Ideas for Next-Generation ASR

- Model the Whole Speech Signal
- 2 Handle Mixtures
- 3 Respect Diversity
- Other Remarks

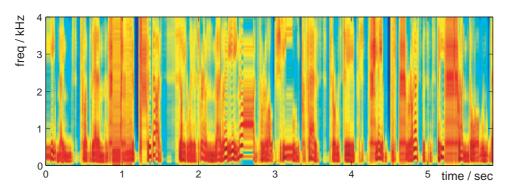
Dan Ellis <dpwe@ee.columbia.edu>

Laboratory for Recognition and Organization of Speech and Audio (LabROSA)

Columbia University, New York http://labrosa.ee.columbia.edu/

Outline

- 1 Model the Whole Speech Signal
 - Channel, accent, style
 - Timing/rate variation
 - Coarticulation
- **2** Handle Mixtures
- 3 Respect Diversity
- 4 Other Remarks



1

Model the Whole Speech Signal

HMM is a relatively weak model for speech

- generates something speechlike, but
- missing detail of real speech (...)
- exponential segment durations
- Only meant for inference of p(X|M)
 - to choose between a few Ms
- What would it take to model entire signal?
 - capture perceptually sufficient information
 - e.g. speech coding quality

Channel, Accent, Style

Factors affecting spectral distributions

- just absorbed into model variance?
- or: adapted generically e.g. MLLR

Channel

- typically fixed per session

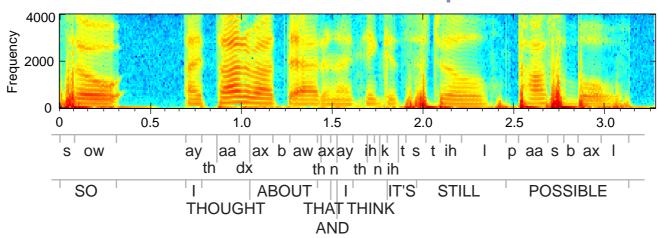
Accent

- typically fixed per speaker

Style

- particular to application?

Modeling these factors explicitly


- improves generalization
- reduces variance of models, hence..
- allows better discrimination of voice from other random stuff

Timing/Rate variation

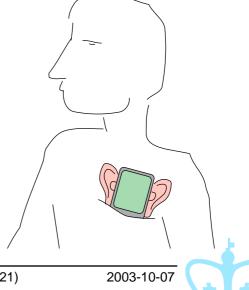
- Timing is weakly modeled with current HMMs
 - duration models have little influence on WER
- Some baseline variation
 - small improvements with rate-dependent models
- Greatest variation is within phrase?

- models for within-phrase rate-contours
- use as constraints on recognition (contrast likelihoods of alternate hypotheses e.g. in rescoring)

Coarticulation

- HMMs are piecewise-constant feature models
 - ... at least with Viterbi decoding
 - delta features can map trajectories to more constant values, but just a 'patch'
- More states, more context-dependence reduces mismatch
 - but model is too general: adjacent states are in fact strongly related
 - consequence: insatiable hunger for 1000s of hours of training data
- Generative models of coarticulation not particularly hard
 - e.g. HDM, SSM (Deng, Bridle, ...)
 - inference is hard...
 - ... but many new techniques from Machine Learning community (MCMC, variational, ...)

Outline


- 1 Model the Whole Speech Signal
- 2 Handle Mixtures
 - Frontier applications
 - Auditory Scene Analysis
 - Multisource models
- **3** Respect Diversity
- 4 Other Remarks

Handle Mixtures

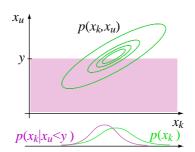
- Historically, speech recognition was made tractable by limiting domain to pure speech
 - limited problem still hard enough
 - as a consequence: systems discard information that distinguishes speech/nonspeech
- Many (most?) "frontier applications" involve nonspeech and mixtures
 - meeting recordings
 - multimedia indexing
 - "Lifelog" audio diary

