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Abstract

Frequency domain Blind Source Separation (BSS) is
shown to be equivalent to two sets of frequency domain
adaptive microphone arrays, i.e., Adaptive Beamformers
(ABF). The minimization of the off-diagonal components
in the BSS update equation can be viewed as the mini-
mization of the mean square error in the ABF. The un-
mixing matrix of the BSS and the filter coefficients of the
ABF converge to the same solution in the mean square
error sense if the two source signals are ideally indepen-
dent. Therefore, we can conclude that the performance
of the BSS is upper bounded by that of the ABF. This un-
derstanding clearly explains the poor performance of the
BSS in a real room with long reverberation.

1. Introduction
Blind Source Separation (BSS) is an approach to es-

timate source signals si(t) using only the information of
mixed signals xj(t) observed in each input channel. This
technique is applicable to the achievement of noise robust
speech recognition and high-quality hands-free telecom-
munication systems. It might also become one of the cues
for auditory scene analysis.

To achieve the BSS of convolutive mixtures, several
methods have been proposed [1, 2]. In this paper, we
consider the BSS of convolutive mixtures of speech in
the frequency domain [3, 4], for the sake of mathematical
simplicity and the reduction of computational complex-
ity.

Signal separation by using a noise cancellation frame-
work with signal leakage into the noise reference was dis-
cussed in [5, 6]. It was shown that the least squares crite-
rion is equivalent to the decorrelation criterion of a noise
free signal estimate and a signal free noise estimate. The
error minimization was shown to be completely equiva-
lent with a zero search in the crosscorrelation.

Inspired by their discussions, but apart from the noise
cancellation framework, we attempt to see the frequency
domain BSS problem with a frequency domain adaptive
microphone array, i.e., Adaptive Beamformer (ABF) frame-
works. The equivalence and difference between the BSS
and ABF are discussed theoretically.
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Figure 1: BSS system configuration.

2. Frequency domain BSS of convolutive
mixtures of speech

The signals recorded by M microphones are given
by

xj(n) =
N∑

i=1

P∑
p=1

hji(p)si(n − p + 1) (j = 1, · · · , M ),

(1)
where si is the source signal from a source i, xj is the
received signal by a microphone j, and hji is the P -point
impulse response from a source i to a microphone j. In
this paper, we consider a two-input, two-output convolu-
tive BSS problem, i.e., N = M = 2 (Fig. 1).

The frequency domain approach to the convolutive
mixture is to transform the problem into an instantaneous
BSS problem in the frequency domain [3, 4]. Using a
T -point short time Fourier transform for (1), we obtain

X(ω, m) = H(ω)S(ω, m), (2)

where S(ω, m) = [S1(ω, m), S2(ω, m)]T . We assume
that a (2×2) mixing matrix H(ω) is invertible, and H ji(ω)
�= 0.

The unmixing process can be formulated in a fre-
quency bin ω:

Y (ω, m) = W (ω)X(ω, m), (3)



where X(ω, m) = [X1(ω, m), X2(ω, m)]T is the ob-
served signal at frequency bin ω, Y (ω, m) = [Y1(ω, m),
Y2(ω, m)]T is the estimated source signal, and W (ω)
represents a (2×2) unmixing matrix. W (ω) is deter-
mined so that Y1(ω, m) and Y2(ω, m) become mutually
independent. The above calculations are carried out at
each frequency independently.

2.1. Frequency domain BSS of convolutive mixtures
using Second Order Statistics (SOS)

It is well known that the decorrelation criterion is
insufficient to solve the problem. In [6], however, it is
pointed out that non-stationary signals provide enough
additional information to estimate all W ij . Some authors
have utilized the SOS for mixed speech signals [7, 8].

The source signals S1(ω, m) and S2(ω, m) are as-
sumed to be zero mean and mutually uncorrelated, that
is,

RS(ω, k) =
1

M

M−1∑
m=0

S(ω,Mk + m)S∗(ω, Mk + m)

= Λs(ω, k), (4)

where ∗ denotes the conjugate transpose, and Λs(ω, k)
is a different diagonal matrix for each k.

In order to determine W (ω) so that Y1(ω, m) and
Y2(ω, m) become mutually uncorrelated, we seek a W (ω)
that diagonalizes the covariance matrices RY (ω, k) si-
multaneously for all k,

RY (ω, k) = W (ω)RX(ω, k)W ∗(ω)

= W (ω)H(ω)Λs(ω, k)H∗(ω)W ∗(ω)

= Λc(ω, k), (5)

where RX is the covariance matrix of X(ω) as follows,

RX(ω, k) =
1

M

M−1∑
m=0

X(ω,Mk+m)X∗(ω, Mk+m), (6)

and Λc(ω, k) is an arbitrary diagonal matrix.
The diagonalization of RY (ω, k) can be written as

an overdetermined least-square problem,

arg min
W (ω)

∑
k

||off-diagW (ω)RX(ω, k)W ∗(ω)||2 (7)

s.t.,
∑

k

diag||W (ω)RX(ω, k)W ∗(ω)||2 �= 0,

where ||x||2 is the squared Frobenius norm.

