Enhancing the Intelligibility of Speech in Speech Noise

Dan Ellis (Columbia)
Pierre Divenyi (EBIRE)
Alain de Cheveigné (ENS Paris)
Te-Won Lee (UCSD)
Barbara Shinn-Cunningham (BU)
DeLiang Wang (OSU)

1. Speech in Speech Noise Problem
2. Approaches and Goals
3. The Team
1. Speech in Speech Noise

- **Cocktail-party problem:** Unintelligible voices

- **Scenarios:**
 - real-world speech noise - crowds, reverb, etc.
 - improve intelligibility

- **Applications**
 - hearing prostheses, communication devices
 - audio archive review, surveillance
2. Acoustic Source Separation

- ICA (Bell & Sejnowski ’95 et seq.):
 - **Input**: waveform (or STFT)
 - **Output**: waveform (or STFT)
 - **Engine**: cancellation
 - **Control**: statistical independence of outputs
 - or energy minimization for beamforming
2. Acoustic Source Separation

- ICA (Bell & Sejnowski ’95 et seq.):

- CASA (e.g. Brown ’92):
 - Input: Periodicity, continuity, onset “maps”
 - Output: Waveform (or mask)
 - Engine: Time-frequency masking
 - Control: “Grouping cues” from input
 - or: spatial features (Roman, ...)
2. Acoustic Source Separation

- ICA (Bell & Sejnowski ’95 et seq.):
- CASA (e.g. Brown ’92):
- Human Listeners:
 - **Input**: excitation patterns ...
 - **Output**: percepts ...
 - **Engine**: ?
 - **Control**: find a plausible explanation
Separation Outputs

- What is the output of a separation system?
 - waveform with identified target energy
 - abstract description of content
 - reconstruction optimized for intelligibility...

- e.g. time-frequency masking

![Separation Outputs Diagram](image)
Project Goals

• Developing source separation techniques
 ○ single/multi channel
 ○ auditory/blind/model-based
 ○ combinations

• Collection and simulation of data
 ○ real-world scenarios and replicas
 ○.. for parametric testing
 ○.. for systematic evaluation

• Connecting with perception
 ○ intelligibility impact of different artifacts
 ○ add “proxy noise” to leverage restoration
3. A Multidisciplinary Project

Emphasis: $M = \text{machine, } H = \text{human}$

- **Dan Ellis (Director), Organizer of Curriculum - M**
 - machine learning, machine separation, natural scenes
- **Pierre Divenyi (Co-Director), Coordination of Project Components - H**
 - auditory scene analysis, psychoacoustics, testing methods
- **Alain de Cheveigné - H,M**
 - auditory models of separation, pitch, multichannel analysis
- **Te-Won Lee - M**
 - blind signal separation methods
- **Barbara Shinn-Cunningham - H**
 - spatial auditory scene analysis, spatial acoustics
- **DeLiang Wang - M**
 - computational auditory scene analysis, sequential/spatial grouping