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Abstract

Speech is typically perceived against a background of other sounds. Listeners are adept at extractin
sources from the acoustic mixture reaching the ears. Theauditory scene analysisaccount holds that this feat
is the result of a two stage process. In the first stage, sound is decomposed both within and across a
nuclei. Subsequent processes of perceptual organisation are informed both by cues which suggest a c
source of origin and prior experience. These operate on the decomposed auditory scene to extract c
evidence for one or more sources for subsequent processing. Auditory scene analysis in listeners h
studied for several decades and recent years have seen a steady accumulation of computational m
perceptual organisation. The purpose of this review is to describe the evidence for auditory organiza
listeners and to explore the computational models which have been motivated by such evidence. The p
focus is on speech rather than on sources such as polyphonic music or nonspeech ambient backg
although these other domains are equally amenable to auditory organization. The review concludes
discussion of the relationship between auditory scene analysis and alternative approaches to sound
segregation.

1. Introduction

Speech is typically perceived against a background of other sounds. The acoustic mixture reaching t
is processed to enable constituent sources to be heard and recognized as distinct entities. While the
system may not always succeed in this goal, the range of situations in which spoken communica
possible in the presence of competing sources highlights the flexibility and robustness of human s
perception. The background against which a conversation is carried out is made up of acoustic intr
which may overlap temporally and spectrally with the target speech. The background may consist o
utterances, with fundamental frequency and formant contours occupying similar regions to those of the
Target and background may contain similar ranges of envelope modulations, and can arrive from s
locations in space. Sometimes, the background will be characterized by high-intensity onsets
completely mask the target conversation. Figure 1 depicts auditory spectrograms for a mixture of two
sequences whose constituents differ in onset time, fundamental frequency contour and formant struc
which are nevertheless sufficiently similar in these properties to make visual separation difficult.

Terminology

Bregman (1990) draws a distinction between anacoustic source– the concrete, physical manifestation of
sound wave – and anauditory streamwhich denotes the abstract, conceptual effect it has in the mind of
listener. Listeners have to solve anauditory scene analysis(ASA) problem in order to extract one or more
relevant auditory streams from the mixture of sources which typify their acoustic environment.

On entering the ear, the signal undergoes several transformations, leaving the periphery as patterns o
firings which may be considered asrepresentationsof all or part of the sound. Features of thes
representations which are used to achieve a particular end are calledcues. Different theories for the
organization of sound may have varying assumptions of which features are actually employed as cue

Sound sources may differ in location, or in instantaneous fundamental frequency, or in the patterns of
envelope modulation in different frequency bands. If it is possible to reliably extract these potential
sufficiently often, and togroup those parts of the mixture possessing similar values of each property,
listeners have the basis for organizing into a coherent whole those components which have a common
They are often described asbottom-upor primitive processes.

In addition to primitive grouping processes, listeners can exploit prior familiarity with the patterns of sp
language. These regularities manifest themselves at a number of levels, from the sub-syllabic to the sen
Speech represents a rich and redundant encoding of information, so prior experience can help to fill in
parts of the signal that are masked or otherwise distorted. Such top-down processes have been termedschema-
driven mechanisms (Bregman, 1990).
1999 Oct 25 2
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Early auditory signal processing involves at least two forms of decomposition. First, the signal is subj
a spectral decomposition in the cochlea – an organizational axis maintained throughout many later pro
stages. Second, it appears that different properties are extracted in distinct auditory maps (Moore,
Consequently, information arising from a single acoustic source is distributed both across cochle
frequency and between auditory nuclei. For instance, a voiced speech sound gives rise to a se
harmonically-related peaks at low frequencies. The higher frequencies might contain envelope modu
at the voicing fundamental frequency (f0) as reflected in the full-band temporal envelope (or equivalen
caused by the interaction of neighboring harmonics in the response area of the auditory filter). The fin
response at the output of each such filter would also contain periodicities related to the fundamental
harmonics. Moore (1997, fig 5.6) depicts some of these properties of the auditory filterbank respo
periodic sounds. It is possible that further processing of harmonic peaks, envelope and fine structure is
out in distinct auditory maps.
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Figure 1: Auditory spectrograms of spoken digit sequences.Upper: “zero zero three six three”.
Middle: “seven three seven five nine”. Lower: auditory spectrogram of the mixed signal. Grey-
levels are proportional to log-energies at the output of a bank of 64 gammatone filters, equally
spaced on an auditory scale (ERB-rate) from 50 to 6500 Hz.
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This two-fold separation (by frequency channel and cue class) is understandable: since different sou
an acoustic mixture may dominate distinct spectral regions, spectral decomposition is an elementary fi
in signal separation. Functional decomposition – processing in distinct auditory maps – allow
deployment of relevant processing hardware to extract different signal properties such as f0 and location,
including the possibility of using several complementary processing approaches for each of these pro

