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Abstract
In this paper, we present a new approach for improving the

robustness of automatic speech recognition systems to additive
noise. This approach lies in the use of a particular training pro-
cedure (based on data contamination) in a particular architec-
ture (the multi-band paradigm). With this framework, we ex-
pect to remove the drawbacks of both the corpus contamination
approach which is the dependency to noise spectral character-
istics, and the multi-band architecture which is its relative inef-
ficiency in the case of wideband noise. This method has been
tested on the AURORA 2 continuous digits task and compared
to other robust methods such as spectral subtraction, J-RASTA
filtering and missing data compensation. It yields very good
performance on different kinds of additive noise, without any a
priori knowledge of the noise power spectrum.

1. Introduction
Additive noise is one of the most important sources of degrada-
tion of the performance of automatic speech recognition (ASR)
systems. The effect of noise is to create a mismatch between
the acoustic models and the acoustic data. Various techniques
have been developed in order to decrease the impact of noise
on ASR systems, such as spectral subtraction [5, 6], J-RASTA
filtering [4], model adaptation [14], missing data compensa-
tion [7, 8, 9], ...

One of the most efficient techniques to improve robustness
of speech recognition systems on additive noise consists in train-
ing the acoustic models with data corrupted by noise at differ-
ent signal-to-noise ratios (SNR) [3]. This approach leads to
quasi-optimal performance when the noise used for training is
spectrally similar to the noise used in the application, but fails
when the noises are spectrally too different. Therefore, this ap-
proach is useful if we have a good a priori knowledge of the
noise power spectrum. Another class of robust approaches is the
sub-band analysis (or multi-band architecture) which consists in
developing independent acoustic models in different frequency
bands [10, 11]. It is therefore possible in a second step to weight
the importance of those frequency bands according to their re-
liability and hence to minimize the influence of noisy bands.
Unfortunately, this approach is still not particularly efficient in
the case of wideband noise.

The approach presented in this paper allows to get rid of the
limitations of these two techniques. Based on the multi-band
architecture, this approach follows from the observation that, if
we consider narrow frequency bands, noises inside these bands
practically differ by their energy level only, not by the shape of
their band limited power spectra. Therefore, we can train acous-
tic models associated with the multiple frequency bands on data
corrupted by any kind of wideband noise at different signal-to-
noise ratios. If the frequency bands are narrow enough, we can

then expect these models to be robust to other kinds of noise.
The bandwidth of the frequency bands (and consequently the
number of sub-bands) will results from a trade-off between the
assumption that noise is white within a sub-band and the ability
to discriminate between speech and noise, and between speech
sounds, inside a sub-band.

So, the method consists essentially in the use of a particular
training procedure (based on data contamination) in the frame-
work of a particular architecture (based on sub-band analysis).
As already stated, these two methods seem to have rather lim-
ited interest when used independently. Note also, that due to
their complementarity with the proposed scheme, other meth-
ods for speech recognition under noisy conditions (such as spec-
tral subtraction or filtering of the temporal feature trajectories
for instance) can also be combined in this architecture.

2. Description
This section describes our approach. We first perform a crit-
ical band analysis of the windowed speech frames. Similarly
to PLP processing [2], this analysis uses a frequency domain
filter-bank with 30 trapezoidal filters equally spaced along a
Bark scale. The 30 critical band energies are then split into sub-
vectors featuring the spectral envelope in different frequency
bands. Among the different configurations that we have been
testing, a 7 bands split, as shown in Figure 1, gave the best
performance. Each sub-vector is then normalized in order to
obtain parameters that are independent of the absolute energy
of the speech frame. One could also compute sub-band cepstral
coefficients by applying a discrete cosine transform on the sub-
vectors. These two options were actually shown to give similar
performance.
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Figure 1: Computation of robust acoustic features, related to 7
frequency bands.

The key element of our approach is a scheme to estimate
robust parameters from these sub-bands. To achieve this, each



sub-band acoustic feature vector is non-linearly transformed us-
ing an artificial neural network (ANN). We actually use feed-
forward multilayer perceptrons (MLPs) [1] designed for pho-
netic unit classification. As suggested in the introduction, train-
ing these MLPs on noisy data allows them to transform their
input in an optimal way for noisy environments. Practically,
white noise is added in a controlled way to the clean speech
training corpus. As shown in Figure 2, this gives us a noisy
training corpus with signal-to-noise ratios (SNRs) ranging from
0 dB to 20 dB, as well as a portion of clean speech.
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Figure 2: Principle of training corpus contamination with white
noise.

