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Abstract

A method for automatic classification of articulatory-acoustic
features (AFs) and phonetic segments has been developed that
is relatively immune to performance degradation under a wide
range of acoustic-interference conditions. A key property of
the classification method isto train on two separate noise back-
grounds (“pink” and “white” noise) across a 30-dB dynamic
range of signal-to-noise ratios (SNRs). This training regime
reduces the error rate at the articulatory-feature and phonetic-
segment levels by as much as 40-60% for low-SNR conditions
relative to the baseline system (trained solely on “clean”
speech) and thus ensures that phonetic-segment classification
is sufficiently high (60-80% accuracy) as to provide reasonably
robust word recognition performance at low SNRs.

1. Introduction

Acoustic interference poses a significant challenge to current-
generation automatic speech-recognition (ASR) systems. ASR
systems that work well under pristine acoustic conditions gen-
erally perform much more poorly at low signal-to-noise ratios
(SNRs). In contrast, human listeners typically experience little
(if any) degradation of intelligibility under comparable circum-
stances, except for SNRs of less than 0 dB [10]. The robust
nature of human speech decoding may reflect the brain’s appli-
cation of multiple processing strategies, spanning a broad
range of time constants and structural units, providing comple-
mentary perspectives on the signal’s phonetic and lexical rep-
resentation [5][6]. Motivated by such concerns, we have
developed a method for decoding the speech signal into articu-
latory-acoustic features (AFs) and phonetic segments across a
wide dynamic range of acoustic background conditions that is
relatively robust to variation in signal-to-noise ratio and spec-
tro-temporal character of the acoustic background.

The current study focuses on classification of articulatory-
acoustic features, as previous research has demonstrated that
these “atomistic” units of the speech signal are more robust to
acoustic interference than phonetic segments [9]. Phonetic seg-
ments are subsequently derived from clusters of AFs, using
MLP networks similar to those employed in a previous study
of phonetic classification [2]. Under such conditions the reduc-
tion in error rate relative to the baseline system is often far bet-
ter than would be expected using a conventional phonetic-
segment classification system (as employed in [4]).

A singular property of the current method is that the system
istrained not only on “clean” speech (i.e., speech that has been
recorded under pristine, high-SNR, conditions), but also on
material embedded in a variety of noise backgrounds over a
wide dynamic range of SNRs. This training regime is moti-
vated by the supposition that the robustness of human speech
recognition is likely to derive from exposure to a broad range
of acoustic interference conditions and reflects the ability of
the brain to generalize from specific patterns of acoustic inter-
ference to novel noise conditions.

2. CorpusMaterials

The speech material used in the current study is derived from
the Numbers95 corpus, collected and phonetically annotated
(i.e., labeled and segmented) at the Oregon Graduate Institute
[3]. This corpus contains the numerical portion (mostly street
addresses and phone numbers) of thousands of telephone dia-
logues and possesses alexicon of 37 words and an inventory of
29 phonetic segments. The speakers contained in the corpus
are of both genders, and represent a wide range of dialect
regions and age groups. The speech material was recorded with
16-bit resolution at an 8-kHz sample rate. The training set for
the baseline system contains ca. 2.5 hours of material. A sepa-
rate 15-minute, cross-validation set was used during training to
minimize the chances of overfitting the corpus data. Testing
was performed on an independent set of material (of ca. 60-
minutes' duration) from the same corpus. Various forms of
acoustic interference, derived from the NOISEX corpus [12],
were mixed (in additive fashion) with the OGI Numbers95
speech material. The NOISEX material was originally
recorded with 16-bit resolution at 19.98 kHz but was down-
sampled to 8 kHz for the current study. A subset of the noise
backgrounds was mixed with the speech material over arange
of SNRs (asindicated in Table 1). The signal-to-noise ratio was
calculated from the normalized power (computed over the
entire length of the utterance) for both the speech signal and
the noise background using a procedure described in [8].

