An overview of
digital audio

Dan Ellis
dpwe@icsi.berkeley.edu
International Computer Science Institute, Berkeley CA

Goal:
Survey techniques, provide discussion framework

Outline:

1 Sound, hearing & audio processing
2 Representation
3 Synthesis
4 Processing & modification
5 Analysis
Sound & Hearing

- Sound = 1-D time-variation of air pressure, $P(t)$
- ... decomposed by cochlea into multiple frequency bands
 \rightarrow 2-D representation, $I(t,f)$

- Basic sensitivity imposed by cochlea for time, frequency, level, dynamic range
- Higher auditory system extracts ‘useful info’:
 \rightarrow reflects *ecological* constraints
Audio processing

- Dataflow diagrams useful for sound signal processing:

 ![Dataflow Diagram]

- Typically several distinct data ‘types’:
 - audio signals $a(t)$
 - parameter (‘control’) signals $K(T)$
 - event sequences $\{ \tau_{Ei} \}$
Audio representation

- **Sampled waveforms are ubiquitous**
 - represent the 1-D pressure waveform as a sequence of values at regular intervals

- **Tradeoff between quality and size via:**
 - sampling rate (\rightarrow bandwidth, high frequency)
 - quantization (\rightarrow noise floor)
 \[\text{samples/sec} \times \text{bits/sample} = \text{data rate, size}\]
Compressed audio representations

- **Save bits on quantization**
 - variable quantization (mu-law, ADPCM)
 - noise shaping & ‘perceptual coding’

- **Parametric models use stronger constraints**
 - approximate signal as output of a process
 - how to extract/find best parameters?
 - size vs. quality vs. complexity

- **Event decomposition**
 - encode high-level temporal structure
 - e.g. MIDI, MPEG-4
 - implies a **synthesis method**...
3 Synthesis

Creating an audio signal from control inputs

• **Issues:**
 - fidelity / richness
 - flexibility / control ‘knobs’
 - cost in complexity (CPU) & data size (store)

• **Mimic real signal, or just make a new one?**
 - abstract level of correspondence

• **Techniques:**
 signal models:
 - sampling
 - sinusoid (plus...) models
 - nonlinear algorithms e.g. FM
 source models:
 - source-filter & LPC
 - waveguide & other physical models
Synthesis 2: Signal models

- **Sampled waveforms**

 fidelity: excellent (but.. unnatural repetition?)

 controls: very few (level & resampling rate)

 cost: simple CPU / lots of store

 - enhancements to sampling:

 + looped sections for simple ‘sustain’

 + mix 2 or 3 samples for timbre ‘space’

- **Sinusoid models**

 - exploit harmonic structure of pitched sounds

 fidelity: good to excellent

 controls: pitch and timescale well separated

 cost: moderate CPU / large store

 - parameter extraction is straightforward

 - additional ‘noise’ residual for non-pitched parts

- **Nonlinear models (e.g. FM)**

 fidelity: pleasant sounds but limited scope

 controls: good range but unpredictable

 cost: moderate CPU / little store
Synthesis 3: Source models

- **Source-filter models (e.g. LPC)**
 - excitation modified by resonances
 - fidelity: moderate-good for appropriate signals
 - controls: excitation and resonance separate
 - cost: CPU moderate / storage moderate
 - good extraction algorithms available
 - works best for speech

- **Physical models (e.g. waveguide)**
 - common structure for musical instruments:
 - fidelity: often startling when it works
 - controls: reflect physical source, excellent
 - cost: CPU moderate / parameter store low
 - each model is limited / hard to extend
Modifying an audio signal

- **Online:**
 - linear/nonlin. filtering (presence, companding)
 - echo / chorus / flanging
 - reverberation
 - spatial location (azimuth/elevation/range)

- **Event-based**
 - pitch/duration modification (resampling, SOLA, looping, reverse)
 - cross-synthesis (LPC/ Fourier domain)

- **Control inputs from:**
 - explicit interface (sliders, curves)
 - **analysis** extraction from audio streams...
Derive control parameters from audio signal

- **Auditory function is hard to model**
 - speech recognition
 - auditory scene analysis

- **.. but a simplistic analysis has uses**
 - pre-linguistic understanding e.g. dogs

- **Audio signal → parameter signal**
 - energy (full band/sub bands/ratios)
 - periodicity/pitch tracking
 - azimuth/triangulation?

- **Audio signal → event sequence**
 - the “clapper”
Summary

- **Hearing determines the importance of sound**
 - detectibility
 - relevant aspects

- **Sampled waveforms = core of digital audio**

- **Synthesis algorithms .. tradeoff:**
 - fidelity
 - control flexibility
 - computational cos
 - breadth/range of applicability
 - parameter extraction mechanisms

- **Modifications can be controlled explicitly or by derived parameters**
 - e.g. ‘dog hearing’
Spatial location

- **Primary spatial cue is azimuth (from 2 ears)**
 - L-R intensity difference (head shadow) ~ 1 dB
 - L-R envelope delay (path length) ~ 0.1 ms

- **Secondary cues for elevation and range**
 - elevation from L-R spectrum & its changes
 - range from level, coloration, direct-to-reverb

- **Synthesizing spatial location**
 - simple pan + delay (freq. dep?) for azimuth
 - sampled HRTFs can incorporate elevation,...
 .. depend on individual

- **Delivering spatialized signals**
 - headphones
 - speakers, transaural
 - but: listener location?
 dynamic cues?
Speech recognition

- **Major issues:**
 - isolated word or continuous
 - speaker independent, adaptive or individual
 - vocabulary size, (grammar complexity)
 - signal quality / robustness

- **State of the art**
 - moderate perplexity, speaker-independent interactive telephone systems (stock quotes)
 - transcription of TV broadcasts, conversations at 30-40% word error
 - searching alternate Markov model hypotheses is large & slow: ~ real-time on fast CPU

- **Alternatives**
 - fixed small-vocabulary module
 - ‘cheap & cheerful’ trainable templates