Given this fragmentation of the original sound waveform into several features defined over mu
dimensions, the grouping problem cannot be simply expressed using general statements such as
components with a common fundamental are grouped together”. It is possible to distinguish between
three types of grouping:

• grouping of local features within auditory maps;

• grouping of features corresponding to the same source represented in different maps, such a
pitched source whose low and high harmonics may be grouped in separate maps by spatial pat
and temporal structure respectively, and

• grouping based on the acquired expectations of prior knowledge (“schema-driven” grouping)
distinct from “primitive grouping” involved in earlier processing stages (Bregman, 1990).

Summary of grouping cues

Table 1 summarizes the many experimental investigations of grouping using the framework expressed
The organization of the table reflects the idea that each property of an acoustic source produces a nu
auditory consequences, each of which represents a potential grouping cue. Darwin and Carlyon
provide a quantitative tabulation of some of these investigations and demonstrate that grouping is not “
nothing”, but occurs at different degrees of feature prominence depending on the measure used.

Having numerous cues for sound organization respects the fact that any one of them may fail to indic
correct grouping, but it simultaneously presents higher auditory levels with the possibility of inconsiste
conflicting cues. Investigations of conflicts such as frequency proximity vs. ear of presentation (Deu
1975) or onset asynchrony and mistuning (Darwin and Ciocca, 1992; Ciocca and Darwin, 1993) can p
valuable insight into high-level audition.

Some signal features have been proposed as potential grouping cues but do not appear in Table 1. F
amongst these is the common frequency modulation imposed on harmonics in voiced speech. There
evidence for an independent effect of grouping by common FM over and above that provide
instantaneous harmonicity (Gardner and Darwin, 1986; Summerfield and Culling, 1992; Carlyon, 1
although the presence of FM can make vowels more prominent against a background of unmodulated
(McAdams, 1984).

Review organization

Section 2 provides a chronological review of important developments in auditory organisation. Section
6 reflect a systematic progression from lower to higher levels of stimulus complexity. Section 3 deals
simple tonal configurations, while section 4 examines the extensive experimental and modeling
employing simultaneous synthetic vowels. Sections 5 and 6 explore the role of bottom-up and top
factors in processing natural utterances . Within each section relevant perceptual evidence for organiz
listeners is considered, followed by details of algorithms which attempt to replicate the effects in mac
The review concludes with a discussion of the major issues facing CASA and its relation to other appro
to source segregation.
1999 Oct 25 4
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2. Auditory organisation: development of the field