3. Basdline-System Processing and Training

The speech signal was processed in several stages for the base-
line system. First, a power spectrum was computed every 10
ms (over a 25-ms window) and this spectrum partitioned into
quarter-octave channels between 0.3 and 4 kHz. The power
spectrum was logarithmically compressed in order to preserve
the general contour of the spectrum distributed across fre-
guency and time. An array of independent, multilayer percep-
tron (MLP) networks classified each 25-ms frame along five
articulatory-based, phonetic-feature dimensions: (1) place
(e.g., labial, velar, alveolar) and (2) manner of articulation
(e.qg., stop, fricative, nasal, vocalic), (3) voicing (voiced/
unvoiced), (4) lip-rounding (rounded/unrounded) and (5) front-
back articulation (for vocalic segments). A separate feature
was trained for “silence” (labeled as “null” in each feature
dimension). These articulatory-feature |abels were subse-
quently combined and served as input to a separate ML P that
performed classification of phonetic-segment identity (cf. [2]
for additional information regarding the structure of the AF
classifiers and the combination of their output for phone classi-
fication). The baseline system was trained only on “clean”
speech while testing was performed on clean, as well ason a
variety of noisy speech material at different SNRs.

4. Training Over a Wide Range of Noise Backgrounds

A training regime was devel oped for enhancing baseline sys-
tem performance via utilization of an assortment of noise back-



