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Abstract
A sound classification system for the automatic recognition of
the acoustic environment in a hearing instrument is dis-
cussed. The system distinguishes the four sound classes ‘clean
speech’, ‘speech in noise’, ‘noise’, and ‘music’ and is based
on auditory features and hidden Markov models. The em-
ployed features describe level fluctuations, the spectral form
and harmonicity. Sounds from a large database are employed
for both training and testing of the system. The achieved rec-
ognition rates are very high except for the class ‘noise’.
Problems arise in the classification of pop music, reverber-
ated speech, tonal noises and singing.

1. Introduction
Modern hearing instruments typically provide several hearing
programs to account for different acoustic situations such as
e.g. quiet environment, noisy environment, music, etc. These
hearing programs can be activated either by means of a switch
at the hearing instrument or with a remote control. The man-
ual switching between different hearing programs is however
annoying and might even be difficult for some of the hearing
instrument users. It would therefore be more convenient for
the user if the hearing instrument would analyze the acousti-
cal situation internally and carry out the appropriate program
selection automatically.

There exist already simple approaches to automatic sound
classification in hearing instruments, and even though today
we are only able to reliably distinguish clean speech signals
from all other sound kinds, practical experiences have shown
that an automatic program selection system in the hearing
instrument is appreciated very much by the user [1].

Our goal is therefore to reliably and robustly classify the
complete spectrum of the acoustic environment in order to
allow for an automatic program selection by the hearing in-
strument itself. So far we aim at distinguishing four sound
classes: ‘clean speech’, ‘speech in noise’, ‘noise’, and ‘mu-
sic’. Our approach to sound classification is inspired by the
human auditory system in that we extract auditory features as
known from auditory scene analysis from the input signal.
The individual sound classes are modeled by means of
HMMs.

The remainder of this paper is structured as follows. Sec-
tion 2 gives an overview on existing work on sound classifi-
cation with a particular focus on hearing instrument applica-
tions. In section 3 a short overview on auditory scene analysis
is given, and then our sound classification system comprised
of feature extraction and classifier is described in detail. The
achieved results are presented and discussed in section 4, and
the conclusions of the present work are drawn in section 5.

2. Prior Art
Nowadays there exist already a few commercial hearing in-
struments which make use of sound classification techniques.
Widex exploits Ludvigsen’s amplitude statistics [2] for the
differentiation of impulse-like sounds from continuous sounds
in a noise canceler. Classification of the acoustic environment
is also used at Siemens in the context of noise canceling.
There the three sound kinds ‘clean speech’, ‘speech in noise’,
and ‘noise without speech’ are distinguished by means of
modulation frequency analysis [3] and Bayes classification
[4]. A similar approach which is based on modulation analy-
sis as well is utilized by ReSound for the detection of speech
in a multiband noise canceler [5]. Sound classification is also
used at Phonak, however not for noise canceling but for ena-
bling the automatic program selection based on the actual
acoustic environment. For this purpose a modified version [6]
of the analysis of the temporal fluctuations and the spectrum
as proposed by Kates [7] is used. This allows to reliably dis-
tinguish clean speech signals from all other sound kinds.

In the hearing instrument research community two further
sound classification systems are known, which however, to
the best of our knowledge, have not (yet) been applied in
commercial hearing aids. In the approach of Nordqvist the
sound is classified into clean speech and different kinds of
noises by means of LPC coefficients and HMMs [8]. Feld-
busch identifies clean speech, speech babble, and traffic noise
by means of various time- and frequency-domain features and
a neural network [9]. All of the above mentioned approaches
allow a robust separation of clean speech signals from other
signals. Music however can not be distinguished at all, and it
is only partly possible to separate noise from speech in noise.

Another application of sound classification which has re-
cently gained importance is the automatic data segmentation
and indexing in multimedia databases. A nice example is the
system of Zhang and Kuo where the audio signal is seg-
mented and classified into twelve essential scenes using four
signal features and a rule-based heuristic procedure extended
by a HMM stage [10].

Other typical sound classification systems operate usually
on much less universal target signals than the above men-
tioned applications. Examples of such systems are the recog-
nition of different music styles and the identification of dif-
ferent instruments, the differentiation of speech and music
signals, or the classification of different noise and alarm
types.



3. Sound Classification Inspired by
Auditory Scene Analysis

The basic structure of each sound classification system is
illustrated in figure 1. The classifier separates the desired
classes based on the features extracted from the input signal.
Postprocessing is employed to correct possible classification
errors and to control the transient behavior of the sound classi-
fication system.
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Figure 1:Basic structure of a sound classification system
comprising feature extraction, classification, and
postprocessing.

3.1. Auditory Scene Analysis

Auditory scene analysis (ASA) [11] describes mechanisms
and processing strategies that the auditory system relies on in
the analysis of the acoustic environment. Although this whole
process is not yet completely understood, it is known that the
auditory system extracts characteristic features from the
acoustic signals. The features are analyzed based on grouping
rules and possibly also on prior knowledge and hypotheses to
form acoustic events. These events are then combined re-
spectively segregated into multiple sound sources.

