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ABSTRACT

Nonnegative matrix factorization (NMF) has been widely
used for discovering physically meaningful latent compo-
nents in audio signals to facilitate source separation. Most
of the existing NMF algorithms require that the number of
latent components is provided a priori, which is not always
possible. In this paper, we leverage developments from the
Bayesian nonparametrics and compressive sensing litera-
ture to propose a probabilistic Beta Process Sparse NMF

(BP-NMF) model, which can automatically infer the proper
number of latent components based on the data. Unlike
previous models, BP-NMF explicitly assumes that these
latent components are often completely silent. We derive
a novel mean-field variational inference algorithm for this
nonconjugate model and evaluate it on both synthetic data
and real recordings on various tasks.

1. INTRODUCTION

Nonnegative matrix factorization (NMF) [9] has been ex-
tensively applied to analyze audio signals, since the ap-
proximate decomposition of the audio spectrogram into the
product of 2 nonnegative matrices X ⇡ WH provides a
physically meaningful interpretation. We can view each
column of X, which represents the power density across
frequencies at a particular time, as a nonnegative linear
combination of the columns of W, determined by the col-
umn of activation H. Thus W can be considered as a dic-
tionary, where each column acts as a component. This can
be particularly useful for audio source separation, where
the goal is to find out the individual sources from mixed
signal.

Audio source separation poses a meaningful and chal-
lenging problem, which has been actively studied for the
last few decades. One of the obstacles which makes source
separation difficult is that the number of sources is gener-
ally not known. For example, when we listen to a piece of
polyphonic music, it is difficult and tedious to figure out
how many notes or instruments are being played. How-
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ever, most existing NMF algorithms require the number of
components to be provided as input, based on the assump-
tion that there exists a certain mapping between the learned
components and real sources. To address this issue, we
propose BP-NMF, a nonparametric Bayesian NMF model
that uses a beta process prior. The model automatically
determines how many sources it needs to explain the data
during posterior inference.

1.1 Related Work

NMF has been applied to many music analysis problems
such as music transcription [1,12], music analysis [5], and
music source separation [10, 15].

On the other hand, most of the literature on nonpara-
metric Bayesian latent factor models focuses on conjugate
linear Gaussian models, for example, beta process factor
analysis [11] which is the main inspiration for BP-NMF.
However, such models are not appropriate for audio spec-
trograms as they do not impose nonnegativity constraints.
To address this limitation, [7] proposed a nonparametric
Bayesian NMF model based on the gamma process.

BP-NMF extends the standard NMF model in two ways:

• BP-NMF can explicitly and completely silence la-
tent components when they should not be active. This
captures the intuition that a note which appears fre-
quently during one phrase may not contribute any-
thing in another phrase, and most notes are silent
most of the time.

• The number of latent components, which is difficult
to set a priori, is inferred by the model.

Both of these issues have been addressed in previous work,
but to the authors’ knowledge, BP-NMF is the first model
to combine them.

2. BP-NMF

We adopt the notational conventions that upper case bold
letters (e.g. X,D, S and Z) denote matrices and lower
case bold letters (e.g. x, d s, and z) denote vectors. f 2
{1, 2, · · · , F} is used to index frequency. t 2 {1, 2, · · · , T}
is used to index time. k 2 {1, 2, · · · ,K} is used to index
dictionary components.

BP-NMF is formulated as:

X = D(S� Z) +E (1)

(a) The selected components learned from single-track instru-
ment. For each instrument, the components are sorted by approx-
imated fundamental frequency. The dictionary is cut off above
5512.5 Hz for visualization purposes.

(b) The box-and-whisker plot for the correlations from both BP-
NMF matching and random matching. A paired Wilcoxon signed-
rank test shows that they are significantly different.

Figure 4: The results from the proposed evaluation.

Therefore, this evaluation mechanism can also be applied
to determine a range for the “proper” number of compo-
nents to describe the data.

5. CONCLUSION

In this paper, we propose BP-NMF, a Bayesian nonpara-
metric extension of nonnegative matrix factorization, which
can automatically infer the number of latent components.
BP-NMF explicitly assumes that some of the components
are often completely silent. BP-NMF performs well under
existing metrics and under a novel evaluation mechanism.
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Structure Similarity

• CK-1 image similarity uses MPEG Video 
compression	

can exploit shifted parts of image	


• Match pieces based on structure recurrence 
plots (Bello’11)
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step does not affect the performance significantly. For in-
stance, the worst result obtained by the proposed method is
0.885, using Chroma

f=2.5;d=1100, while in [4], the worst
result is 0.225. Such invariability to the parameter setting
is verified by the lack of statistically significant differences
among our best result and our remaining results when we
vary the external parameters. We also obtained an excel-
lent mean performance of 0.926 over all parameter values.