Manner Place Front-Back Voicing Lip-Rounding Phones
Noise/Condition SNRBase | Mix | E-R |Base | Mix | E-R |Base | Mix | E-R |Base | Mix | E-R |Base | Mix | E-R |Base | Mix | E-R
Clean —|82.6|81.8| -46] 75.0| 76.4| 5.6] 826/ 82.8| 1.1] 89.8|89.5| -2.9] 83.4| 83.3| -0.6] 78.1| 79.2| 5.0
Pink 0 | 30.0|66.2|51.7] 32.8|61.9|43.3] 46.9| 68.6|40.9] 53.3| 77.1|51.0] 48.3| 69.4|40.8] 21.9| 64.1|54.0
10 | 55.7|76.3|46.5] 54.0| 71.7|38.5] 63.5| 78.4/40.8] 74.2| 85.0/41.9] 64.5| 79.1|41.1] 55.2| 74.6|43.3
20 |76.1]81.2/21.3] 715/ 76.3|16.8] 78.9| 82.4|16.6] 86.2| 88.8|18.8 79.8| 83.2| 16.8] 72.9| 79.0| 22.5
30 81.8823| 2.7] 74.7|77.0| 9.1 81.9|83.3| 7.7] 89.0| 89.7| 6.4f 82.9|83.9| 5.8] 77.3| 79.7| 10.6
White 0 | 28.4|65.2|51.4] 30.5|60.3|42.9] 44.6|66.6|39.7] 57.3| 77.5|47.3] 45.5| 67.5/40.4] 18.9| 61.2| 52.2
10 | 48.1|74.0|49.9] 46.8| 69.8|43.2] 56.7| 76.1|44.8] 69.9| 84.2|475) 57.7| 76.9|45.4) 45.2| 72.4| 49.6
20 | 67.6]/79.9/38.0] 65.7| 75.0(27.1] 73.0| 81.2|30.4] 82.1| 88.1|33.5f 73.2| 82.1|33.2) 67.5| 77.8| 317
30 [80.0/82.0/10.0] 73.6| 76.8|12.1] 81.1| 83.0/10.1] 88.7| 89.5| 7.1§ 81.8|83.9|11L5] 76.1| 79.5|14.2
Mixture of White and Pink Noise* 0 | 29.3|65.6|51.3] 32.2| 61.2|42.8] 46.3| 67.8/40.0] 53.6| 76.7|49.8] 47.6| 68.7| 40.3] 20.4| 63.2| 53.8
10 | 52.9|75.5|48.0] 51.5| 71.2|40.6 61.1| 77.8|42.9) 72.2| 84.7|45.0) 62.2| 78.4|42.9] 52.0| 74.0|45.8
20 | 74.0/81.0/26.9] 70.3| 76.0|19.2 77.6| 82.2|20.5] 85.4| 88.6|21.9 78.4| 83.0| 2.3 71.7| 78.7| 24.7
30 [81.5(823| 43]746|77.0| 94| 81.8|83.2| 7.7] 88.9|89.7| 7.2 82.8|84.0| 7.1} 77.1|79.7| 114
Speech Babble* 0 | 334|51.7|275] 35.2|46.6|17.6§ 48.4| 57.3|17.2] 50.0| 63.5|27.0] 49.1| 58.4| 18.3} 28.4| 45.2| 235
10 |62.2|70.4|21.7] 58.7| 64.9|15.0] 67.6| 71.9|13.3] 74.8| 77.5|10.7] 68.3| 73.0| 14.8] 57.8| 68.3| 24.9
Buccaneer Jet Cockpit (190 knots)* | O | 28.5|63.3|48.7] 30.8| 57.6|38.7| 45.9| 64.6|34.6) 52.2| 74.7|47.1| 47.2| 66.0| 35.6] 19.7| 59.2|49.2
Buccaneer Jet Cockpit (450 knots)* | O | 29.5|61.2|45.0] 33.1| 57.0|35.7 46.6| 65.0| 34.5] 52.5| 72.1| 41.3| 48.2| 65.6|33.6] 20.6| 58.5|47.7
F-16 Jet Fighter Cockpit* 0 | 27.9|62.7|48.3] 30.4| 57.2|38.5] 45.3|65.0/36.0] 50.1| 74.4|48.7] 46.5| 66.3| 37.0] 23.5| 58.8| 46.1
Destroyer Engine Room* 0 | 26.0{59.1/44.7] 29.2| 52.8|33.3] 43.7| 59.6|28.2) 52.3| 72.9|43.2] 44.8| 62.0| 31.2§ 20.8| 51.1|38.3
Destroyer Oper ations Room* 0 | 37.2|59.1|34.9] 38.1| 539|255 51.1|64.0/26.4] 55.6| 69.4|31.1] 52.4| 64.9| 26.3] 34.3| 58.0| 36.1
Leopard 2 Military Vehicle* 0 | 61.5|64.3| 7.3] 57.0/58.6| 3.7] 66.7|66.3| -1.2] 69.0| 69.7| 2.3] 66.2| 68.3| 6.2] 56.5| 62.7| 14.3
M 109 Tank* 0 | 46.1|67.6{39.9] 455|62.6|31.4] 56.4| 69.4|29.8] 63.8| 76.5/35.1] 57.1| 71.0| 32.4] 43.0| 66.1| 40.5
Machine Gun* 0 | 65.3|66.9| 46] 59.9|/61.7| 45§ 70.7| 70.7| 0.0§ 73.8| 75.2| 53] 71.6| 71.7| 0.4} 59.3| 63.4|10.1
10 | 72.7|72.6| -0.4] 65.9| 66.7| 2.3] 75.4| 75.0| -1.6| 79.6|/ 80.0| 2.0} 76.1| 75.6| -2.1] 67.9|/ 70.6| 8.4
Car Factory (Floor)* 0 | 30.8/57.9/39.2] 335|54.0{30.8] 47.3|62.8/29.4] 52.5| 69.4|35.6] 48.3| 63.6|29.6] 25.1| 52.5| 36.6
10 | 59.2| 73.0| 33.8] 56.7| 68.2| 26.6] 65.9| 75.2|27.3| 74.7| 81.5|26.9] 67.0| 76.0| 27.3] 55.4| 70.6| 34.1
Car Factory (Production Hall)* 41.4|68.3/45.9] 42.0|63.2|36.6] 53.8| 69.9|34.8) 61.5| 77.5/41.6] 54.4| 71.8|38.2] 37.6| 65.7|45.0
Volvo (Passenger Compartment)* 76.7| 784| 73] 70.0| 71.3| 4.3] 78.4|78.1| -1.4] 839|84.3| 25] 79.2| 789| -1.2] 70.4| 74.8| 14.9
10 | 80.3| 79.7| -3.0§ 72.5| 73.2| 2.5] 80.4|80.5| 0.5 87.6|87.7| 0.8] 81.4|81.3| -0.6] 74.6|/76.9| 9.1
High-Frequency Radio Channel* 0 | 26.5|64.0/51.0] 29.0| 58.1|41.0] 43.6|64.0/36.2) 57.4| 77.1|46.2] 44.4| 65.4|37.8] 17.9| 58.0| 48.8

Table1l Classification accuracy at the articulatory-acoustic-feature and phonetic-segment levels as a function of noise-background
condition and signal-to-noiseratio (SNR, in dB). Background noises are from the NOISEX corpus. Conditions marked with
an asterisk (*) are those for which the system was tested but not previously trained (i.e., conditions “unseen” by the classifi-
ersprior to testing). For each articul atory-feature dimension (place, front-back, manner, voicing, lip-rounding) and phonetic
segment (“phones”) classification experiment, recognition accuracy is shown in terms of percent correct for the baseline

(“Base”) and enhanced, noise-trained (“Mix”")

system. The percent reduction of error (“E-R”) yielded by the “Mix” system

relative to the “Base” system is shown to the right of classification performance (and is marked in blue).

grounds and SNRs. The AF and phone-segment classification
system was trained on speech material embedded in both white
and pink noise over a 30-dB range of SNRs (as well as on
“clean” speech, as described in Section 3) in order to ascertain
the degree of transfer to conditions “unseen” during training
(marked by an asterisk, *, in Table 1).

