Recognition & Organization of Speech and Audio

Dan Ellis
Electrical Engineering, Columbia University
<dpwe@ee.columbia.edu>

Outline

1. Sound ‘organization’
2. Background & related work
3. Existing projects
4. Future projects
5. Summary & conclusions
1 Organization of sound mixtures

- Core operation:
 Converting continuous, scalar signal into discrete, symbolic representation
Positioning sound organization

- Draws on many techniques
- Abuts/overlaps various areas
About auditory perception

- Received waveform is a mixture
 - two sensors, N signals ...
 - need knowledge-based constraints

- Psychoacoustics:
 the study of human sound organization
 - ‘auditory scene analysis’ (Bregman’90)

- Auditory perception is ecologically grounded
 - scene analysis is preconscious (→ illusions)
 - perceived organization:
 real-world objects + events (transient)
 - subjective not canonical (ambiguity)
Key themes for LabROSA

- **Sound organization**
 - recovering/constructing abstraction hierarchy
 - at an instant (sources)
 - along time (segmentation)

- **Scene analysis**
 - need to find attributes according to objects
 - use attributes to form objects
 - ... plus constraints of knowledge

- **Exploiting large data sets (the ASR lesson)**
 - supervised/labelled: pattern recognition
 - unsupervised: structure discovery, clustering

- **Special-purpose cases:**
 - speech recognition
 - source-specific recognizers

- **... within a ‘complete explanation’**
Applications for sound organization

What do people do with their ears?

• Robots
 - intelligence requires awareness
 - Sony’s AIBO: dog-hearing

• Human-computer interface
 - .. includes knowing when (& why) you’ve failed

• Archive indexing & retrieval
 - pure audio archives
 - true multimedia content analysis

• Content ‘understanding’
 - intelligent classification & summarization

• Autonomous monitoring

• Broader ‘structure discovery’ algorithms
Outline

1. Sound ‘organization’

2. Background & related work
 - Audio coding & compression
 - Automatic Speech Recognition
 - Computational Auditory Scene Analysis
 - Multimedia information retrieval

3. Existing projects

4. Future projects

5. Summary & conclusions
Audio coding & compression

• Goal is reconstruction, not abstraction

• But criteria are ‘subjective’:
 want same percept, not same waveform

• MPEG-Audio:
 - filterbanks
 - information-theoretic coding
 - psychoacoustic masking of quantization noise

• MPEG-4 ‘Structured Audio’
 - computer music synthesis model
 - instrument definition + control stream
 - automatic analysis?
Automatic Speech Recognition (ASR)

- Standard speech recognition structure:
 - Feature calculation
 - Acoustic classifier
 - HMM decoder
 - Understanding/application...
 - Data

- ‘State of the art’ word-error rates (WERs):
 - 2% (dictation) - 30% (telephone conversations)

- Segmentation of speech & nonspeech
 - ... recognizer wouldn’t notice!
Spoken document retrieval

- Text-based IR on ASR transcripts
 - e.g. news broadcasts (CMU’s Informedia, Thisl)

- Recognition errors are not the limiting factor
 - TREC-98 results: average precision 0.5→0.4

- Weak at word level, but OK over paragraphs
 - replay the audio, don’t show the text!
Computational Auditory Scene Analysis (CASA)

- Implement psychoacoustic theory? (Brown’92)

- what are the features? how are they used?

- Top down constraints are needed (Klassner’96)
Audio Information Retrieval

- **Searching in a database of audio**
 - speech .. use ASR
 - text annotations .. search them
 - sound effects library?

- **e.g. Muscle Fish “SoundFisher” browser**
 - define multiple ‘perceptual’ feature dimensions
 - search by proximity in (weighted) feature space