In short, each sub-band uses an MLP trained to provide a
nonlinear mapping between spectral acoustic features and pho-
neme posterior probability estimates. This mapping is opti-
mized for phonetic classification in noisy environments. Single
hidden-layer MLPs can provide probability estimates than can
then be used as robust acoustic features for automatic speech
recognition. To provide more flexibility, we rather used MLPs
with two hidden layers (Figure 3). During recognition, the out-
put of the second hidden layer is used as acoustic feature vector
for the corresponding sub-band. The size of the layer can be op-
timized or adjusted to get the desired number of features. This
kind of approach is known as non-linear discriminant analysis
(NLDA) [15]. A similar idea is also exploited in the Tandem
speech recognition structure [12]. In our case however, multi-
ple non-linear transformations are applied to obtain robust fea-
tures into spectral sub-bands. The 7 bands configuration that
we have been using leads to frequency bands that are narrow
enough to validate the ’white noise’ assumption, while keeping
enough speech specific information for phonetic classification
within each band.

The sub-band features are then concatenated to obtain an
acoustic feature vector that can be used in any “classical” auto-
matic speech recognition system. In our case, we have been us-
ing a HMM-based system with a MLP for acoustic modeling (or
hybrid HMM/ANN system) [1]. The multi-band structure could
be trained on different acoustic data and different phonetic units
than the speech recognition acoustic model. These systems can
indeed be seen as two independent components: multi-band ro-
bust feature extraction and speech recognition acoustic mod-
eling. Training data with sufficient phonetic coverage might
thus provide a multi-band ”feature extraction” structure that is
portable across different tasks, and noise conditions. Prelimi-
nary results with a Tandem structure [13] even suggest portabil-
ity across different languages.

Finally, this approach can easily be combined with comple-
mentary noise robust methods, for instance spectral subtraction
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Figure 3: Nonlinear discriminant analysis.
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Figure 4: Application to automatic speech recognition.

and model adaptation (see Figures 1 and 4). In our case, we will
use temporal trajectories filtering.

3. Experiments
Experiments have been carried out on the AURORA 2 [16]
database. This database is based on TI-DIGITS (connected dig-
its in american English) corrupted by different kinds of noise.
We limited our experiments to the following four types of noise:
subway, babble noise, in-car noise and exhibition hall. The vo-
cabulary is composed of the 10 digits, and the back-end uses
word models depicted by a total of 127 HMM states.

For comparison purposes, we have been using systems based
on different kinds of acoustic feature:

� PLPs derived from log-RASTA filtering of critical band
energies,

� PLP derived from J-RASTA filtering [4] (J parameter
fixed to

�������
) of critical band energies,

� PLP derived from non-linear spectral subtraction [6] ap-
plied to critical band energies,

� PLP derived from missing data compensated critical band
energies [8, 9]. Practically we used a set of 256 gaus-
sians to perform the missing data imputation. Selection
of reliable spectral components was based on automatic
local SNR estimation. See [7] for a complete theoretical
description of the missing data techniques.

� as a reference, we also used a J-RASTA PLP based sys-
tem trained on data contaminated with the same noises
as the test data (matching train/test noise).



-5 dB 0 dB 5 dB 10 dB 15 dB 20 dB clean average 0 � 20 dB
log-RASTA PLP 90.4% 68.4% 39.3% 19.2% 7.3% 3.1% 1.2% 27.5%
J-RASTA PLP 82.9% 55.2% 27.5% 11.6% 4.8% 2.3% 0.9% 20.3%
Non-linear spectral subtr. PLP 77.6% 50.0% 24.5% 10.6% 5.3% 3.2% 1.2% 18.7%
Missing data compensation PLP 75.4% 43.7% 18.8% 7.1% 3.0% 1.7% 0.9% 14.9%
J-RASTA contaminated multi-band (conf.1) 59.5% 28.9% 11.9% 5.0% 2.4% 1.0% 0.5% 9.8%
J-RASTA contaminated multi-band (conf.2) 63.8% 33.5% 14.3% 6.3% 3.2% 1.7% 0.9% 11.8%
Matching train/test noise 54.3% 24.2% 8.6% 3.8% 2.0% 1.6% 1.3% 8.0%

Table 1: Word error rate of different noise robust methods. Average on 4 kinds of noise for different SNR. Last column gives average
WER for SNR from 0 dB to 20 dB (cf. AURORA official protocol)

Each of these baseline systems uses a MLP for acoustic
modeling (hybrid HMM/ANN approach). These MLPs have 15
frames of 13 dimension acoustic features (energy + 12 PLPs) as
input, 1000 hidden units and 127 outputs. They have 323,195
parameters.