5. Basdline Performance

Baseline-system performance under “clean” conditions yields
ca. 78% correct phonetic-segment classification (consistent
with ca. 5% error rate at the word level - cf. [11] for details).
Articulatory-feature classification for this “clean” condition
ranges between 75% and 90% correct, depending on the AF
dimension involved (cf. Table 1). In circumstances where the
speech material is embedded in background noise the baseline

system performs well primarily when the SNR is 20 dB or
higher. For lower SNRs classification performance is often less
than 60% correct. At the lowest SNR (0 dB), performance
often degrades to below 40% correct for articulatory place and
manner classification. Phonetic-segment classification perfor-
mance for these conditions often falls below 30% correct. The
pattern of degradation as afunction of SNR is clearly manifest
in Figure 1 for three forms of background noise (“pink”,
“white” and a “training-blind” pink/white “hybrid” whose
spectral slopeis midway between that of pink and white noise).
The AF dimensions of voicing and rounding, both binary in
nature, outperform (by a slight degree) the other AF dimen-
sions. The place dimension is classified with the lowest accu-
racy of the articulatory-feature dimensions, consistent with
other studies of automatic AF classification (e.g., [1][13]).
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untrained, hybrid noise). Note, that in all instances the mixed-training system yields classification performance that

degrades relatively little as a function of decreasing signal-to-noise ratio. In contrast, the baseline system exhibits signifi-
cant degradation of classification accuracy asthe SNR drops below 20 dB. Data are a subset of the compl ete classification

results described in Table 1.
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6. Mixed-Training System Performance

In contrast to the baseline system, performance for the mixed-
training system degrades relatively little as a function of SNR
(cf. Figure 1 for performance in pink, white and hybrid noise).
Classification accuracy istypically better than 60% for most of
the background-noise conditions, even at the lowest SNRs.
What is particularly noteworthy is the ability of the mixed-
training system to generalize from training purely on “clean”
speech, as well as pink and white noise, to acoustic back-
grounds with very different spectro-temporal properties (these
conditions are marked with an asterisk,*, in Table 1). In virtu-
ally all instances the mixed-trained system outperforms the
baseline system, often by 20-50% (the reduction in error rate,
“E-R,” ismarked in blue in Table 1). The largest gain in error
reduction (relative to the baseline system) is generally
observed for conditions associated with the lowest SNRs (0
and 10 dB). For these conditions an error-rate reduction of
40% or greater is not uncommon. The conditions where the
mixed-training system fails to significantly outperform the
baseline system are those in which the latter is already per-
forming close to the maximum associated with the classifica-
tion framework used. In such instances there is generally little
difference in classification accuracy between the baseline and
mixed-training systems.

7. Implicationsfor Robust Speech Recognition

Acoustic interference is currently the bane of automatic speech
recognition systems. Currently, the most effective means of
coping with noise of variable (and unforeseen) character and
magnitude is for the speaker to use a close-fitting microphone
that effectively filters out background interference. Yet, there
are many circumstances where special-purpose microphones
are unavailable and where reliance on noise-robust speech rec-
ognition algorithms is necessary. In the past, most noise-robust
ASR algorithms relied on training using acoustic-background
materials similar to those likely to be encountered in the task
(i.e., test) domain. The current study demonstrates that training
over a circumscribed set of noise backgrounds (white and
pink) encompassing a broad (30-dB) range of SNRsis capable
of imparting a significant degree of generality to the noise-
background training sufficient to yield good recognition per-
formance across a wide range of acoustic conditions.

It is likely that incorporation of additional linguistic fea-
tures at levels superordinate to that of the articulatory feature
and phonetic segment would yield an even greater reduction in
error rate than afforded by the current set of feature dimensions
(cf. [5] for discussion of thisissue).

Although the current study does not directly address the
issue of word-level recognition in noise backgrounds, the
results are also likely to be of significance for word recognition
performance because of the high degree of correlation between
word-recognition performance and accuracy of phonetic-seg-
ment classification (cf. [7] for a discussion of this relation).
Therefore, good performance on phonetic-segment classifica-
tion across a broad range of acoustic backgrounds is likely to
yield a relatively high level of word-recognition accuracy
under comparable conditions.
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