these tests. The database contains digit strings that
were recorded in a car simulator where generated car noise
was played in the background using the multiple loudspeakers
generating a realistic sound field. This database is suitable for
testing MFT-based techniques since the corruption of the
frequency region around 1 kHz is emphasized (see Figure 1a).
However, the corrupted part of the spectrum does not change
much since the noise is quasi-stationary.

Table 1: The results from the first car noise tests.

No Weighting Weighting
Word rate 85.44 89.82
String rate 64.36 73.96
Insertions 150 94

Deletions 104 79

Substitutions 816 575
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Figure 5: Average weights used for the utterances
recorded in the car simulator.

The results of the car noise tests are summarized in Table 1
which shows the substantial improvement due to the CDW
algorithm. Figure 5 depicts the average weights used in the
tests.

The system was also tested with another kind of car noise
that had a more uniform spectrum without big differences
between the average SNRs of the Mel-bands. The system was
not able to improve recognition rates in this kind of noise.

5. Conclusions and Discussion

Missing feature theory based techniques have been shown to
improve the recognition performance when partial corruption
of the speech spectrum occurs. Since missing features are
usually taken into account in the spectrum domain, the
recognition is typically done using spectral features. However,
the cepstrum is usually regarded as a more robust domain for
feature extraction.

We proposed a novel method for suppressing unreliable
frequencies in the log-likelihood evaluation phase, in a speech
recognizer that uses cepstral features. The method is shown to
significantly improve the recognition rates when narrowband
corruption of speech occurs. We failed to gain any
improvements by using on-line updating of the weights
(similarly to spectrographic missing data masks). This may be
due to lack of tuning of the thresholds. Although
discriminative training of the weights did not yield any
improvements, it might improve the performance of the
frequency masks by means of finding optimum thresholds. The
SNR estimation could also be performed after normalization
and inverse transformation back into the Mel-domain, which
would provide more accurate information.

There is most likely more potential in the proposed
approach, which would merit further research. Probably the
best practical set-up would be to include it in a robust speech
recognizer as a supplementary means for coping with
narrowband noise and distortion.
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