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ABSTRACT

A sungvocal line is the prominentfeatureof much popular
music. It would be usefulto reliably locatethe portionsof a mu-
sical track during which the vocalsare present both asa ‘signa-
ture’ of the pieceandasa precursorto automaticrecognitionof
lyrics. Here,we approactthis problemby usingthe acousticclas-
sifier of a speechrecognizerasa detectorfor speech-lik sounds.
Althoughsinging(including a musicalbackgroundjs arelatively
poormatchto anacoustianodeltrainedon normalspeechwe pro-
posevariousstatisticsof the classifiers outputin orderto discrim-
inatesingingfrom instrumentabccompanimentA simple HMM
allows usto find a bestlabelingsequencdor this uncertaindata.
Onatestsetof forty 15 secondexcerptsof randomly-selectethu-
sic, our classifierachiezed around80% classificationaccurag at
theframelevel. The utility of differentfeaturesandour plansfor
eventuallyrics recognition arediscussed.

1. INTRODUCTION

Popularmusicis fastbecomingone of the mostimportantdata
typescarried by the Internet, yet our ability to make automatic
analyse®f its contentis rudimentary Of the mary kinds of infor-
mationthat could be extractedfrom musicsignals,we are partic-
ularly interestedn thevocalline i.e. the singing: this is oftenthe
mostimportant‘instrument’ in the piece, carrying both melodic
‘hooks’ and of coursethe lyrics (word transcript)of the piece.
It would be very usefulto be ableto transcribesonglyrics with
an automaticspeechrecognizerbut this is currentlyimpractical:
singingdiffersfrom speechn mary ways,includingthe phonetic
and timing modificationsemplog/ed by singers,the interference
causedyy theinstrumentabackgroundandperhapsventhe pe-
culiarword sequencessedin lyrics. However, asafirst stepin the
directionof lyrics recognition,we arestudyingthe problemof lo-
catingthesegmentscontainingvoicefrom within theentirerecord-
ing, i.e. building a ‘singing detector'that canlocatethe stretches
of voiceagainstheinstrumentabackground.

Suchaseggmentatiorhasavarietyof uses.In generalary kind
of higherlevel informationcan supportmoreintelligenthandling
of the mediacontent,for instanceby automaticallyselectingor
jumping betweensegmentsin a soundeditor application. Vocals
areoftenvery prominentin a pieceof music,andwe maybeable
to detecthemquiterobustly by leveragingknowledgefrom speech
recognition.In this casethepatternof singingwithin apiececould
form a useful ‘signature’ of the pieceas a whole, and one that
might robustly survive filtering, equalization,and digital-analog-
digital transformations.

Transcriptiorof lyrics would of courseprovide very usefulin-
formationfor musicretrieval (i.e. query-by-lyric)andfor grouping
differentversionsof the samesong. Locatingthe vocal segments
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within musicsupportghis goal at recognition-timepy indicating
which partsof thesignaldesere to have recognitionapplied.More
significantly however, robust singingdetectiorwould supportthe
developmentof a phonetically-labeledlatabasef singingexam-
ples,by constrainingaforced-alignmenbetweerknown lyrics and
themusicsignalto searclonly within eachphraseor line of thevo-
cals,greatlyimproving thelikely accurag of suchanalignment.

Note thatwe areassuminghatthe signalis known to consist
only of music,andthatthe problemis locatingthe singingwithin
it. We arenotdirectly concernedvith the problemof distinguish-
ing betweemmusicandregularspeechalthoughourwork is based
upontheseideas),nor the interestingproblemsof distinguishing
vocal musicfrom speecH1] or voice-over-musicfrom singing—
althoughwe notein passingthatthe approacho be describedn
section2 could probablybe appliedto thosetasksaswell.

