Model-Based Scene Analysis

Dan Ellis

Laboratory for Recognition and Organization of Speech and Audio
Dept. Electrical Eng., Columbia Univ., NY USA

dpwe@ee.columbia.edu http://labrosa.ee.columbia.edu/

1. Separation and Inference
2. Model-based separation
3. Speech Fragment Decoder
1. Separation and Inference

• Full separation requires “separable dimension”
 o e.g. spatial filtering
 o but for single channel: overlap is inevitable

• Signal knowledge provides extra constraints
 o .. for inference of missing parts

• Separation vs. recognition
 o separation is sufficient .. but too hard
 o recognition is easier .. but too coarse
 o in-between: class plus parameters
 adequate for resynthesis?
Pattern Recognition Perspective

- Inferring source signal set \(\{s_i\} \)
 from mixture signal \(x \):
 \[
 \arg \max_{\{s_i\}} p(x|\{s_i\}) \sum_i p(s_i|M_i)
 \]
 - \(p(x|\{s_i\}) \) gives physics of combination (sum)
 - \(p(s_i|M_i) \) limits which \(s_i \) to consider

- How to acquire/evaluate \(p(s_i|M_i) \)?
 - generalize observation of solo sources

- How to search \(\{s_i\} \)?
 - full joint space?
 - clever pruning tricks
Factorial HMM - Toy Example

• Two sources with same underlying model

○ sequence constraints can disambiguate identical emissions
Disambiguating with Knowledge

(Roweis ’03)

- Use strength of match to models as reasonableness measure for control
- e.g. MAXVQ
 - learn dictionary of spectrogram slices
 - find the ones that ‘fit’
 - or $\max()$ of a combination....
 - ... then filter out excess energy

Noise-corrupt speech Matching templates

from Sam Roweis’s Montreal 2003 presentation
Full Mixture Inference
(Kristjansson, Attias, Hershey’04)

- Can model combination of magnitude spectra with stochastic model
 - phase cancellation as noise...
- Precise inference of components
 - by iterative linearization
- Works well
 (for small domains?)
2. Missing Data Recognition

- Speech models $p(x|M)$ are multidimensional...
 - means, variances for each frequency channel
 - need values for all dimensions to get $p(\bullet)$
- But: can evaluate over a subset of dimensions x_k
 - $p(x_k|M) = \int p(x_k, x_u|M)dx_u$
- Hence, missing data recognition:
 - hard part is finding the mask (segregation)
The Speech Fragment Decoder

- Match ‘uncorrupt’ spectrum to ASR models using missing data

- Joint search for model M and segregation S to maximize:

\[
P(M, S|Y) = P(M) \int P(X|M) \cdot \frac{P(X|Y, S)}{P(X)} dX \cdot P(S|Y)
\]

Isolated Source Model

Segregation Model

Barker, Cooke, Ellis ’04
Using CASA cues

\[P(M, S|Y) = P(M) \int P(X|M) \cdot \frac{P(X|Y, S)}{P(X)} \, dX \cdot P(S|Y) \]

- **CASA helps search**
 - consider only segregations made from CASA chunks

- **CASA rates segregation**
 - construct \(P(S|Y) \) to reward CASA qualities:
Learning for Separation

• **Control**: learn what is “reasonable”
• **Input**: discriminant features
 - learned subspaces
• **Engine**: clustering parameters
• **Output**: restoration...
Can Machine Learning Subsume CASA?

• ASA grouping cues describe real sounds
 - “anecdotally”

• Machine Learning is another way to find regularities in large datasets
 - can, e.g., Roweis templates subsume harmonicity, onset, etc.?
 - ... and handle schema at the same time?
 - “cut out the (grouping cue) middleman”

• Trick is how to represent/generalize
 - listeners can organize novel sounds
Conclusions

• Source separation needs **constraints**
 ○ e.g. prior knowledge of signal form

• **Memorized** signals (HMMs) can be powerful
 ○ but can get very large

• **Speech recognition models** can be co-opted
 ○ e.g. to identify plausible subsets of regions