2.A Listeners

Cherry (1953) provides one of the earliest accounts of the problem faced by listeners when presente
simultaneous utterances. Speculating on what he termed the “cocktail party problem”, he considered p
cues to its solution – location, lip-reading, mean pitch differences, different speeds, male/female sp
voice, accents and the like. Cherry highlighted the relative ease with which one of a pair of simulta
sentences could be repeated when the messages were sent to different ears. In a refinement of this
Broadbent and Ladefoged (1957) employed synthetic, two-formant speech to examine the roles of b
of presentation and fundamental frequency on perceptual fusion, as reflected by the number of voice
by listeners. They found that fusion occurred even when the two formants were sent to different ears, b
giving the two formants sufficiently different fundamental frequencies prevented fusion. Their findings
only demonstrated a clear role for fundamental frequency differences in perceptual organization, but w
early anticipation of the interactions that occur when multiple cues for grouping are placed in oppo
which each other, a recurrent theme in studies of grouping and segregation. Broadbent and Ladefoge
amongst the first authors to recognize the computational problem posed by hearing, noting that percep
the presence of other sounds represents the normal, everyday mode for spoken language processin

A different approach to the study of speech perception in such everyday acoustic backgrounds came w
finding by Warren (1970) that listeners were unaware of the absence of short segments of sentence
had been replaced by a louder noise. This phenomenon was termed thephonemic restoration effect. Later
work (Warrenet al., 1972) generalized its application to non-speech signals and phonemic restoration i
considered as a special instance of a collection of “auditory induction” effects, including induction bet
ears and across frequencies. Section 6 discusses such induction effects.

Warren’s work was an important demonstration that the auditory system was not simply a passive cond
sensory information, but was engaged in an active interpretation of the signal, with illusory percepts as
effect. Bregman and Campbell (1971) showed that, dependent upon stimulus parameters such as fre
separation and repetition time, an alternating sequence of high and low frequency tones would be pe
as a single sound source alternating between high and low frequencies (the veridical percept) or
sources, consisting of repeated high tones and low tones respectively (the illusory percept). Sec
describes some of these ‘streaming’ experiments.

Much of this early work on streaming employed simple tonal stimuli, although some studies used speec
sounds and demonstrated similar effects of factors such as spectral dissimilarity on streaming in a te
order identification task (Cole and Scott, 1973) and pitch and formant continuity on speech cohe
(Darwin and Bethell-Fox, 1977). These studies used repeated sequences to induce segregation, whic
questions over whether the grouping cues uncovered in such experiments can be usefully emplo
everyday speech perception. Darwin’s (1981) attempt to find evidence for grouping in speech was a t
point. Darwin used single presentations of synthetic vowels and consonant-vowel (CV) syllables in w
formants differed in either onset times or f0. Earlier, Cutting (1976) had shown that listeners were able
identify syllables whose formant resonances had been divided between ears: The lowest, first forma
was presented to one ear; the other ear received the higher formants (F2 and F3) but with a di
fundamental. Darwin failed to find an effect of onset asynchrony or difference in f0 on phonetic category
except in one condition in which grouping could result in two equally-plausible syllables. Here, a synt
four-formant syllable was constructed which would be perceived as /ru/ if all formants were played tog
or as /li/ if F2 were omitted. This innovative paradigm enabled Darwin to manipulate f0 and relative onset
times of the second formant (F2), and to demonstrate an effect of perceptual organization on ph
categorization.

The conclusion of Cutting (1976) and Darwin (1981) that phonetic interpretations could easily ove
conflicting cues for perceptual organization led to the realization that explorations of grouping need
performed in a phonetically-neutral context. Over the next few years, a series of refinements an
paradigms enabled a much closer analysis of the role of perceptual grouping in speech, with the spotl
the identification of synthetic stationary vowels. Darwin (1984) exploited the fact that a vowel contin
1999 Oct 25 5



Table 1: Summary of grouping cues

Source property Potential grouping cue Illustrations Notes

Starts and ends of events
(common onset/offset)

Synchrony of transients across
frequency regions

Effect of onset asynchrony on syllable
identification (Darwin, 1981) and pitch
perception (Darwin and Ciocca, 1992)

Offset generally weaker than onset.