Approaches to handling sound mixtures

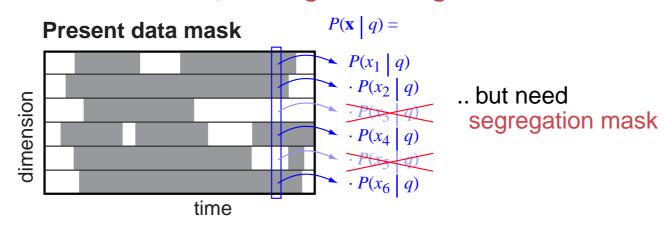
- Separate signals, then recognize
 - Computational Auditory Scene Analysis (CASA), Independent Component Analysis
 - nice, if you can make it work
- Recognize combined signal
 - 'multicondition training'
 - combinatorics seem daunting
- Recognize with parallel models
 - optimal inference from full joint state-space

$$p(O, x, y) \rightarrow p(x, y|O)$$

- or: skip obscured fragments, infer from higher-level context
- or do both: missing-data recognition


2003-10-07

Missing Data Recognition

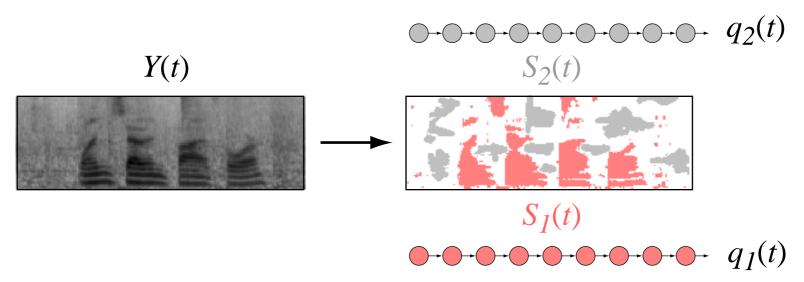

(Barker, Cooke & Ellis '03)

• Can evaluate speech models $p(\mathbf{x}|m)$ over a subset of dimensions x_k

$$p(\mathbf{x}_k|m) = \int p(\mathbf{x}_k, \mathbf{x}_u|m) d\mathbf{x}_u$$

Hence, missing data recognition:

Fit model and segregation given obs'n:


$$P(M, S|Y) = P(M) \int P(X|M) \cdot \frac{P(X|Y, S)}{P(X)} dX \cdot P(S|Y)$$

Dan Ellis

Multi-source decoding

Search for more than one source

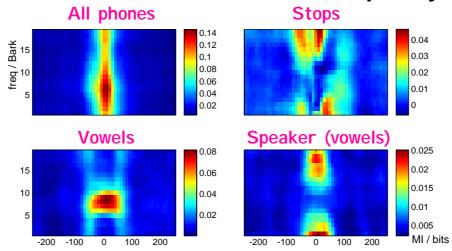
- Mutually-dependent data masks
- Use e.g. CASA features to propose masks
 - locally coherent regions
- Lots of issues in models, representations, matching, inference...

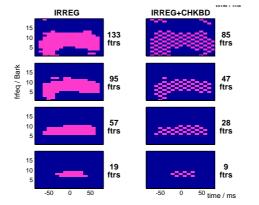
Outline

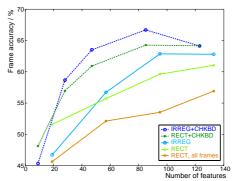
- 1 Model the Whole Speech Signal
- 2 Handle Mixtures
- 3 Respect Diversity
 - Class-specific classifiers
 - Using different information differently
- 4 Other Remarks

Respect Diversity

- Speech signal is very diverse
 - different kinds of phonemes (vowels, stops...)
 - different kinds of information (lexical, affective...)
 - different timescales (phones, words, phrases...)
- Information needs are diverse
 - phoneme classification
 - syllable detection
 - phrase detection
- **Technical approaches are diverse**
 - the more different they are, the bigger the gain from combination
 - 'Rover effect'



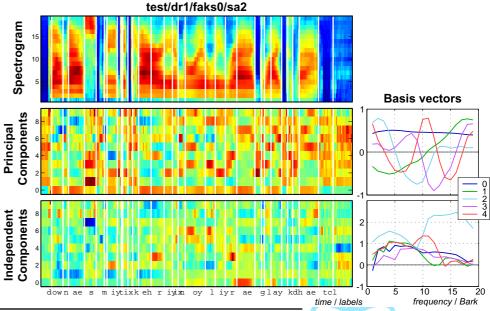

Finding the Information in Speech


(Scanlon & Ellis, Eurospeech '03)

