Sound Analysis Research at LabROSA

Dan Ellis
Laboratory for Recognition and Organization of Speech and Audio
Dept. Electrical Eng., Columbia Univ., NY USA

dpwe@ee.columbia.edu http://labrosa.ee.columbia.edu/

1. Speech
2. Music
3. Environmental Sound
1. **Speech Analysis / Recognition**

- **Speech recognizers work for read speech poorly for spontaneous**
 - e.g. 5% errors \rightarrow 30%

- **Transform spontaneous speech to read?**

Graphs

- **Read speech pole freq**
- **Spontaneous speech pole freq**

Graph Note:
- slope < 1 \rightarrow reduction

LabROSALabROSA Overview - Dan Ellis

2005-04-01 - 3 /17
Meeting Recordings

• Multi-mic recordings for speaker turns
 ○ every voice reaches every mic... (?)
 ○ ... but with differing coupling filters (delays, gains)

• Find turns with minimal assumptions
 ○ e.g. ad-hoc sensor setups (multiple PDAs)
 ○ differences to remove effect of source signal
 - no spectral models, < 1xRT
Speaker Turns from Timing Diffs

- Find best **timing skew** between mic pairs
- Find **clusters** in high-confidence points
- Fit Gaussians to each cluster, assign that class to all frames within **radius**

Graphs:

- **ICSI0: good points**
- **All pts: nearest class**
- **All pts: closest dimension**
2. Music Signal Analysis

- **A lot of music data available**
 - e.g. 60G of MP3
 - ≈ 1000 hr of audio/15k tracks

- **What can we do with it?**
 - implicit definition of ‘music’

- **Quality vs. quantity**
 - Speech recognition lesson:
 - $10x$ data, $1/10th$ annotation, twice as useful

- **Motivating Applications**
 - music similarity / classification
 - computer (assisted) music generation
 - insight into music
Transcription as Classification

• **Signal models** typically used for transcription
 - harmonic spectrum, superposition

• But ... trade domain knowledge for **data**
 - transcription as pure classification problem:

 ![Diagram of trained classifier](image)

 - single N-way discrimination for "melody"
 - per-note classifiers for polyphonic transcription
Classifier Transcription Results

• Trained on MIDI syntheses (32 songs)
 ○ SMO SVM (Weka)
• Tested on ISMIR MIREX 2003 set
 ○ foreground/background separation

Frame-level pitch concordance

<table>
<thead>
<tr>
<th>system</th>
<th>“jazz3”</th>
<th>overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>fg+bg</td>
<td>71.5%</td>
<td>44.3%</td>
</tr>
<tr>
<td>just fg</td>
<td>56.1%</td>
<td>45.4%</td>
</tr>
</tbody>
</table>
Eigenrhythms: Drum Pattern Space

- Pop songs built on repeating "drum loop"
 - bass drum, snare, hi-hat
 - small variations on a few basic patterns

- Eigen-analysis (PCA) to capture variations?
 - by analyzing lots of (MIDI) data

- Applications
 - music categorization
 - "beat box" synthesis
Eigenrhythms

- Need 20+ Eigenvectors for good coverage of 100 training patterns (1200 dims)
- Top patterns:
Eigenrhythms for Classification

• Projections in Eigenspace / LDA space

PCA(1,2) projection (16% corr)

LDA(1,2) projection (33% corr)

• 10-way Genre classification (nearest nbr):
 • PCA3: 20% correct
 • LDA4: 36% correct

LabROSA Overview - Dan Ellis
2005-04-01 - 11/17
3. Other Sounds: Clap Detection

- Rhythmic clapping may help **neural development**
 - sensori-motor planning
 - focus and attention
- "**Interactive metronome**" devices
 - give feedback on synchrony
 - sensor-based
- **Classroom** deployment?
 - acoustic-based?
 - for multiple simultaneous users??

from interactivemetronome.com
Clap Range Discrimination

- Absolute level varies
- Decay slopes ~ same
 - reverberation
 - $\text{RT}_{60} \sim 900\text{ms}$
- Initial burst for near-field
 - “direct sound”
“Personal Audio”

- Easy to record everything you hear
 - ~100GB / year @ 64 kbps
- Very hard to find anything
 - how to scan?
 - how to visualize?
 - how to index?
- Starting point: Collect data
 - ~ 60 hours (8 days, ~7.5 hr/day)
 - hand-mark 139 segments (26 min/seg avg.)
 - assign to 16 classes (8 have multiple instances)
Features for Long Recordings

- Feature frames = 1 min (not 25 ms!)
- Characterize variation within each frame...

- and structure within coarse auditory bands
Personal Audio Applications

- **Visualization / browsing / diary inference**
 - link in other information sources
 - diary
 - email

- **NoteTaker interface:**
 - “what was I hearing?”
LabROSA Summary

• **LabROSA**
 - signal processing
 + machine learning
 + information extraction

• **Applications**
 - **Speech**: Recognition, Organization
 - **Music**: Transcription, Recommendation
 - **Environment**: Detection, Description

• **Also...**
 - signal separation, compression, dolphins...