Therelatedtaskof speech-musidiscriminationhasbeenpur-
suedusingavarietyof techniquesindfeaturesin [2], Scheireand
Slang defineda large selectionof signal-level featureshatmight
discriminatebetweenregular speechand music (with or without
vocals),andreportedanerrorrateof 1.4%in classifyingshortseg-
mentsfrom a databasef randomly-recordedadio broadcastas
speechor music. In [3], Williams andEllis attemptedthe same
task on the samedata, achieving essentiallythe sameaccurag.
However, ratherthanusing purpose-definedeaturesthey calcu-
lated somesimple statisticson the output of the acousticmodel
of aspeechrecognizeraneuralnetestimatingthe posteriorprob-
ability of 50 or so linguistic cateyories) appliedto the sgment
to be classified;sincethe modelis trainedto male fine distinc-
tionsamongspeecltsoundsit respondwery differentlyto speech,
which exhibits thosedistinctions,ascomparedo musicandother
nonspeeclsignalsthatrarely contain‘good’ examplesof the pho-
neticclasses.

Note thatin [2] and [3], the datawas assumedo be pre-
segmentedso thatthe taskwassimply to classify predefinedseg-
ments. More commonly soundis encounteredas a continuous
streamthatmustbe sggmentedaswell asclassified Whendealing
with pre-definectlassegfor instancemusic,speectandsilence),
a hiddenMarkov model(HMM) is often employed (asin [4]) to
male simultaneouseggmentatiorandclassification.

The next sectionpresentour approacho detectingsegments
of singing. Section3 describessomeof the specificstatisticswe
tried asa basisfor this sggmentationalongwith theresults.These
resultsare discussedn section4, then section5 mentionssome
ideasfor future work toward lyric recognition. We stateour con-
clusionsin section6.
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2. APPROACH

In this work, we apply the approactof [3] of usinga speechrec-
ognizers classifierto distinguishingvocal sggmentsfrom accom-
paniment:Although,asdiscussedbove, singingis quitedifferent
from normalspeechwe investigatedheideathata speech-trained
acousticmodelwould respondn a detectablydifferentmannerto
singing (which sharessomeattributesof regular speechsuchas
formantstructureandphonetransitionsthanto otherinstruments.
We usea neuralnetwork acousticmodel, trainedto discrim-
inate betweencontet-independenphoneclassesof natural En-
glish speechto generate vectorof posteriorprobability features
(PPFswhichweuseasthebasisfor ourfurthercalculationsSome
examplesappeaiin figure 1, which shaws the PPFsasa ‘posteri-
ogram’,aspectrogram-li& plot of theposteriomprobabilityof each
possiblephone-classsafunctionof time. For well-matchingnat-
ural speechtheposteriogranis characterizethy a strongreaction
to asinglephoneperframe,abrief stayin eachphone,andabrupt
transitionsfrom phoneto phone. Regions of non-speechusually
shav alessemphaticreactionto several phonesat once,sincethe
correctclassificationis uncertain. In othercasesregionsof non-
speechmay evoke a strongprobability of the ‘background’class,
which hastypically beentrainedto respondto silence,noiseand
even backgroundmusic. Alternatively, music may resemblecer
tain phones causingeitherweak, relatively staticbandsor rhyth-
mic repetitionof these'f alse”phonesn theposteriogram.
Within music,theresemblancbetweerthe singingvoice and
naturalspeechwill tendto shift thebehaior of the PPFscloserto-
wardthe characteristicef naturalspeechwhencomparedo non-
vocalinstrumentationasseerin figurel. Thebasisof thesegmen-
tation schemepresentedereis to detectthis characteristicshift.
We explore threebroadfeaturesetsfor this detection: (1) direct
modelingof the basicPPFfeatures,or selectedclassposteriors;
(2) modelingof derived statistics,suchas classifierentropy, that
shouldemphasizéhe differencesn behaior of vocalandinstru-
mentalsound;and(3) averagef thesevalues,exploiting thefact
thatthetimescaleof changean singingactiity is ratherlongerthan
the phoneticchangeshatthe PPFswereoriginally intendedto re-
veal, and thus the noiserobustnessafforded by somesmoothing
alongthetime axiscanbe usefullyapplied.
Thespecificfeaturesnvestigatedareasfollows:

e 12thorderPLPcepstrakoeficientsplusdeltasanddouble-
deltas.As abaselinewe tried the samefeatureausedby the
neuralnetasdirectindicatorsof voicevs. instruments.

e Full log-PPFvectori.e. a 54 dimensionalvectorfor each
time frame containingthe pre-nonlinearityactivations of
the outputlayer of the neuralnetwork, approximatelythe
logsof the posteriomprobabilitiesof eachphoneclass.