Temporal
modulations

slow
Correlation among envelopes in
different frequency channels

Comodulation masking release (Hallet
al., 1984)

Common frequency modulation may lead to
common amplitude modulation as energy
shifts channels (Saberi and Hafter, 1995)

fast,
periodic

Channel envelopes with periodicity at
f0 (unresolved harmonics)

Segregation of two-tone complex by AM
phase difference (Bregman et al., 1985)

Harmonically-related peaks in the
spectrum (resolved harmonics)

Mistuning of resolved harmonics (Moore
et al., 1985); effect on phonetic category
(Darwin and Gardner, 1986)

Periodicity in fine structure (resolved
and unresolved harmonics)

Perception of ‘double vowels’
(Scheffers, 1983)

Basis for autocorrelation models (Patterson,
1987; Meddis and Hewitt, 1991)

Spatial location

Interaural time difference due to
differing source-to-pinna path lengths

Vowel identification (Hukin and Darwin,
1995). Strongest effect if direction is
previously cued.

Evidence that suggests role of ITD is limited
(Shackleton and Meddis, 1992) or absent
(Culling and Summerfield, 1995b)

Interaural level difference due to head
shadowing

Noise-band vowel identification (Culling
and Summerfield, 1995b)

Monaural spectral cues due to pinna
interaction

Localization in the sagittal plane
(Zakarauskas and Cynader, 1993)

Has not been investigated for complex,
dynamic signals such as speech.

Event sequences

Across-time similarity of whole-event
attributes such as pitch, timbre etc.

Sequential grouping of tones (Bregman
and Campbell, 1971); sequential cueing
(Darwinet al., 1989, 1995)

Long-interval periodicity Perception of rhythm
By-product of very-low-frequency ‘spectral’
analysis (e.g. Todd 1996)?

Source-specific Conformance to learned patterns Sine-wave speech (Remezet al., 1981)
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from [I] to [ε] could be constructed by varying F1 between 375 Hz and 500 Hz to provide a sensitive indi
of whether tones at harmonics close to F1 were perceptually integrated into the vowel under v
conditions. These experiments demonstrated that onset or offset asynchrony could reduce the cont
that a harmonic makes to vowel quality. Darwin and Gardner (1986) employed a harmonic mist
paradigm (Mooreet al., 1985) and the [I]-[ε] continuum to show that, just as a mistuned component could
excluded from computation of pitch, it could similarly contribute less to vowel quality.

An alternative approach to the study of grouping in speech was introduced by Scheffers (1983). He
listeners to identify both constituents of pairs of concurrent synthetic vowels. This double vowel task
came to be known, has proved to be a fertile paradigm for the study of auditory perceptual organizatio
is reviewed in section 4.

By 1990, a significant body of perceptual studies of auditory fusion and segregation had accumu
consolidated by Bregman’s (1990) comprehensive monograph. Many properties of sound sources con
as potential features for organization had been investigated. One finding has been the failure of gr
under circumstances which might otherwise have been thought to promote it. For example, changes in0 lead
to correlated changes in harmonic frequencies, known as common frequency modulation (FM). Gardet
al. (1989), using the /ru/-/li/ paradigm, found no effect of incoherent FM in segregating F2 from the rema
of the syllable.

Recently, the relationship of grouping to other aspects of auditory function, such as the determination o
location or phonetic quality of a sound source has been investigated. Darwin and Carlyon (1995) doc
the task-dependent nature of the cue manipulation required to reveal grouping effects. For example
tasks of detection, identification as a separate source, determination of pitch, vowel classification, s
separation, and lateralization, the degree of mistuning required of a single harmonic varies from 1% to
Similarly, the amount of onset or offset asynchrony required in a similar range of tasks can vary from
milliseconds for detection to several hundreds of milliseconds for tasks involving pitch and v
identification.

Models

One of the earliest computational attempts at speech separation was the signal-processing appr
Parsons (1976). Although Parsons was not motivated by auditory findings, his system served to define
partially solve – some of the issues which have since become central for computational auditory
analysis (CASA) systems operating on voiced speech, namely the resolution of overlapped harmon
determination of multiple pitches, and the tracking of fundamental frequency contours which may c
Parsons described the separation of voiced speech as the “principal subproblem”, and his system s
solving it by identifying two sets of harmonic peaks in a standard fixed-bandwidth Fourier-trans
spectrum, estimating their pitches and tracking their evolution through time.