The multi-band system is composed of 7 sub-band MLPs
with 2 hidden layers each. They use 15 frames of frequency
band specific spectral parameters. J-RASTA temporal trajectory
filtering is applied to the outputs of the critical band filter-bank
(J parameter fixed to

� ��� �
) before feeding these MLPs. Two

configurations have been defined:
� The first one is quite heavy, multi-band MLPs have 1000

nodes in the first hidden layer, 30 nodes in the second
hidden layer. The ASR system is a hybrid HMM/MLP
modeling the 127 HMM states. This MLP contains 1000
hidden nodes and uses 3 frames of concatenated vectors
(that is ��������� ���
	 � � input nodes). The global system
contains 1,531,185 parameters.

� The second configuration aims at keeping the system as
light as possible and to obtain a number of parameters in
the same order than the baseline system. In this case, the
multi-band MLPs have only 150 nodes in the first hidden
layer. The ASR MLP, contains 500 hidden nodes and
takes only one frame at its input (that is ����� �
��� ���
input nodes). The total number of parameters for this
configuration is 285,565.

Note that, in our implementation, the sub-band MLPs and the
ASR MLP have been trained on the same white-noise contami-
nated TI-DIGITS training corpus.

Results are shown in Figures 5, 6, 7 and 8. Table 1 shows
average results for the four noises.

As we can see, our method outperforms other robust tech-
niques and leads to a relative average error rate reduction of
64% compared to the baseline system and of 50% compared
to robust methods such spectral subtraction or J-RASTA filter-
ing used alone. Note also that for band-limited noises such as
the in-car noise, improvement is even larger (up to 90% relative
improvement compared to the baseline system - see Figure 7).
Without any knowledge of the noise statistics, we obtain recog-
nition accuracy that gets close to the accuracy of the system
trained on matching noise conditions. The proposed structure
also outperforms the other systems in the case of clean speech,
even though noise is used in the training procedure of the sub-
band discriminant neural networks.

4. Conclusions
We proposed a new algorithm for the optimal estimation of
noise robust acoustic features. This estimation is based on the

−5 0 5 10 15 20 Inf
0

10

20

30

40

50

60

70

80

90

100

SNR (dB)

W
E

R
 (

%
)

Results on AURORA 2 : subway noise

Matching noise conditions
baseline (log−rasta)
J−rasta
Non−linear spectral subtraction
Missing−data compensation
Contaminated multiband (conf.1)
Contaminated multiband (conf.2)

Figure 5: Recognition performance for different robust tech-
niques on subway noise.

contamination of training data, which is known to give quasi-
optimal performance if the operating noise conditions are known
a priori. In order to get rid of this constraint, and to make the
system independent of the noise spectral characteristics, we cut
the signal into narrow frequency bands. In each sub-band, we
can therefore assume that the noise is quasi-white justifying the
training of sub-band MLPs on speech data contaminated with
white noise at different signal-to-noise ratios. These MLPs can
therefore be used to estimate acoustic features in each sub-band.
These features can be assumed to be robust to any kind of noise.

Our approach has been tested with the AURORA 2 task on
4 kinds of noise at SNRs ranging from -5 dB to 20 dB, and
compared to other robust methods described in the literature.
We showed that our method leads to a relative reduction of the
average (over different noises) error rate of 50% compared to
robust features such as J-RASTA PLPs. This gain is obtained
without the need of any a priori knowledge on the noise char-
acteristics. Additionally, the proposed system also yields im-
proved performance in the case of clean speech.

Moreover, a particular attention was given to avoid increas-
ing the overall number of parameters of the ASR system in order
to keep it as competitive as possible.

Other noise robust techniques could be integrated to this
architecture. Although we already tried J-RASTA filtering, we
think that the use of missing data compensated features as input
to the multi-band structure could further help.
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Figure 6: Recognition performance for different robust tech-
niques on babble noise.
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Figure 7: Recognition performance for different robust tech-
niques on in-car noise.
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