e Likelihoodsof the log-PPFsunder ‘singing’ and ’instru-
ment’ classesFor simplicity of combinatiorwith otheruni-
dimensionaktatistics,we calculatedthe likelihoodsof the
54-dimensionalvectors under the multidimensionalfull-
covarianceGaussianslerived from the singingandinstru-
mentaltraining examples,and usedthe logs of thesetwo
likelihoodsPPFL,,. and L, s, for subsequennodeling.

e Likelihoods of the cepstral coeficients under the two
classesAs above, the 39-dimensionatepstralcoeficients
are evaluatedunder single Gaussianmodels of the two
classedo produceCepLyoc aNd Ly ys-
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e Backgroundlog-probability log(Psg). Since the back-
groundclasshasbeentrainedto respondo nonspeechand
sinceits valueis oneminusthe sumof the probability of all
theactualspeecttlassesthis singleoutputof the classifier
is ausefulindicatorof voice presencer absence.

e Classifierentropy. Following [3], we calculatethe per
frameentropy of the posteriomprobabilities definedas:

H(n) = —p(ai)log(p(ai)) @

k

whereg; is the posteriorprobability of phoneclassk at
time n. This value shouldbe low when the classifieris
confidentthatthe soundbelongsto a particularphoneclass
(suggestinghat the signal is very speech-lik), or larger
whenthe classificatioris ambiguouge.g.for music).

To separatethe effect of a low entrofy due to a confi-
dent classificationas background,we also calculatedthe
entrogy-excluding-backgroundd;_ astheentropy over the
53true phonetioclassesrenormaﬁzedo sumto 1.

e Dynamism. Anotherfeaturedefinedin [3] is the average
sum-squarediifferencebetweentemporallyadjacentPPFs
ie.

D(n) => (p(ar) — p(ap ™)) @)

k

Since well-matching speechcausesrapid transitionsin
phoneposteriors,this is larger for speechthan for other
sounds.

Becauseour task was not simply classificationof segments
assingingor instrumental but alsoto make the segmentationof
a continuousmusic stream,we usedan HMM framewvork with
two states,“singing” and “not singing”, to recover a labeling
for the stream. In eachcase,distributionsfor the particularfea-
turesbeing usedwere derived from hand-labeledraining exam-
plesof singingandinstrumentaimusic, by fitting a single multi-
dimensionalGaussiarfor eachclassto therelevanttrainingexam-
ples. Transitionprobabilitiesfor the HMM were setto matchthe
labelbehaior in thetrainingexamples(i.e. the exit probability of
eachstateis theinverseof theaveragedurationof segmentdabeled
with thatstate).

3. RESULTS

3.1. Speech model

To generatehe PPFsat the basisof our segmentation,we used
a multi-layer perceptromeuralnetwork with 2000 hiddenunits,
trained on the NIST BroadcastNews data set to discriminate
between54 contet-independenphoneclasses(a subsetof the
TIMIT phones)[5]. This netis the sameasusedin [3], andis
publicly available. The netoperate®n 16 msframesi.e. onePPF
frameis generatedor eachl6 msseggmentof the data.

3.2. Audio data

Our resultsare basedon the samedatabaseisedin [2, 3] of 246
15-secondragmentsecordecat randomfrom FM radioin 1996.
Discardingary examplesthat do not consistentirely of (vocal or
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Figurel: Spectrogramef aspeechexampleandtwo musicalfragmentswith andwithout singing,alongwith the ‘posteriogramsshaving
the outputof the speectrlassifier The singingin therightmostexample(marked by the gray bar) evokesa distinctive patternof response

in the posteriogram.

instrumentalmusicleaves101fragments66 of which containvo-

cals. We hand-labeledhe vocalsexamplesto mark the precise
segmentscontainingsinging; typically onesungphrasewould re-

sultin asinglesegment. Theaveragedurationof singingsegments
was 5.5 seconds.40 fragmentswere randomlyselectedas a test
set. The remaining61 fragmentswere usedas labeledtraining
data.