Lyon (1983) – influenced by Jeffress’ (1948) proposal for an interaural delay line mechanism – prese
computational model of binaural localization and separation which performed a cross-correlation
outputs of cochlear simulations for opposing ears. Lyon used the term “correlagram” to describe the
correlation representation (the term “correlogram” has since come to refer primarily to anautocorrelation
analysis) and demonstrated separation of a short speech signal from an impulsive sound generated by
a ping-pong ball. Weintraub (1985) was the first to design a system with an explicit auditory motivatio
tackle the more difficult problem of sentence separation. His pitch-based separation system was insp
the neural autocoincidence model of Licklider (1951).

These early demonstrations illustrated the engineering potential of cues such as pitch and int
differences, but they did not provide quantitative measures of algorithm performance. One of the first s
to do so was the evaluation by Stubbs and Summerfield (1988) of two algorithms for the separation of
based on a difference in fundamental frequency in a single channel. One approach operated by atte
the pitch peak corresponding to the interfering voice through filtering the cepstrum of the mixed signa
other was similar to Parsons’ (1976) harmonic selection scheme. By resynthesizing the target voice, p
speech enhancement benefits of these approaches could be evaluated. Stubbs and Summerfield used
vowel pairs in one task and CV words masked by synthetic vowels in another to show that the enh
1999 Oct 25 7
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speech was more intelligible to listeners with normal hearing and with hearing impairments. The decad
Weintraub’s system have witnessed a proliferation of modeling attempts, many of which are described

3. The streaming effect

3.A Listeners

A sequence of alternating high and low frequency tones can result in the perception of either one
coherent patterns orstreams(Miller and Heise, 1950; Bregman and Campbell, 1971). Factors influenc
segregation into streams are discussed at length in Bregman (1990, chapter 2) and summarized belo

• frequency separation: if the frequency difference between alternating high and low tones is
progressively increased, the perception of a continuously alternating pitch (the ‘trill’) changes t
that of two interrupted tones. The frequency separation at which this occurs was termed the “tr
threshold” by Miller and Heise (1950). Using a different measure of streaming based on rhythm
van Noorden (1975) demonstrated that the streaming effect could better be described by t
thresholds, one (which he called the “temporal coherence boundary”) located at the smalle
frequency separation which was too large for the tones to be heard as one coherent stream,
other marking the upper limit of tones that always formed a single stream (the “fission boundary
below which two streams could not be heard). In the intervening range of frequency separation
listeners could alternate between hearing one or two streams.

• rate of alternation: van Noorden (1975) mapped out the fission and temporal coherence
boundaries as a function of tone onset-to-onset interval. At short tone repetition times (60 ms), t
boundaries are quite close, while for larger intervals (150 ms), the boundaries are far apa
However, the fission boundary remains low and is largely unaffected by tone repetition time
suggesting that while it is relatively easy to try to hear two streams, it is very difficult to hold on
to a single stream at high repetition speeds.

• duration: the default tendency of a stream to be heard as coherent until sufficient evidence to sp
it has been mentioned. Bregman (1978) found the segregation effect to be cumulative, wi
evidence accumulating over a period of a few seconds.

Cyclic sequences of somewhat greater timbral complexity have been also been used. Bregman and
(1978) used an alternating sequence of a single tone with a pair of tones to reveal a trade-off betwee
asynchrony and frequency separation in streaming: constituents of synchronous tone pairs are more
to capture into a competing stream than asynchronous pairs. Bregman and Levitan (1983) put into opp
streaming-by-fundamental and streaming-by-timbre, demonstrating the efficacy of both factors, albeit
stronger effect of the fundamental.

