The importance of auditory illusions for artificial listeners

Dan Ellis
International Computer Science Institute, Berkeley CA
<dpwe@icsi.berkeley.edu>

Outline
1. Computational Auditory Scene Analysis
2. A survey of CASA
3. Illusions & prediction-driven CASA
4. CASA and speech recognition
5. Implications for duplex perception
6. Conclusions

Computational Auditory Scene Analysis

Automatic sound organization?
- convert an undifferentiated signal into a description in terms of different sources

Psychoacoustics defines grouping 'rules'
- e.g. [Bregman 1990]
- translate into computer programs?

Motivations & Applications
- it's a puzzle: new processing principles?
- real-world interactive systems (speech, robots)
- hearing prostheses (enhancement, description)
- advanced processing (remixing)
- multimedia indexing (movies etc.)

CASA survey

Early work on co-channel speech
- listeners benefit from pitch difference
- algorithms for separating periodicities

Utterance-sized signals need more
- cannot predict number of signals (0, 1, 2 ...)
- birth/death processes

Ultimately, more constraints needed
- nonperiodic signals
- masked cues
- ambiguous signals

CASA3: Other approaches

Blind source separation (Bell & Sejnowski)
- find exact separation parameters by maximizing statistic e.g. signal independence

HMM decomposition (RK Moore)
- recover combined source states directly

Neural models (Malsburg, Wang & Brown)
- avoid implausible AI methods (search, lists)
- oscillators substitute for iteration?

Prediction-driven CASA

Perception is not direct but a search for plausible hypotheses

Data-driven...

vs. Prediction-driven

Novel features
- reconcile complete explanation to input
- 'vocabulary' of noise/transient/periodic
- multiple hypotheses
- sufficient detail for reconstruction
- explanation hierarchy
Analyzing the continuity illusion

- Interrupted tone heard as continuous
 - ... if the interruption could be a masker

- Data-driven just sees gaps

- Prediction-driven can accommodate
 - special case or general principle?

PDCASA example: Construction-site ambience

- Problems
 - error allocation
 - rating hypotheses
 - source hierarchy
 - resynthesis

Example of speech & nonspeech

- Problems:
 - undoing classification & normalization
 - finding a starting hypothesis
 - granularity of integration

Prediction-driven analysis and duplex perception

- Single element → 2 percepts?
 - e.g. contralateral formant transition
 - doesn’t fit into exclusive support hierarchy

- But: two elements at same position
 - hypotheses suggest overlap
 - predictions combine
 - reconciliation is OK

- Order debate is sidestepped
 - .. not a left-to-right data path

Lessons for other domains

- Problem: inadequate signal data
 - hearing: masking
 - vision: occlusion
 - other sensor domains: noise/limits

- General answer: employ constraints
 - high-level prior expectations
 - mid-level regularities
 - low-level continuity

- Hearing is a admirable solution

- Prediction-driven approach suggests priorities

Essential features of PDCASA

- Prediction-reconciliation of hypotheses
 - specific hypotheses are pursued
 - lack-of-refutation standard

- Provide a complete explanation
 - keeping track of the obstruction can help in compensating for its effects

- Hierarchic representation
 - useful constraints occur at many levels:
 - want to be able to apply where appropriate

- Preserve detail
 - even when resynthesis is not a goal
 - helps gauge goodness-of-fit

CASA for speech recognition

- Speech recognition is very fragile
 - lots of motivation to use ‘source separation’

- Recognize combined states? (Moore)
 - ‘state’ becomes very complex

- Data-driven: CASA as preprocessor
 - problems with ‘holes’ (Cooke, Okuno)
 - doesn’t exploit knowledge of speech structure

- Prediction-driven: speech as component
 - same ‘reconciliation’ of speech hypotheses
 - need to express ‘predictions’ in signal domain

Duplex perception as masking & restoration

- Account for masking could ‘work’ for duplex
 - bilateral masking levels?
 - masking spread?
 - tolerable colorations?

- Sinewave speech as a plausible masker?
 - formants hiding under each whistle?
 - greedy speech hypothesis generator

- Problems:
 - where do hypotheses come from? (priming)
 - what limits on illusory speech?

Conclusions

- Auditory organization is indispensable in real environments

- We don’t know how listeners do it!
 - plenty of modeling interest

- Prediction-reconciliation can account for ‘illusions’
 - use ‘knowledge’ when signal is inadequate
 - important in a wider range of circumstances?

- Speech recognizers are a good source of knowledge

- Wider implications of the prediction-driven approach
 - understanding perceptual paradoxes
 - applications in other domains
The importance of auditory illusions for artificial listeners

Dan Ellis
International Computer Science Institute, Berkeley CA
<dpwe@icsi.berkeley.edu>

Outline

1. Computational Auditory Scene Analysis
2. A survey of CASA
3. Illusions & prediction-driven CASA
4. CASA and speech recognition
5. Implications for duplex perception
6. Conclusions
Computational Auditory Scene Analysis: An overview and some observations

Dan Ellis
International Computer Science Institute, Berkeley CA
<dpwe@icsi.berkeley.edu>

Outline

1. Modeling Auditory Scene Analysis
2. A survey of CASA
3. Prediction-driven CASA
4. CASA and speech recognition
5. Implications for other domains
6. Conclusions
Auditory Scene Analysis

“The organization of complex sound scenes according to their inferred sources”

- Sounds rarely occur in isolation
 - getting useful information from real-world sound requires auditory organization

- Human audition is very effective
 - unexpectedly difficult to model

- ‘Correct’ analysis defined by goal
 - human beings have particular interests...
 - (in)dependence as the key attribute of a source
 - ecological constraints enable organization
Computational Auditory Scene Analysis (CASA)

• **Automatic sound organization?**
 - convert an undifferentiated signal into a description in terms of different sources

• **Psychoacoustics defines grouping ‘rules’**
 - e.g. [Bregman 1990]
 - translate into computer programs?

