Audio & Music Research at LabROSA

Dan Ellis
Laboratory for Recognition and Organization of Speech and Audio
Dept. Electrical Eng., Columbia Univ., NY USA
dpwe@ee.columbia.edu http://labrosa.ee.columbia.edu/

1. Eigenrhythms: Representing drum tracks
2. Frequency-Domain Linear Prediction
3. Segmenting meeting turns
4. Analyzing ‘personal audio’ recordings
LabROSA Projects Overview

Information Extraction

Music

Eigenrhythms

Personal audio

Meeting turns

FDLP

Signal Processing

Speech

Machine Learning

Environment

LabROSA Projects Overview

Audio/Music @ LabROSA - Dan Ellis

2004-08-24
1. Eigenrhythms: Drum Pattern Space

- Pop songs built on repeating “drum loop”
 - bass drum, snare, hi-hat
 - small variations on a few basic patterns

- Eigen-analysis (PCA) to capture variations?
 - by analyzing lots of (MIDI) data

- Applications
 - music categorization
 - “beat box” synthesis
Aligning the Data

• Need to **align** patterns prior to PCA...

- **tempo** (stretch): by inferring BPM & normalizing

- **downbeat** (shift): correlate against ‘mean’ template
Eigenrhythms

- Need 20+ Eigenvectors for good coverage of 100 training patterns (1200 dims)
- Top patterns:
Eigenrhythms for Classification

- **Clusters in Eigenspace:**

- **Genre classification? (10 way)**
 - nearest neighbor in 4D eigenspace: 21% correct
Eigenrhythm BeatBox

- Resynthesize rhythms from eigen-space
2. Frequency-Domain Lin. Pred.

- (Time-domain) Linear Prediction
 - the well-known spectral estimator

\[y[n] = \sum_{i=1}^{p} a_i y[n-i] + e[n] \]

- Apply to a ‘frequency domain’ signal
 - dual: estimates temporal envelope

\[Y[k] = \sum_{i=1}^{p} b_i Y[k-i] + E[k] \]
Aside: Spectrogram of the DCT

- DCT gives a pure-real signal: Can we treat it like a waveform?
FDLP and TDLP Duality

- Signal
- DCT of signal
- FDLP
- LP of DCT
- TDLP
- LP of signal
- Squared Hilbert env.
- Power spectrum

Time
Frequency
Subband FDLP

- Temporal envelopes without 25 ms windows

Auditory STFT
(10-25ms + Bark bin)

TDLP
(per time frame)

Subband FDLP
(per frequency subband)
FDLP Applications

- **Time-scale modification**

- **Modulation-domain “temporal equalization”**

- **Perceptual audio features...**
PLP-squared

- FDLP fits temporal envelope with LP
 - Perceptual Linear Prediction (PLP) smooths across frequency
 - can we do both... iteratively?
- Speech features *without* ST windows
3. Meeting Turns

- Multi-mic recordings for speaker turns
 - every voice reaches every mic... (?)
 - ... but with differing coupling filters (delays, gains)
- Find turns with minimal assumptions
 - e.g. ad-hoc sensor setups (multiple PDAs)
 - differences to remove effect of source signal
 - no spectral models, < 1xRT

with Jerry Liu and ICSI
Between-channel cues: Timing (ITD) & Level

Speaker ground-truth

Timing diffs (ITD) (2 mic pairs, 250ms win)

Peak correlation coefficient r

Per-channel energy

Between-channel energy differences
Pre-whitening for ITD

- **Inverse-filter** by 12-pole LPC models (32 ms windows) to remove local resonances
- **Filter out** noise < 500 Hz, > 6 kHz
- **Then cross-correlate**...
Choosing “Good” Frames

- Correlation coef. r
 \[r_{ij}[\ell] = \frac{\sum_n m_i[n] \cdot m_j[n + \ell]}{\sqrt{\sum m_i^2 \sum m_j^2}} \]

- Select frames with r in top 50% in both pairs

- Cleaner basis for models

About 35% of points
Spectral clustering

- Eigenvectors of “affinity matrix” A to pick out similar points:

$$a_{mn} = \exp\left\{-\|\mathbf{x}[m] - \mathbf{x}[n]\|^2 / 2\sigma^2\right\}$$

- Ad-hoc mapping to clusters
 - Number of clusters K from eigenvalues \approx points
Speaker Models & Classification

- Actual clusters depend on σ and K heuristic
- Fit Gaussians to each cluster, **assign** that class to all frames within radius
 - or: consider dimensions independently, choose best
Performance Analysis

• Compare reference & system activity maps:

- system misses quiet speakers 2,3,4 (deletions)
- system splits speaker 6 (deletions+insertions)
- many short gaps (deletions)

• ~52% avg. error on NIST 2004 dev set
 - speaker-characteristic-based systems ~25%
4. Segmenting Personal Audio

- Easy to record **everything** you hear
 - ~100GB / year @ 64 kbps
- Very hard to **find** anything
 - how to scan?
 - how to visualize?
 - how to index?
- Starting point: Collect **data**
 - ~ 60 hours (8 days, ~7.5 hr/day)
 - hand-mark 139 segments (26 min/seg avg.)
 - assign to 16 classes (8 have multiple instances)
Features for Long Recordings

- Feature frames = 1 min (not 25 ms!)
- Characterize variation within each frame...

- and structure within coarse auditory bands
BIC Segmentation

- **Untrained segmentation technique**
 - statistical test indicates good change points:
 \[\log \frac{L(X_1; M_1) L(X_2; M_2)}{L(X; M_0)} \geq \frac{1}{2} \log(N) \Delta \#(M) \]

- **Evaluate**: 60hr hand-marked boundaries
 - different features & combinations
 - Correct Accept % @ False Accept = 2%:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Sensitivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_{dB}</td>
<td>80.8%</td>
</tr>
<tr>
<td>μ_{H}</td>
<td>81.1%</td>
</tr>
<tr>
<td>σ_{H}/μ_{H}</td>
<td>81.6%</td>
</tr>
<tr>
<td>$\mu_{dB} + \sigma_{H}/\mu_{H}$</td>
<td>84.0%</td>
</tr>
<tr>
<td>$\mu_{dB} + \sigma_{H}/\mu_{H} + \mu_{H}$</td>
<td>83.6%</td>
</tr>
</tbody>
</table>
Segment clustering

• Daily activity has lots of repetition: Automatically cluster similar segments

• Spectral clustering achieves ~70% correct
 - 16-way ground truth labels
 - KL distance, smoothed covariance estimates
Future Work

- Visualization / browsing / diary inference
 - link to other information sources

- Privacy protection
 - speaker/speech “search and destroy”
LabROSA Summary

• LabROSA
 ○ signal processing
 + machine learning
 + information extraction

• Applications
 ○ Eigenrhythms: drum pattern models
 ○ FDLP temporal envelopes
 ○ Meeting recordings
 ○ Personal audio analysis

• Also...
 ○ music similarity, signal separation, ...