The features which are known to play a key role in audi-
tory grouping, the so called auditory features, are spectral
separation, spectral profile, harmonicity, onsets and offsets,
coherent amplitude and frequency variations, spatial separa-
tion, and temporal separation. For more details on auditory
features in particular and auditory scene analysis in general
the reader is referred to the literature ([12] [13]).

Note that the auditory system attempts to separate and
identify the individual sound sources, whereas our primary
goal in sound classification is the discrimination of different
sources which does not necessarily require their identifica-
tion.

3.2. Features for Sound Classification

In our approach to sound classification our aim is to mimic
the human auditory system at least partially by making use of
auditory features as known from auditory scene analysis. We
are using three auditory feature groups so far: amplitude
variations, spectral profile, and harmonicity.

Our amplitude variations are characterized by the range
of the occurring sound levels. For this purpose we model the
amplitude histogram of the sounds by means of percentiles.
The width of the amplitude histogram is then used to charac-
terize the modulation depth in the signal. This concept is
illustrated in figure 2. A similar kind of amplitude statistics
was already used by Ludvigsen for the differentiation of im-
pulse-like sounds from continuous sounds [2].

The spectral profile is modeled in a very rudimentary way
by means of two features, the spectral center of gravity, and
the fluctuations of the spectral center of gravity. The spectral
center of gravity is a static characterization of the spectral
profile, whereas the fluctuations of the spectral center of
gravity describe dynamic properties of the spectral profile.
Frequency information is extracted from a 20-channel Bark
spectrum. These two features have already been employed in

an earlier sound classifier of Phonak [6]. Figure 3 illustrates
the approach.

Figure 2:Characterization of the level fluctuations by means
of amplitude statistics. The amplitude histogram is
approximated by several percentiles. The width of
the amplitude histogram describes the amplitude
variations of the signal.

80

60

70

50

40

30

1000 2000 3000 4000 5000 6000 7000 8000
Frequency [Hz]

Amplitude [dB]

center of gravity

fluctuations of
center of gravity

Figure 3:Spectral center of gravity and fluctuations of the
spectral center of gravity as employed in the de-
scription of the spectral profile.

To describe harmonicity the pitch of the sound is usually
employed. In our approach we characterize harmonicity by
two features, the tonality of the sound on the one hand, and
the pitch variance on the other hand. The tonality is defined as
the ratio of harmonic to unharmonic parts in the sound over
time. Note that the pitch value itself is not employed although
it is used to extract both harmonicity features. Figure 4 illus-
trates the tonality and pitch variance of a sample sound.

Figure 4:Pitch course of a speech sound. Where a pitch exists
the sound is harmonic, otherwise, where no pitch
can be extracted (indicated by 0 Hz) the sound is
defined as unharmonic. Tonality is the ratio of har-
monic to unharmonic periods over time. Pitch vari-
ance refers to the harmonic parts of the sound only.



3.3. Classifier

For the classifier we have evaluated two approaches: simple
Bayes classification and HMM classification. The Bayes
classifier is easy to train and very efficient, however, it can
only account for static properties of the extracted features.
The HMMs are more complex to train, but they allow to take
into account to a certain extent also the dynamics of the fea-
tures. In the following we concentrate on HMM classification
since in our case it provides more robust results than the
Bayes classification, especially for our sound class noise.
The determination of the parameters of the individual HMMs
(“HMM training”) is carried out off-line by means of the
freely available software tool HTK [14]. The sounds for
training are taken from a large sound database collected at
Phonak which comprises approximately 800 real-world
sounds of 30 seconds length each and sampled at 22 kHz. All
of the four sound classes that we wish to identify are repre-
sented with various examples. The sounds were either re-
corded in the real world (e.g. in a train station) or in our own
sound-proof room, or taken from other media. The class ‘clean
speech’ is comprised of different speakers speaking different
languages, with different vocal effort, at different speed, and
with different amounts of reverberation. The class ‘noise’ is
the most widely varying sound class, comprising social noises,
traffic noise, industrial noise and various other noises such as
e.g. household and office noises. ‘Speech in noise’ sounds
consist of speech signals mixed with noise signals at different
SNRs. The class ‘music’, finally, comprises music styles from
classics over pop and rock up to single instruments and sing-
ing. The original labeling of the sounds into the four sound
classes has been carried out by hand based on listening. From
this ample database, 287 selected sounds were employed for
training.

The classification task itself is carried out by means of the
Viterbi algorithm (see e.g. [15]). For a sound to be classified
the likelihood of every model is computed, and the unknown
sound is assigned the class of the model with the highest
likelihood.