3. Frequency domain adaptive beamformer
Here, we consider the frequency domain adaptive

beamformer (ABF), which forms a null directivity pattern
towards a jammer. Since our aim is to separate two sig-
nals S1 and S2 with two microphones, two sets of ABF
are used (Fig. 2), that is, an ABF that forms a null di-
rectivity pattern towards source S2 by using filter coef-
ficients W11 and W12, and an ABF that forms a null di-
rectivity pattern towards source S1 by using filter coeffi-
cients W21 and W22. Note that an ABF can be adapted
when only a jammer exists but a target does not exist.
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Figure 2: Two sets of ABF system configurations.

3.1. ABF null towards S2

First, we consider the case of target S1 and jammer
S2 [Fig. 2(a)]. When target S1 = 0, output Y1(ω, m) is
expressed as

Y1(ω,m) = W11(ω)X1(ω, m) + W12(ω)X2(ω,m)

= W (ω)X(ω,m), (8)

where
W (ω) = [W11(ω),W12(ω)],X(ω,m) = [X1(ω,m),X2(ω,m)]T .

To minimize jammer S2(ω, m) in output Y1(ω, m)
when target S1 = 0, mean square error J(ω) is intro-
duced as

J(ω) = E[Y 2
1 (ω,m)]

= W (ω)E[X(ω, m)X∗(ω, m)]W ∗(ω)

= W (ω)R(ω)W ∗(ω), (9)

where E is the expectation and

R(ω) = E

[
X1(ω, m)X∗

1 (ω,m) X1(ω, m)X∗
2 (ω,m)

X2(ω, m)X∗
1 (ω,m) X2(ω, m)X∗

2 (ω,m)

]
. (10)

By differentiating cost function J(ω) with respect to W
and setting the gradient equal to zero

∂J(ω)

∂W
= 2RW ∗ = 0, (11)

we obtain the equation to solve as follows [(ω, m), etc.,
are omitted for convenience],

E

[
X1X

∗
1 X1X

∗
2

X2X
∗
1 X2X

∗
2

][
W∗

11

W∗
12

]
=

[
0
0

]
, (12)

or in a separate formula

E[X1X
∗
1 ]W ∗

11 + E[X1X
∗
2 ]W ∗

12 = 0 (13)

E[X2X
∗
1 ]W ∗

11 + E[X2X
∗
2 ]W ∗

12 = 0. (14)



Using X1 = H12S2, X2 = H22S2, we get

W11H12 + W12H22 = 0. (15)

With (15) only, we have trivial solution W 11=W12=0.
Therefore, an additional constraint should be added to en-
sure target signal S1 in output Y1. With this constraint,
output Y1 is expressed as

Y1 = W11X1 + W12X2

= W11H11S1 + W12H21S1 = c1S1, (16)

which leads to

W11H11 + W12H21 = c1, (17)

where c1 is an arbitrary complex constant. Since H12 and
H22 are unknown, the minimization of (9) with adaptive
filters W11 and W12 is used to derive (15) with constraint
(17). This means that the ABF solution is derived from
simultaneous equations (15) and (17).

3.2. ABF null towards S1

Similarly for target S2, jammer S1, and output Y2

[Fig. 2(b)], we obtain

W21H11 + W22H21 = 0 (18)

W21H12 + W22H22 = c2. (19)

3.3. Two sets of ABF
By combining (15), (17), (18), and (19), the simul-

taneous equations for two sets of ABF are summarized
as
[

W11 W12

W21 W22

] [
H11 H12

H21 H22

]
=

[
c1 0
0 c2

]
. (20)

4. Equivalence between
Blind Source Separation and

Adaptive Beamformers
As we showed in (7), the SOS BSS algorithm works

to minimize off-diagonal components in

E

[
Y1Y

∗
1 Y1Y

∗
2

Y2Y
∗
1 Y2Y

∗
2

]
, (21)

[see (5)]. Using H and W , outputs Y1 and Y2 are ex-
pressed in each frequency bin as follows,

Y1 = aS1 + bS2 (22)

Y2 = cS1 + dS2, (23)

where
[

a b
c d

]
=

[
W11 W12

W21 W22

] [
H11 H12

H21 H22

]
. (24)

4.1. When S1 �= 0 and S2 �= 0

We now analyze what is going on in the BSS frame-
work. After convergence, the expectation of the off-diag-
onal component E[Y1Y

∗
2 ] is expressed as

E[Y1Y
∗
2 ]

= ad∗E[S1S
∗
2 ] + bc∗E[S2S

∗
1 ] + (ac∗E[S2

1 ] + bd∗E[S2
2 ])

= 0. (25)

Since S1 and S2 are assumed to be uncorrelated, the first
term and the second term become zero. Then, the BSS
adaptation should drive the third term of (25) to be zero.
By squaring the third term and setting it equal to zero

(ac∗E[S2
1 ] + bd∗E[S2

2 ])2

= a2c2(E[S2
1 ])2 + 2abc∗d∗E[S2

1 ]E[S2
2 ] + b2d2(E[S2

2 ])2

= 0 (26)

(26) is equivalent to

ac∗ = bd∗ = 0, abc∗d∗ = 0. (27)

CASE 1: a = c1, c = 0, b = 0, d = c2

[
W11 W12

W21 W22

][
H11 H12

H21 H22

]
=

[
c1 0
0 c2

]
(28)

This equation is exactly the same as that of the ABF (20).