3.3. Scoring

Table 1 shavs the performanceof segmentatiornbasedon various
statisticsand combinations. The resultsare given asframe error
rate,i.e. for every 16 msframein thetestdata,the labelassigned
by the bestpaththroughthe HMM (basedon the statisticsor fea-
turesshawvn) is comparedo the‘groundtruth’ labelfrom thehand-
marking. This measuredoesnot differentiatebetweenerrorsdue
to boundarieghat are shiftedin time and errorsdue to inserted
or deletedsegmentsof singing (both kinds of errorsoccurred).
However, the frameerror rate provides a reasonableelative per
formancemeasure.

For eachfeaturebasis, the resultsof averagingthe features
over differentnumbersof framesareshavn (whereaveragingover
oneframeis just using the featuresdirectly). The 16 ms frame
resolutionof the speecttlassifierwasmuchfiner thanneededor
the sggmentationtask, and averagingover a longertime window
helpedsmoothout frame-to-framevariationsto reveal the under
lying trends.

Theseresultsarealsoplottedin figure2, which shavsthevari-
ation of frame error rate for several different featurebasesas a
function of averagingwindow length (for a wider rangeof win-
dows thanreportedin table 1). We seethat averagingimproves
performanceairly uniformly out to 81 frames(1.3 seconds)but
beyondthat,theaveragingwindow is longerthanmary of the seg-
mentsto be detectedandperformanceéeginsto decline. In each
casetheHMM is finding labelsfor eachl16 msframe,althougha
practicalsystemwould usea coarserresolution.

4. DISCUSSION

It is disappointingthat our carefully-designeccustom statistics
performedno betterthandirect modelingof the raw high dimen-
sionalfeaturespaceandindeedthattheraw PPFsroduceddy the
neuralnetwork classifiergave moreerrorsthantheraw cepstrato-
efficients. However, the PPF-basetik elihoodsL .. andL,,., do
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ClassificatiorFrameError Rate
Features/stats 1frame | 9frame | 81frame
39 Cepstra 31.4% 26.3% 29.4%
54log-PPFs 35.2% | 31.0% 31.2%
Ceplog(Lmus) & 10g(Luoe) | 35.2% | 31.0% | 31.2%
PPFLog(Lmus) & 10g(Lvoc) | 25.1% | 23.5% | 20.4%
log(Psg) 41.3% | 40.6% 40.3%
Entroy H 38.6% 36.2% 36.1%
HE 35.5% | 36.4% 35.8%
DynamismD 44.8% | 44.8% 44.6%
All 6 stats 28.8% | 29.0% 21.3%
Best3 26.1% | 26.6% 18.8%

Table 1: Frameerror rate for vocals/instrumentategmentation
basedon differentfeaturesor statistics,eitherusingthe valuesat
eachframe(“1 frame”), or averagingthe featureswithin overlap-
ping windows of 9 or 81 frames.“All 6 stats"refersto thecombi-
nationof thefour individual statisticsshavn in thethird panelplus
the PPF-basedog(Lus) andlog(Lyoc). “Best 3" refersto the
best-performingcombinationof PPFlog(Lmus) andlog(Lyoc)

combinedwith H.

outperformthe cepstralbaseline especiallyin combinationwith
oneof thehand-designetkaturessuchasentrogy H.

We notethesignificantimprovementachievedby addingafur-
ther stageof simple Gaussiarmodelingon the 2-D featurespace
formedby thelog-likelihoodsPPFlog(Lmus) andlog(Lyoc) (Ob-
tainedfrom the 54 dimensionabaselineGaussianmodels).Since
thereis basicallyno additionalinformationavailableatthis second
stageof calculation this indicatesa modelingweaknesswe could
presumablymatchor betterthis resulte.g. by usingGaussiamix-
turemodels(GMMSs) in the original high-dimensionaspace.

The cepstral-basedeatures did not improve with time-
averagingover a window longerthan9 frames. Presumablythe
rapidrateof changeof the cepstrumeadsto within-classvariation
thatistoogreatto heamenabléo alongersmoothingvindow. The
factthatthe PPF-basefkaturedoimprove with longertime aver-
agingconfirmsthatthey don't usefine temporalstructureof phone
transitionssuchas our hand-designedeatureswere designedto
detectbut rathercharacterizeéhe overall distribution of phones.

