ICSI /ThisL status report

December 1997

Dan Ellis
International Computer Science Institute, Berkeley CA
<dpwe@icsi.berkeley.edu>

1. Software tools & packages
2. Speech/nonspeech separation
3. Speech in reverberation
Software tools & packages: ICSI Speech Recognition system

- **New components:**
 - `feacalc`: enhanced RASTA (I/O formats, options)
 - `pfile_utils`: comprehensive manipulations (editing, stats, etc.)

- **Portable package:**
 - first test: bring up recognizer at IDIAP

- **Visualization**
 - `[incr Tcl]` classes for display
 - recognizer visualization...
Software tools & packages: recogui visualization

- modular objects for reuse
- simple configuration files
- broad use within ICSI
2 Speech vs. nonspeech: Comp. Aud. Scene Analysis Analysis for ASR

• For handling sound mixtures, attempt to estimate individual sound sources
 - listeners do this transparently

• Previous approach (Weintraub...)
 - ‘enhance-then-recognize’:
 extract by periodicity, resynthesize, recognize

• But...
 - problems with ‘holes’
 - which cues to separate speech?
 ...doesn’t exploit knowledge of speech structure
Prediction-driven CASA and ASR

- **Prediction-driven CASA:**
 - don’t *derive*, but *construct* an explanation consistent with observations
 - need to express ‘predictions’ in signal domain
 - iterate over each component

- **Components make projections**
 - into e.g. ‘the space of all speech sounds’
A Speech Hypothesis module

- Want to exploit constraints of decoder
- Invert each stage of speech recognizer
 - classifier by? trained estimator
 - normalization by: recovering from input
Preliminary results

- Prediction shortfall dominates result
 - improve inverse classification
 - more normalization
- To complete iteration:
 - need $p(q|X,M)$
- Initial separation by f_0?
Speech-in-reverberation

- Modest reverb has severe impact
 \(\text{RT} = 0.5 \text{s}, \text{D/R} \approx 0 \text{ dB} \)

- **Information/combination at various timescales**
 - modulation spectral features, syllable units
 - combine results at utterance level (Nbests)
 - combine results at syllable level
 (HMM decomposition, [Dupont & Bourlard '97])

<table>
<thead>
<tr>
<th>WER%</th>
<th>Clean speech</th>
<th>Reverb (6 dB SNR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (Rasta-PLP8)</td>
<td>6.8</td>
<td>27.8</td>
</tr>
<tr>
<td>ModSpec Syllable base</td>
<td>9.8</td>
<td>30.9</td>
</tr>
<tr>
<td>Utterance-level combin’n</td>
<td>5.5</td>
<td>19.6</td>
</tr>
<tr>
<td>Syllable-level combin’n</td>
<td>5.4</td>
<td>18.6</td>
</tr>
</tbody>
</table>

- **2 pass decoder to avoid state explosion**
 - lattice output for compatibility