CASE 2: a = 0, c = c1, b = c2, d = 0

[
W11 W12

W21 W22

][
H11 H12

H21 H22

]
=

[
0 c2

c1 0

]
(29)

This equation leads to the permutation solution which is
Y1 = c2S2, Y2 = c1S1.

CASE 3: a = 0, c = c1, b = 0, d = c2

[
W11 W12

W21 W22

][
H11 H12

H21 H22

]
=

[
0 0
c1 c2

]
(30)

This equation leads to undesirable solution Y1 = 0, Y2 =
c1S1 + c2S2.

CASE 4: a = c1, c = 0, b = c2, d = 0

[
W11 W12

W21 W22

][
H11 H12

H21 H22

]
=

[
c1 c2

0 0

]
(31)

This equation leads to undesirable solution Y1 = c1S1 +
c2S2, Y2 = 0.

Note that CASE 3 and CASE 4 do not appear in
general since we assume that H(ω) is invertible, and
Hji(ω) �= 0. That is, if a = 0 then b �= 0 (CASE 2),
and if c = 0 then d �= 0 (CASE 1).

If the uncorrelated assumption between S1(ω) and
S2(ω) collapses, the first and second terms of (25) be-
come the bias noise to get the correct coefficients a, b, c, d.



4.2. When S1 �= 0 and S2 = 0

The BSS can adapt, even if there is only one active
source. In this case, only one set of ABF is achieved.

When S2 = 0, we have

Y1 = aS1 and Y2 = cS1 (32)

then

E[Y1Y
∗
2 ] = E[aS1c

∗S∗
1 ] = ac∗E[S2

1 ] = 0, (33)

and therefore, the BSS adaptation should drive

ac∗ = 0. (34)

CASE 5: c = 0, a = c1[
W11 W12

W21 W22

] [
H11 H12

H21 H22

]
=

[
c1 ∗
0 ∗

]
, (35)

where ∗ shows a don’t care. Since S2 = 0, the output can
be derived correctly Y1 = c1S1 , Y2 = 0 as follows.[

Y1

Y2

]
=

[
c1 ∗
0 ∗

][
S1

0

]
=

[
c1S1

0

]
(36)

CASE 6: c = c1, a = 0[
W11 W12

W21 W22

][
H11 H12

H21 H22

]
=

[
0 ∗
c1 ∗

]
(37)

This equation leads to the permutation solution which is
Y1 = 0, Y2 = c1S1.[

Y1

Y2

]
=

[
0 ∗
c1 ∗

][
S1

0

]
=

[
0

c1S1

]
(38)

4.3. Fundamental limitation of frequency domain BSS

Frequency domain BSS and frequency domain ABF
are shown to be equivalent [see equations (20) and (28)]
if the independent assumption ideally holds [see equa-
tion (25)]. Moreover, we have shown in [9], that a long
frame size works poorly in frequency domain BSS for
speech data of a few seconds, because the assumption of
independency between S1(ω) and S2(ω) does not hold in
each frequency. Therefore, the performance of the BSS
is upper bounded by that of the ABF.

We can form only one null towards the jammer in the
case of two microphones. Although the directivity pattern
becomes duller when there is a long reverberation, the
BSS and ABF mainly remove the sound from the jammer
direction. This understanding clearly explains the poor
performance of the BSS in a real room with long rever-
beration.

The BSS was shown to outperform a null beamformer
that forms a steep null directivity pattern towards a jam-
mer under the assumption of the jammer’s direction be-
ing known [10, 11]. It is well known that an adaptive
beamformer outperforms a null beamformer in long re-
verberation. Our understanding also clearly explains the
result.

Our discussion here is essentially also true for the
BSS with Higher Order Statistics (HOS), and will be ex-
tended to it shortly.

5. Conclusion
Frequency domain Blind Source Separation (BSS) is

shown to be equivalent to two sets of frequency domain
adaptive beamformers (ABF). The unmixing matrix of
the BSS and the filter coefficients of the ABF converge
to the same solution in the mean square error sense if
the two source signals are ideally independent. There-
fore, we can conclude that the performance of the BSS
is upper bounded by that of the ABF. This understand-
ing clearly explains the poor performance of the BSS in a
real room with long reverberation. The fundamental dif-
ference exists in the adaptation period when they should
adapt. That is, the ABF can adapt in the presence of a
jammer but the absence of a target, whereas the BSS can
adapt in the presence of a target and jammer, and also in
the presence of only a target.
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