5.2 Further Experiments

We mentioned the fact that the NCD may not be appro-
priate to compare real value matrices. To prove this fact,
we applied the NCD on the SSMs obtained with the best
parameter configuration for Chroma, CENS and CRP, us-
ing the CK-1 distance. We also applied the NCD on the
matrices obtained by setting CRP

f=10;d=700, the config-
uration that achieved the best result in [4]. The results of
this experiment are shown in Table 4, as well as the results
obtained using ED in the same configurations.

Table 4. Results obtained by applying NCD and ED on the SSM
in some configurations.

Configuration NCD ED
Chromaf=2.5;d=300 0.322 0.279
CENSf=0.5;d=300 0.382 0.313
CRPf=1.25;d=500 0.276 0.257
CRPf=10;d=700 0.271 0.262

With this simple experiment, it is possible to note that
ED and NCD are not appropriate to compare SSM directly.
However, in [14], it was shown that the ED can be effec-
tively used to retrieve songs by preprocessing the SSM. We
take advantage of such idea to evaluate the use of CK-1
distance in this context.

As we did not have access to the code used in [14], we
just simulated similar experiments by applying threshold
and blur procedures. In other words, we did not apply path
enhancement technique before applying the threshold. Our
goal is not to directly compare the results, because we do
not even have the same dataset. However, we can compare
the use of ED and CK-1 when some preprocessing opera-
tions are applied on the SSMs.

In the binarization step (application of a threshold), we
used the strategy to consider that k% of the closest points
in the SSM represent recurrence. Thus, these points are
transformed into black (0) pixels in the resulting RP. The
remaining become white (1). To evaluate different scenar-
ios, we used three different values for the threshold: k 2
{10, 25, 50}. Furthermore, we used a two-dimensional
circular averaging filter (Pillbox) to blur the image, using
five different filter sizes: l 2 {1, 5, 10, 20, 30}. Figure 1
shows different representations of the same recording of
the Chopin’s Prelude Op.28 No.4. Plot (a) represents the
SSM, plot (b) represents the RP (using 25% of the points)
and plots (c & d) the result of applying a blur filter on the
RP with four different sizes.

For the sake of space, we do not present all the results of
our experiments. Briefly, the best results obtained by the
use of distance ED in this context were better than those
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Figure 1. Four different representations of the same recording:
(a) self-similarity matrix; (b) recurrence plot; (c) RP after appli-
cation of a blur filter with size l = 30.

obtained in [4], which used the RP-NCD, in most scenar-
ios. However, the results obtained by CK-1 distance in the
same context were better than ED in all scenarios. The
best results obtained for each distance and each feature are
presented in Table 5.

Table 5. Results obtained after applying a threshold and a blur-
ring effect in the recurrence plots. The value k is the percentage
of black points and l is the size of the blur filter. The symbol ⇤ in-
dicates where CK-1 is statistically outperformed ED in the same
parameter configuration.

k (%) l Distance MAP

Chromaf=2.5;d=300

50 1 CK-1 0.941⇤
ED 0.816

10 20 CK-1 0.905
ED 0.872

CENSf=0.5;d=300

25 5 CK-1 0.924⇤
ED 0.829

25 1 CK-1 0.919
ED 0.910

CRPf=1.25;d=500

25 30 CK-1 0.958⇤
ED 0.893

10 30 CK-1 0.953
ED 0.941

5.3 Results on Mazurkas Dataset

We performed experiments on the Mazurkas dataset to val-
idate the results obtained in the previous experiments. We
first chose the parameter configuration CENS

f=0.5;d=300

since it obtained the best classification performance in the
123tracks dataset. However, our method achieved a MAP
of 0.611, which we considered unsatisfactory. A more de-
tailed analysis of the SSMs showed that in many cases the
matrices were not able to clearly represent the recording
structure. This was due to the fact that the cosine distance,
used to extract matrices, resulted in short distances in many
cases. Thus, the figure generated by such distances con-
tains very dark colors when applied to a color scale be-
tween 0 and 1.

After analyzing the recordings, we can conclude that
the distances with small values can be directly related to
the frequency in which the features were extracted. A low
feature rate corresponds to a large analysis window, result-
ing in mixing several structurally distinct segments of mu-
sic. Since many pieces in the dataset have a short dura-
tion and numerous structural variations of short duration,
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Block Structure RPCA