2 octaves

TRT: 60-150 ms

Figure 2: Stimulus configuration for the streaming experiments of van Noorden
(1975). The sequences of alternating sinusoidal signals are presented with differing
frequency separations (∆f) between the tones and differing overall repetition
periods (TRT).

time

freq.

∆f:
1 kHz
1999 Oct 25 8
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Rogers and Bregman (1993) discuss three alternative explanations of the streaming effect. A four
peripheral channelling interpretation of Hartmann and Johnson (1991), is described below. Roge
Bregman contrast Bregman’s (1990) auditory scene analysis account, which favors sequential group
the Gestalt principle of frequency proximity, with those of van Noorden (1975) and Jones (1976).
proposed a theory based on rule-based predictability of sequences, while van Noorden suggest
hypothetical frequency jump detectors become adapted and unable to follow the alternating pattern o

Rogers and Bregman attempted to distinguish between the three accounts by measuring the e
preceding ‘induction’ tones on the streaming of a test sequence. All induction conditions led t
improvement in streaming effectiveness in comparison to a control condition which used low-intensity
noise. All induction sequences consisted solely of high frequency tones, ruling out van Noorden’s pro
adaptation of frequency jump detectors. Induction sequences which differed only in the predictabil
inducer tones performed no better than those containing irregular patterns of tones, in contrast
predictions of Jones’ theory.

A second experiment, using inducer sequences which varied in number and total duration of tone ele
demonstrated that segregation improved with the total number of tone onsets rather than the summ
durations in the inducer sequence. This finding runs counter to Bregman’s original hypothesis that the in
would set up a cumulative frequency bias for the higher tone, but was interpreted by Roger and Bregm
an example of sequential grouping by similarity of the number of tone onsets in inducer and test seq

Stream segregation has also been demonstrated using non-cyclic sequences. Deutsch (1975) used
scales to demonstrate the dominance of grouping by frequency proximity over grouping by e
presentation, while Hartmann and Johnson (1991) asked listeners to identify pairs of melodies whos
had been interleaved (Dowling, 1973). Hartmann and Johnson’s study looked for streaming effects
could not be explained by the simpler process of peripheral channelling. Peripheral channels were def
those established in the auditory periphery, and include tonotopic and lateral channels. Elements of on
interleaved melodies were manipulated in each of 12 different conditions designed to favor explanati
terms of peripheral channelling or grouping (or both). Manipulations included those that produced differ
in frequency range, level differences or duration between the two melodies. Their results suggeste
“those tone differences that lead to the excitation of different peripheral channels promote stream segr
much more effectively than tone differences that do not excite different channels but which might well e
the images of different sources, based on other source-grouping grounds.” However, Hartmann and J
point out that a source-grouping model might contain peripheral channelling as an early component.

3.B Models

A number of models which seek to explain streaming as an emergent consequence of early, low
auditory computations have been built, starting with the simple excitation integration model of Beauvo
Meddis (1991, 1996). They sought to explain the perceptual coherence of tone sequences alterna
frequency, as used by van Noorden (1975), noting that listeners tend to hear more than one stream if t
repetition time is sufficiently short, or if the frequency separation of the tones is sufficiently large. Beau
and Meddis addressed these findings with a three-channel model, with bandpass channels centered a
the tone frequencies and at their geometric mean. Noise was added to the rectified output of each c
and the summed signal formed the input to a leaky integrator. The channel with the highest outpu
selected, and activity in the other two channels was attenuated by 50%. Temporal coherence was in
when the short-term averaged level in response to each tone was roughly equal. Beauvois and Meddis
that temporal coherence could be obtained when the two tones were close in frequency, since in this co
the dominant channel is the middle one, preventing either of the other channels from predominating. Th
average levels of channels at the tone frequencies are roughly the same. They also showed that t
coherence would occur for larger frequency separation, as long as the tone repetition time was suffi
long for the excitation in the most-recently stimulated channel to decay over the time course of the in
(this requires tone duration to be short relative to the tone repetition time). Conversely, streaming occ
the model when the tone repetition interval is short. In this situation, the most-recently activated channe
not suffer a sufficient decay in activity during the tone interval, and the internal noise tends to favo
dominance of one or other channel, leading to an imbalance and hence the model criterion for stream
1999 Oct 25 9
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obtained. The noise level plays a crucial role in determining the precise balance between coheren
streaming. Beauvois and Meddis demonstrate that a single setting of this parameter allows the m
explain grouping by frequency and temporal proximity, as well as the build up of streaming over time (A
and Saida, 1985). However, they acknowledge that the model cannot explain across-channel gr
phenomena such as that of Bregman and Pinker (1978).