Mutual Information in time-frequency:

Use to select classifier input features

Using different information differently


- Integrating paradigms have lots of power
 - e.g. HMM does it all: time warp ... LM
 - ... but can we gain by breaking up the tasks?
 - separate vowel center detection
 & consonant "adornment" classification
- → "Event-based" recognition
 - separate specialized detectors

acoustic-phonetic features

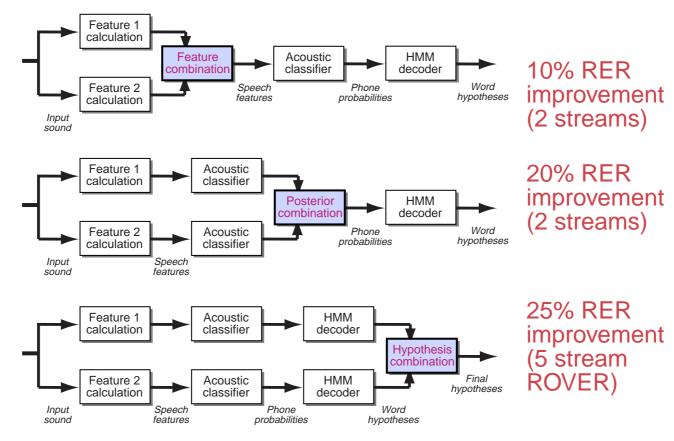
 or data-derived near-equivalents

 from e.g. Independent

 Component Analysis

Outline

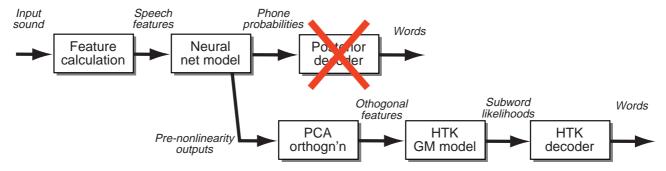
- 1 Model the Whole Speech Signal
- 2 Handle Mixtures
- 3 Respect Diversity
- 4 Other Remarks
 - Combinations & infrastructure
 - How much data?
 - Blackboards



4

Other Remarks: Different ways to combine systems

After each stage of the recognizer

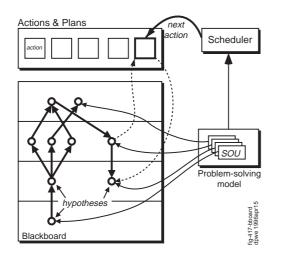


Combining modeling techniques: 'Tandem' acoustic modeling

(Hermansky, Ellis, Sharma, ICASSP'00)

To combine Neural Net models with HMMs:

- Result: better performance than either alone!
 - Tandem alone: 20% RER improvement
 - Posterior combination + Tandem:50% RER improvement
- Excellent infrastructure for feature experiments
 - nets are tolerant of feature eccentricities
 - e.g. MSG features→HTK has double the WER of Tandem version, MSG→net→HTK


How Much Data?

- Near-unanimous calls for more data
 - sure-fire way to improve accuracy .. a little
 - labeled data is expensive, hence limited
- How much data do we need?
 - see examples of 'all' speech variants?
 - infant example: 6 hr/day = 2000 hr/yr = 10,000 hr by age 5 (Moore graph)
 - brute force recognition-by-matching:
 every possible syllable? word? phrase? x voices
 100 voices x 2k syllables x 4/sec x 100 contexts
 = 1,600 hr (6k syl/hr)
 (but: distribution of examples)
- What about generalization???
 - goal should be abstraction of patterns from examples corpus
 - i.e. marginals, not full volume of examples

Blackboards?

- Events,
 Tiers,
 Hypothesis Generation &
 Verification
 - = Hearsay Blackboard (1973)
- What went wrong last time?
 - bad knowledge, blame allocation
 - inefficient decoding
 - how to incorporate training?
- So, this time around?
 - new mechanisms for blame?
 - inefficiencies don't matter so much?
 - induction of rules from data?

Summary & Conclusions

- Accept that sound is often/usually a mixture
 - combine models and/or carve up features
- Use more detailed models of speech
 - so we can still recognize after carving up
- Tandem models as enabling infrastructure
 - able to glean value from wacky features
- Find novel approaches for recognition
 - vowel nuclei + adornments?