• RPCA separates vocals and background 
based on low rank optimization	

single trade-off parameter	

adjust based on higher-level musical features?
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Table 1. Sound excerpts used for the evaluation and proportion of purely-instrumental segments (P.I.) (in% of the whole excerpt duration).
Name % (P.I.) Name % (P.I.) Name % (P.I.)
1- Beatles Sgt Pepper’s Lonely Hearts Club Band 49.3 5,6 - Puccini piece for soprano and piano 24.7 10 - Marvin Gaye Heard itThrough The Grapevine 30.2
2 - BeatlesWith A Little Help From My Friends 13.5 7 - Pink Noise Party Their Shallow Singularity 42.1
3 - Beatles She’s Leaving Home 24.6 8 - Bob Marley Is This Love 37.2 11 - The Eagles Take it Easy 35.5
4 - Beatles A Day in The Life 35.6 9 - Doobie Brothers Long Train Running 65.6 12 - The PoliceMessage in aBottle 24.9

mixture is computed using a window length of 1024 samples with
75% overlap at a sampling rate of 11.5KHz. No post-processing
(such as masking) is added.
4.2. Results and Discussion

Fig. 2. Separation performance of the leading singing voice with the base-
line method, for various values of λ, for the song Their Shallow Singularity.

Fig. 3. Separation performance for the background (left) and the singing
voice (right) via, from top to bottom, the SDR, SIR, SAR and NSDR mea-
sures for each song. Constant λ = 1 (∗), adaptive λ = (1, 5) with prior
ground truth (•) and estimated (◦) voice activity location.

• Global separation results. As illustrated by Fig. 2, the qual-
ity of the separation with the baseline method [18] depends on the
value of the regularization parameter. Moreover, the value that leads
to the best separation quality differs from one music excerpt to an-
other. Thus, when processing automatically a collection of music
tracks, the choice of this value results from a trade-off. We report
here results obtained with the typical choice λv = 1. In A-RPCA,
this regularization parameter is further adapted to the music content
based on prior music information. In all experiments, for a given
constant value λv in the baseline method, setting λnv > λv in Eq.
(7) improves the results6. Results of the separation obtained with
various configurations of the proposed model are described in Fig.
3. Using a musically-informed adaptive regularization parameter al-
lows improving the results of the separation both for the background
and the leading voice components. Note that the larger the propor-
tion of purely-instrumental segments in a piece (see Tab. 1), the

6For lack of space, we do not report all of the experiments obtained with
various values of λ.

larger the results improvement (see in particular pieces 1, 7, 8 and 9
in Fig. 2), which is consistent with the goal of the proposed method.

There is however one drawback: improved SDR (better over-
all separation performance) and SIR (better capability of removing
music interferences from the singing voice) with A-RPCA are ob-
tained at the price of introducing more artifacts in the estimated voice
(lower SARvoice). Listening tests reveal that in some segments pro-
cessed by A-RPCA, as for instance segment [1 − 1.15]m in Fig.
4, one can hear some high frequency isolated coefficients superim-
posed to the separated voice. This drawback could be reduced by
including harmonicity priors in the sparse component of RPCA, as
proposed in [20].

• Ground truth versus estimated voice activity location. Im-
perfect voice activity location information still allows an improve-
ment, although to a lesser extent than with ground-truth voice ac-
tivity information. The decrease in the results mainly comes from
background segments classified as vocal segments.

Fig. 4. Separated voice for various values of λ for the Pink Noise Party song
Their Shallow Singularity. From top to bottom: clean voice, constant λ = 1,
constant λ = 5, adaptive λ = (1, 5).

• Local separation results. It is interesting to note that using an
adaptive regularization parameter in a unified analysis of the whole
piece is different from separately analyzing vocal and purely instru-
mental segments with different but constant values of λ. This is
illustrated in the dashed rectangles areas of Fig. 4. Moreover, local
results7 with the unified analysis, show not only that the sparse com-
ponents (singing voice) are limited in purely-instrumental segments,
but also that the energy of music background is better weakened in
the resynthesized voice in vocal segments (better local SIRvoice).

5. CONCLUSION
We have explored an adaptive version of the RPCA technique that
allows the processing of entire pieces of music including local vari-
ations in the music content. Music content information is incorpo-
rated in the decomposition to guide the selection of coefficients in
the sparse and low-rank layers according to the semantic structure
of the piece. We have focused on a simple criterion (voice activity
information), but the method could be extended with other criteria
(singer identification, vibrato saliency. etc.). The method could be
improved by incorporating additional information to set differently
the regularization parameters for each track to better accommodate
the varying contrast of foreground and background. The idea of an
adaptive decomposition could also be improved with a more com-
plex formulation of RPCA that incorporates additional constraints
[20] or a learned dictionary [46].

7For space constraint, local BSS-eval results are not reported.
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Ordinal LDA Segmentation

• Low-rank decomposition of skewed self-
similarity to identify repeats	


• Learned weighting of multiple factors to 
segment	

Linear Discriminant Analysis  
between adjacent segments
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2.1. Latent structural repetition

Figure 1 outlines our approach for computing structural repe-
tition features, which is adapted from Serrà et al. [2]. First, we
extract beat-synchronous features (e.g., MFCCs or chroma)
from the signal, and build a binary self-similarity matrix by
linking each beat to its nearest neighbors in feature space
(fig. 1, top-left). With beat-synchronous features, repeated
sections appear as diagonals in the self-similarity matrix. To
easily detect repeated sections, the self-similarity matrix is
skewed by shifting the ith column down by i rows (fig. 1,
top-right), thus converting diagonals into horizontals.