- features are ‘global’ for each soundfile, no attempt to separate mixtures
 - segmentation...

```
<table>
<thead>
<tr>
<th>Sound segment database</th>
<th>Segment feature analysis</th>
<th>Feature vectors</th>
<th>Seach/ comparison</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query example</td>
<td>Segment feature analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

ROSAtalk - Dan Ellis 2000-10-13 - 12
Music analysis

• **Automatic transcription (score recovery)**
 - classic ‘hard problem’: can people do it even?
 - recent success in reduced forms
 e.g. melody, drum track (Goto’00)

• **Instrument identification**
 - ideas from speaker identification (basic PR)
 + instrument family hierarchies (Martin’99)

• **Fingerprinting**
 - spot recordings despite noise, distortion
 - relies on *perceptual* invariants

• **Music clustering**
 - e.g. music recommendation based on signal
 - correlate objective features with user ratings?
Multimedia description

- MPEG-7 ‘Metadata’
 - MPEG is known for audio/video compression standards;
 - also develop standards for search and indexing
- MPEG-7 is a standard format for metadata:
 Well-defined categories for content description
- Focus is on framework & infrastructure
- Audio descriptor categories:
 - from ASR
 - from computer music community
 - uses still to emerge
Outline

1. Sound ‘organization’
2. Background & related work
3. Existing projects
 - Acoustic change detection
 - Robust speech recognition
 - Nonspeech event detection
 - Prediction-driven CASA
4. Future projects
5. Summary & conclusions
Acoustic change detection
(with Williams/Sheffield, Ferreiros/UPMadrid)

- **Approaches:**
 - ‘metric’: find instants of maximal change
 - ‘model-based’: best alignment of model set
 - ‘bayesian’: generate models when warranted

- **Typically agnostic about underlying problem**
 - use any features, find any changes

- **Good for ASR adaptation, otherwise...**
Speech feature combination
(with Bilmes/UW, Hermansky/OGI, ICSI)

- ‘Multistream’ approaches

 - streams can correct each other → big gains

- Which feature streams to combine?
 - low mutual information between classifiers indicates complementary streams
Tandem speech recognition
(with Hermansky, Sharma & Sivadas/OGI, Singh/CMU)

- Neural net estimates phone posteriors; but Gaussian mixtures model finer detail

- Combine them!

 50% relative improvement over GMMs alone
 - different statistical modeling schemes get different info from same training data
Alarm sound detection

- Deconstructing sound mixtures
 - representation of energy in time-frequency
 - formation of atomic elements
 - grouping by common properties (onset &c.)

- Alarm sounds have particular structure
 - people ‘know them when they hear them’
 - build a generic detector?
Prediction-driven CASA

- Data-driven (bottom-up) fails for noisy, ambiguous sounds (most mixtures!)

Need top-down constraints:

- fit vocabulary of generic elements to sound... bottom of a hierarchy?
- account for entire scene
- driven by prediction failures
- pursue alternative hypotheses
Outline

1. Sound ‘organization’
2. Background & related work
3. Existing projects
4. **Future projects**
 - Meeting Recorder
 - Missing-data recognition & CASA for ASR
 - Structure from audio-video features
 - Speech & speaker recognition
 - Music organization
 - Audio archive structure discovery
5. Summary & conclusions
Meeting recorder
(with ICSI, UW, SRI, IBM)

- Microphones in conventional meetings
 - for transcription/summarization/retrieval
 - informal, overlapped speech

- Data collection (ICSI and ...):

- Research: ASR, nonspeech, organization
 - unprecedented data, new applications
Missing data recognition & CASA
(with Barker, Cooke, Green/Sheffield)

- **Missing-data recognition**
 - integrate across ‘don’t-know’ values
 - ‘perfect’ mask → excellent performance in noise

- **Multi-source decoder**
 - Viterbi search of sound-fragment interpretations

- **CASA for masks/fragments**
 - larger fragments → quicker search
Structure from audio-video features
(Peng Xu)

- HMM modeling of sports video

- Distribution of camera motion labels, color features
 - also need within-state sequential structure

- Add features from audio
 - could be orthogonal/complementary

- Audio feature toolkit?
 - simple feature vectors, boundaries, classes
 - wealth of potential applications!
Speech & speaker recognition

- Words are not enough; Confidence-tagged alternate word hypotheses

- Other useful information:
 - speaker change detection
 - speaker characterization
 - phrasing & timing
 - prosodic cues to dialog state
 - laughter, pauses, etc.

- Integration with other analyses
 - segmentation for adaptation
 - nonspeech events to ignore
 - video-derived information...
Music organization

- **Music is a special case**
 - lots of structure
 - highly significant

- **Trick is to find meaningful, tractable questions**
 - boundary between speech and music?

- **New (counter-intuitive) approaches?**
 - perceive as whole, not by voice (Scheirer’00)
 → global features for chord structures
 - generic ‘event’ cues + local feature classification
 - more provisional notion of instruments/voices
CASA for audio retrieval

- Muscle Fish system uses global features:
 - Mixtures → need elements & objects:
 - features calculated on grouped subsets
Audio archive structure discovery

- What can you do with a large unlabeled training set (e.g. multimedia clips from the web)?
 - bootstrap learning: look for common patterns
 - have to learn generalizations in parallel:
 - e.g. self-organizing maps, EM HMMs
 - post-filtering by humans may find ‘meaning’ in clusters

- Associated text annotations provide a very small amount of labeling
 - .. but for a very large number of examples
 - sufficient to obtain purchase?
 - maximize label utility through NLP-type operations (expansion, disambiguation etc.)
 - goal is automatic term-to-feature mapping for term-based content queries
Outline

1. Sound ‘organization’
2. Background & related work
3. Existing projects
4. Future projects
5. Summary & conclusions
Summary

DOMAINS
- Broadcast
- Movies
- Lectures
- Meetings
- Personal recordings
- Location monitoring

ROSA
- Object-based structure discovery & learning
- Speech recognition
- Speech characterization
- Nonspeech recognition
- Scene analysis
- Audio-visual integration
- Music analysis

APPLICATIONS
- Structuring
- Search
- Summarization
- Awareness
- Understanding
Conclusions

• Sound is more than just speech!
 - speech is a special case
 - most auditory perceivers don’t understand speech

• Object-based analysis is critical
 - it’s what people do
 - the world presents acoustic mixtures

• Whole-scene representation is the way
 - it’s what people do
 - provides mutual constraints of overlap

• Broad range of approaches for a broad range of phenomena