In browsing the labeling errors, we sav mary instancesof
shortexcursionsinto theincorrectclass particularlywhenthe av-
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Figure 2: Variation of vocals/accompanimenbeling frame er-

ror rateasa function of averagingwindow lengthin frames(each
frameis 16 ms,soa243framewindow spans3.9sec).

eragingwindow wasshort.Imposinga minimumlabeldurationof
severalhundrednillisecondswvould notexcludeary of theground-
truth sggments,so theseerrorscould be eliminatedwith slightly
morecomplicatedHMM structurethat enforcessucha minimum
durationthroughrepeatedtates.

What bagan as a searchfor a few key featureshasled to
a high-order but more task-independentnodeling solution: In
[2], a numberof unidimensionalfunctions of an audio signal
were definedthat should help to distinguish speechfrom mu-
sic, and good discriminationwas achiezed by using just a few
of them. In [3], consideratiorof the behaior of a speechrecog-
nizer's acousticmodelsimilarly led to a smallnumberof statistics
which werealsosuficient for gooddiscrimination.In the current
work, we attempteda relatedtask—distinguishingsinging from
accompaniment—usingimilar techniques.However, we discor-
eredthat training a simple high-dimensionalGaussiarclassifier
directly on speechmodel outputs—oreven on the raw cepstra—
performedaswell or better

At this point, the systenresembleshe ‘tandemacoustionod-
els’ (PPFsusedas inputs to a Gaussian-mixture-modekecog-
nizer) that we have recently beenusing for speechrecognition
[6]. Our bestperformingsingingsegmenteris a tandemconnec-
tion of a neural-netdiscriminatoryspeechmodel, followed by a
high-dimensionaGaussiardistribution modelfor eachof thetwo
classesfollowedby anotherpair of Gaussiamodelsin theresult-
ing low-dimensionallog-likelihood space. One interpretationof
this work is thatit is more successfulwhendealingwith a rea-
sonablequantity of training data, to train large modelswith lots
of parameterandfew preconceptionghanto try to ‘shortcut’ the
processby defining low-dimensionalstatistics. This lessonhas
beenrepeatednary timesin patternrecognition but we still try to
betterit by clever featuredefinitions.

5. FUTURE WORK

As discussedn theintroduction,this work is orientedtoward the
transcriptiorof lyrics asabasisfor musicindexing andretrieval. It
is clear(e.g.from figure1) thatusingaclassifiettrainedon normal
speecthis too poorly matchedo the acousticf singingin popu-
lar musicto be ableto supportaccuratevord transcription.More
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promisingwould be a classifiertrained on examplesof singing.
To obtainthis, we needa training setof singingexamplesaligned
to their lexical (and ultimately phonetic)transcriptions. The ba-
sic word transcriptsof mary songs—i.e. the lyrics—arealready
available,andthe goodsegmentatiorresultsreportedhereprovide
the basisfor a high-quality forced alignmentbetweenthe music
andthe lyrics, at leastfor someexamples,even with the poorly-
matchecclassifier

Ultimately, however, we expectthatin orderto avoid the neg-
ative effect of the accompaying instrumentson recognition,we
needto usefeaturesthat cango someway toward separatinghe
singing signal from other sounds. We seeComputationalAudi-
tory SceneAnalysis, coupledwith Missing-Dataspeectrecogni-
tion andMulti-Sourcedecoding,asa very promisingapproachto
this problem[7].

6. CONCLUSIONS

We have focusedntheproblemof identifying segmentf singing
within populamusicasausefulandtractabldorm of contentanal-
ysis for music, particularlyasa precursorto automatictranscrip-
tion of lyrics. Using PosterioProbability Featureobtainedfrom
the acousticclassifierof a general-purposspeectrecognizerwe
were able to derive a variety of statisticsand modelswhich al-
lowed us to train a successfulocals detectionsystemthat was
around80% accurateat the framelevel. This sggmentatioris use-
ful in its own right, but also provides us with a goodfoundation
uponwhich to build atraining setof transcribedsungmaterial,to
be usedin moredetailedanalysisandtransriptionof singing.
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