McCabe and Denham (1997) extended the Beauvois and Meddis model to include multichannel proc
and inhibitory feedback signals, whose strength they related to frequency proximity in the input.
mechanism leads to the suppression of any subsequent stimulus components which are different fro
responsible for the suppression. In fact, this residual activity is processed in a separate ‘background
which in turn has the potential to inhibit components in the foreground map. McCabe and Denham (
suggest that their model can be viewed as an implementation of Bregman’s old-plus-new heuristic, in
‘new’ organization appears in the residual left after subtraction of ‘old’ components, based on the assum
of continuity. In addition to the streaming data accounted for by Beauvois and Meddis, their model cate
the influence of organization in the background on the perception of the foreground as found by Bregm
Rudnicky (1975).

Most of the streaming mechanisms described above require cyclic repetition in order to produce a co
of fission or fusion. An exception is the model of Godsmark and Brown (1999), which is based
maintaining multiple grouping hypotheses until sufficient information arrives to disambiguate pote
organizations. Consequently, their model can handle a wide range of streaming phenomena inc
context-dependent and retroactive effects (Bregman, 1990). The approach taken by Godsmark and
involves training the model to produce streaming effects observed in simple tonal configurations,
observing the more complex emergent grouping behavior on tasks such as polyphonic music transc
For example, the model produced good matches to listeners’ performance in the interleaved m
identification task described above (Hartmann and Johnson, 1991).

3.C Discussion

Fusion and streaming

Although we have taken streaming as the starting point for our discussion of auditory organizati
presupposes the formation of distinct ‘events’, possibly requiring thefusionof energy in multiple frequency
bands. Indeed, Bregman and Pinker (1978) set up a conflict between the formation of single event
simultaneous tones and conventional streaming factors. Factors governing fusion, such as harmonic r
and synchronous onset, have been further investigated and modeled through double-vowel stim
discussed in the next section.

The relevance of streaming phenomena to speech organization

Cyclically-repeated tonal configurations are hardly a common feature of the sound mixtures which lis
typically process. Consequently, it may be unwise to make inferences about the perceptual organiza
everyday signals such as speech on the basis of streaming experiments. Bregman’s rationale for th
cyclic sequences (Bregman, 1990, p.53) is largely one of experimental pragmatism, and he urges the
other methods to verify effects found using cyclic presentation. Since many explanations of liste
responses to repeated stimuli would be difficult to apply to the general problem of auditory organizat
is conceivable that different mechanisms are invoked to those which apply in more natural settings.

An alternative way to explore grouping is to use stimuli that are somewhat closer to those presen
listener’s environment, yet still sufficiently simple to be controllable in an experimental setting. Do
vowels are single-presentation stimuli which satisfy these constraints, and the next section looks a
perceptual organization and at models which attempt to account for listeners’ identification performan
1999 Oct 25 10
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4. Double vowels

4.A Listeners

The finding that listeners are able to recognize simultaneously presented synthetic vowels at levels wel
chance (Scheffers, 1983) has led to a large number of perceptual studies utilizing this so-called double
or concurrent vowel paradigm. Part of the attraction comes from the ease with which stimulus manipul
thought to promote perceptual organization can be performed on vowel pairs. For example, cons
vowels can be synthesized on different fundamental frequencies, modes of excitation, relative intensit
interaural time or level differences. In the ‘standard’ double vowel experiment, listeners have to identify
constituents of synthetic concurrent vowel pairs (usually drawn from a set of 5) of a given duration (typ
200 ms). Key findings for a variety of double vowel manipulations are:

• Concurrent vowels synthesized with the same f0 can be identified at a level well above chance
(Lea, 1992). When the choice is between 5 vowels, a typical result is correct identification of bot
constituents in 55% of trials.