• **Motivations & Applications**
 - it’s a puzzle: new processing principles?
 - real-world interactive systems (speech, robots)
 - hearing prostheses (enhancement, description)
 - advanced processing (remixing)
 - multimedia indexing (movies etc.)
CASA survey

- Early work on co-channel speech
 - listeners benefit from pitch difference
 - algorithms for separating periodicities

- Utterance-sized signals need more
 - cannot predict number of signals (0, 1, 2 ...)
 - birth/death processes

- Ultimately, more constraints needed
 - nonperiodic signals
 - masked cues
 - ambiguous signals
CASA1: Periodic pieces

- **Weintraub 1985**
 - separate male & female voices
 - find periodicities in each frequency channel by auto-coincidence
 - number of voices is ‘hidden state’

- **Cooke & Brown (1991-3)**
 - divide time-frequency plane into elements
 - apply grouping rules to form sources
 - pull single periodic target out of noise
CASA2: Hypothesis systems

- **Okuno et al. (1994-)**
 - ‘tracers’ follow each harmonic + noise ‘agent’
 - residue-driven: account for whole signal

- **Klassner 1996**
 - search for a combination of templates
 - high-level hypotheses permit front-end tuning

- **Ellis 1996**
 - model for events perceived in dense scenes
 - prediction-driven: observations - hypotheses
CASA3: Other approaches

- **Blind source separation (Bell & Sejnowski)**
 - find exact separation parameters by maximizing statistic e.g. signal independence

- **HMM decomposition (RK Moore)**
 - recover combined source states directly

- **Neural models (Malsburg, Wang & Brown)**
 - avoid implausible AI methods (search, lists)
 - oscillators substitute for iteration?
Prediction-driven CASA

Perception is not *direct* but a *search* for *plausible hypotheses*

- **Data-driven...**
 - Front end → Object formation → Grouping rules → Source groups

vs. Prediction-driven

- **Novel features**
 - reconcile complete explanation to input
 - ‘vocabulary’ of noise/transient/periodic
 - multiple hypotheses
 - sufficient detail for reconstruction
 - explanation hierarchy
Analyzing the continuity illusion

• Interrupted tone heard as continuous
 - .. if the interruption could be a masker

• Data-driven just sees gaps

• Prediction-driven can accommodate
 - special case or general principle?
PDCASA example: Construction-site ambience

- Problems
 - error allocation
 - source hierarchy
 - rating hypotheses
 - resynthesis
CASA for speech recognition

- Speech recognition is very fragile
 - lots of motivation to use ‘source separation’

- Recognize combined states? (Moore)
 - ‘state’ becomes very complex

- Data-driven: CASA as preprocessor
 - problems with ‘holes’ (Cooke, Okuno)
 - doesn’t exploit knowledge of speech structure

- Prediction-driven: speech as component
 - same ‘reconciliation’ of speech hypotheses
 - need to express ‘predictions’ in signal domain
Example of speech & nonspeech

- Problems:
 - undoing classification & normalization
 - finding a starting hypothesis
 - granularity of integration
5 Prediction-driven analysis and duplex perception

• Single element → 2 percepts?
 - e.g. contralateral formant transition
 - doesn’t fit into exclusive support hierarchy

• But: two elements at same position
 - hypotheses suggest overlap
 - predictions combine
 - reconciliation is OK

• Order debate is sidestepped
 - .. not a left-to-right data path
Duplex perception as masking & restoration

- Account for masking could ‘work’ for duplex
 - bilateral masking levels?
 - masking spread?
 - tolerable colorations?

- Sinewave speech as a plausible masker?
 - formants hiding under each whistle?
 - greedy speech hypothesis generator

- Problems:
 - where do hypotheses come from? (priming)
 - what limits on illusory speech?
5 Lessons for other domains

• **Problem: inadequate signal data**
 - hearing: masking
 - vision: occlusion
 - other sensor domains: noise/limits

• **General answer: employ constraints**
 - high-level prior expectations
 - mid-level regularities
 - low-level continuity

• **Hearing is a admirable solution**

• **Prediction-driven approach suggests priorities**
Essential features of PDCASA

- **Prediction-reconciliation of hypotheses**
 - specific hypotheses are pursued
 - lack-of-refutation standard

- **Provide a complete explanation**
 - keeping track of the obstruction can help in compensating for its effects

- **Hierarchic representation**
 - useful constraints occur at many levels:
 - want to be able to apply where appropriate

- **Preserve detail**
 - even when resynthesis is not a goal
 - helps gauge goodness-of-fit
Conclusions

• Auditory organization is indispensable in real environments

• We don’t know how listeners do it!
 - plenty of modeling interest

• Prediction-reconciliation can account for ‘illusions’
 - use ‘knowledge’ when signal is inadequate
 - important in a wider range of circumstances?

• Speech recognizers are a good source of knowledge

• Wider implications of the prediction-driven approach
 - understanding perceptual paradoxes
 - applications in other domains