Using nearest-neighbor linkage to compute the self-
similarity matrix results in spurious links and skipped con-
nections. Serrà et al. resolve this by convolving with a
Gaussian filter, which effectively suppresses noise, but also
blurs segment boundaries. Instead, we use a horizontal me-
dian filter, which (for odd window length) produces a binary
matrix, suppresses links which do not belong to long se-
quences of repetitions, and fills in skipped conections (fig. 1,
bottom-left). Because median filtering preserves edges, we
may expect more precise boundary detection.

Let R 2 R2t⇥t denote the median-filtered, skewed self-
similarity matrix over t beats. Note that different songs have
different durations, so the dimensionality of R varies for dif-
ferent songs. This makes it difficult to directly model and gen-
eralize across collections. However, note that methods which
depend on distances between column-vectors kR·,i �R·,jk
— e.g., Euclidean clustering or novelty curve peak-picking
— are invariant to unitary transformations.

Rather than use R directly, we define latent structural rep-
etition features, which compress each any song’s R matrix to
a fixed-dimension representation. Let R = U⌃V

T denote the
singular value decomposition of R, with (descending) singu-
lar values �i. The latent structural repetition feature (fig. 1,
bottom-right) is defined as the matrix L:

L

··= �

�1

1

U

T
R = �

�1

1

⌃V

T
. (1)

Reducing L to d < 2t principal components (rows) retains the
most important factors, and normalizing by �

1

ensures that
features maintain the same relative magnitude independent of
track duration. Figure 1 (bottom-right) depicts an example of
the resulting features. In practice, small values of d suffice to
capture global structure: in the given example, internal seg-
ment position and segment boundaries are encoded within the
top two components.

2.2. Constrained agglomerative clustering

Given a feature matrix X 2 RD⇥t, we produce a hierar-
chical clustering of the columns of X by using the linkage-
constrained variant of Ward’s agglomerative clustering algo-
rithm [3] as implemented in scikit-learn [4]. For each
column X·,i, linkage constraints are generated for (i � 1, i)
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Fig. 1. Repetition features derived from Tupac Shakur
— Trapped. Top-left: a binary self-similarity (k-nearest-
neighbor) matrix over beats. Top-right: the time-lag transfor-
mation of the self-similarity matrix. Bottom-left: the result
of the horizontal median filter. Bottom-right: 8-dimensional
latent factor representation (best viewed in color).

and (i, i + 1), so the linkage graph forms a chain. Starting
from t clusters (one for each column of X), the two closest
linked clusters are iteratively merged until only one remains.
The hierarchy is computed in O(t) merge operations, and due
to the constraints, there are O(t) feasible merges at each step.
Each merge operation takes time O(D + log t) (to compute
centroids and manage a priority queue), so the algorithm runs
in O(tD + t log t) time. For D 2 ⌦(log t), the cost of clus-
tering is dominated by the ⌦(tD) cost of computing X .

2.3. Choosing the number of segments

The hierarchical clustering produces segmentations for all
numbers of segments 1  k  t. While a multi-scale view
can be useful in some scenarios — such as interactive data
exploration — standard evaluations rely on flat segmenta-
tions. To select k, we compute the clustering cost of each
pruning within a plausible bounded range k

min

 k  k

max

.
The bounds are determined by assuming average minimum
and maximum segment duration of 10s and 45s. AIC correc-
tion [5] is then applied to each candidate pruning (assuming a
spherical Gaussian model for each segment), and k is chosen
to minimize the AIC-corrected cost.
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“Remixavier"

• Optimal align-and-cancel of mix and acapella	

timing and channel may differ
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Singing ASR

• Speech recognition adapted to singing	

needs aligned data	


• Extensive work to match up scraped 
“acapellas” and  
full mix	

including jumps!
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Million Song Dataset

• Many Facets	

Echo Nest audio features  
+ metadata	

Echo Nest “taste profile” 
user-song-listen count	

Second Hand Song covers	

musiXmatch lyric BoW	

last.fm tags	

!

• Now with audio?	

resolving artist / album / track / duration  
against what.cd
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MIDI-to-MSD

• Aligned MIDI to Audio is a nice transcription	

!
!
!
!
!
!
!
!
!

• Can we find matches in large databases?
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Summary

• Basic techniques	

beat tracking, segmentation, chord recognition, 
transcription	

!

• More data	

audio	

alignments	

aligned transcriptions	

!

• Sharing code and data
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