3.4. Postprocessing

As mentioned earlier, the purpose of postprocessing is to
correct possible classification outliers and to control the tran-
sient behavior of the sound classification system. This is
achieved in a very simple manner by observing the classifica-
tion outcomes over a certain time and taking as a result the
class which has occurred most often. By varying the length of
the observation interval the transient behavior of the classifi-
cation result is controlled.

4. Results and Discussion
The performance of the classification system is tested by
classifying approximately 500 different real-world sounds
from our sound database and comparing the resulting class to
the known class of the sound. Note that only sounds which
were not used for training are employed for testing. In this
way we prevent a falsification of the result which could arise
when the classifier “learns” particular sounds.

The performance is expressed by hit and false alarm rates
and graphically represented in the form of receiver operating
curves (ROC graphs). The hit rate is defined as the percent of
correctly recognized sounds of a particular class, the corre-

sponding false alarm rate is the percentage of sounds which
were falsely classified as this class.

The ROC graph of figure 5 shows the hit rate of our four
classes on the ordinate and the corresponding false alarm
rates on the abscissa. The results that we achieve so far are
very promising. ‘Clean speech’ is identified with a hit rate of
over 90% and a false alarm rate of less than 10%. Both
‘speech in noise’ and ‘music’ files were identified with hit
hates of 80% and false alarm rates of approximately 7..8%.
‘Noise’ signals are identified with a hit rate of 65% and a
false alarm rate of 10%.

Figure 5:ROC graph for HMM classifier. The hit rate of each
class is represented in percent on the ordinate, the
corresponding false alarm rates are shown on the
abscissa.

The relative low hit rate of only 65% for ‘noise’ signals is
due to the wide variety of the different sounds comprised in
the class ‘noise’, including signals such as e.g. “in a restau-
rant”, “in a car”, or “while shaving”. Nevertheless there is
definitively room for improvement in the classification of
‘noise’ signals.

The following misclassifications occur repeatedly in our
classification system. Pop music is often classified as ‘speech
in noise’. Depending on the taste of the listener, this classifi-
cation might however correspond to perception! Reverberated
speech might also be classified as ‘speech in noise’. But also
there, depending on the amount of reverberation the classifier
might give a result similar to our perception. Other problem-
atic sounds are tonal noises such as e.g. the sound of a shaver.
Due to the high tonality of such signals they might be falsely
classified as ‘music’. Singing, on the other hand, depending
on the amount of pitch variation, is sometimes classified as
‘clean speech’ instead of ‘music’.

From the above discussion the fundamental limitations of
any artificial sound classification system become obvious. On
the one hand, the performance of a classifier is very much
dependent on the employed training data. The training data
must be chosen carefully to cover the whole range of each
sound class homogeneously. This is however not always easy,
in particular for classes covering a wide range of possible
signals as is the case for our classes ‘noise’ and ‘music’. Also
there are signals which are inherently ambiguous. Shall
strongly reverberated speech, for example, be labeled as
‘clean speech’ or as ‘speech in noise’ when employed for
training? These pre-labels influence the classification per-
formance considerably through both training and testing.

On the other hand, one and the same signal might be clas-
sified differently depending on the context. Speech babble
e.g. could either be a ‘noise’ signal (several speakers talking



all at once) or a ‘speech in noise’ signal (for example a dia-
logue with interfering speakers). Again, the outcome of the
classifier in such ambiguous situations depends on the label-
ing of the training data.

Ultimately, the perception of a listener also depends on
what he wants to hear. For example in a bar where music
plays and people are talking, music may either be the target
signal (the listener wants to sit and enjoy) or a background
noise (the listener is talking to somebody). No artificial classi-
fier can read the listener’s mind, and therefore there exist
always ambiguities in classification.

5. Summary and Conclusions
For the general classification of the acoustic environment in a
hearing aid application we aim at distinguishing the four main
sound classes clean speech, speech in noise, noise, and music.
For this purpose we extract auditory features from the acous-
tic signal and classify them by means of HMMs. The em-
ployed features describe level fluctuations, the spectral form
and harmonicity. Postprocessing allows to clean the classifi-
cation result and to control the transient behavior of the clas-
sifier. Training of the HMMs is carried out by using sounds
from an extensive sound database.

The results achieved so far are promising. All sound
classes except the class noise are identified with hit rates over
80%. Only for noise signals the hit rate is with 65% consid-
erably lower. The false alarm rates are below 10% for each
class. The relative poor performance of the classifier on noise
signals is due to the inhomogenity of the class which com-
prises a wide range of very different signals. Common classi-
fication errors include misclassifications of pop music and
reverberated speech into speech in noise, tonal noises into
music, and singing into clean speech.

With this and other recent work on sound classification,
progress is being made towards automatic and robust classifi-
cation of the acoustic environment. However, we are far from
achieving similar performance as our auditory system. To-
day’s limitations are – apart from our still lacking under-
standing of all of the auditory processes per se – the ambigu-
ity and context-dependence of a large part of the acoustic
situations.
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