• Pairs of whispered vowels are identified at about the same rate as vowels with a common0

(Scheffers, 1983; Lea, 1992). Whispered vowels may be constructed to contain no clear groupi
cues, so performance in this task is usually taken as the baseline upon which improvements du
grouping are made.

• A difference in fundamental frequency between pairs of concurrent vowels leads to an absolu
improvement of 10-15% in vowel identification performance, starting with a difference as smal
as a quarter of a semitone and asymptoting between 1-2 semitones. This basic finding of Scheff
(1983) has been replicated by several researchers (Assmann and Summerfield, 1990; Culling
Darwin, 1993; Lea, 1992; Meddis and Hewitt, 1992; de Cheveigné et al, 1997a, 1997b).

• A difference in mode of excitation (voiced/whispered) between the constituent vowels leads to a
identification improvement of around 10% (Lea, 1992). Further, the whispered constituent of
voiced/whispered vowel pair was identified significantly more accurately than when both vowel
were whispered, but the voiced component was no more intelligible than when both vowels we
voiced and on the same f0 (Lea, 1992).

• Identification performance varies with the harmonicity or inharmonicity of vowel pair constituents
(de Cheveignéet al., 1997b). An inharmonic target vowel presented 15 dB below a harmonic
masker vowel was significantly better identified than a harmonic target behind a stronge
inharmonic masker.

• When the f0s of vowel formants are swapped such that the first formant (F1) of one vowel has it
higher formants synthesized with the f0 of the other vowel, and vice versa, or when an f0 difference
is applied only to the F1s of the two vowels, listeners show the same improvement as in th
standard condition up to a f0 difference of 0.5 semitones (Culling and Darwin, 1993). Culling
hypothesized that listeners used the time-varying excitation pattern caused by beating in the
region to identify constituents at times favorable to one or other vowel (Culling and Darwin, 1994)
although this scheme has recently been called into question (de Cheveigné, in press).

• Identification improvement with f0 difference is smaller for brief (50 ms) stimuli than for longer
(200 ms) stimuli (Assmann and Summerfield, 1990). Repeating the same 50 ms segment 4 tim
with 100 ms silent intervals did not lead to any improvement, but performance did improve whe
successive 50 ms segments were presented with the same silent intervals (Assmann
Summerfield, 1994). Some of this improvement was attributed to waveform interactions whic
allow betterglimpsesof one or other vowel at difference times, but de Cheveigné (in press) presen
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results for vowels with extremely small differences in f0 which argue against the glimpsing
hypothesis.

• One vowel of the pair (the ‘dominant’ vowel) can be identified at near 100% accuracy for stimul
as short as one pitch period, while identification of the non-dominant vowel improves with an
increasing number of pitch periods (McKeown and Patterson, 1995). Introducing a difference
f0 reduces the number of pitch periods required to reach maximum performance. As well a
showing a clear effect of stimulus duration on identification of the non-dominant vowel, these
results suggest that f0 differences are not required for identification of the dominant vowel. The
dominance effect can be removed by adjusting levels of constituents in each pair (de Cheveignéet
al., 1995), a manipulation which may be necessary to allow the conditions of interest to surfac

• Shackleton and Meddis (1992) found that spatial separation of vowels resulted in no increase
identification performance for vowels with the same f0s. For different f0s, spatial separation led to
a small improvement.

• In a simulated reverberant environment, Cullinget al. (1994) explored the robustness of binaural
and f0 difference cues, concluding that the latter continued to be useful in reverberant fields th
had removed the benefits of the former.

• Culling and Summerfield (1995b) used a reduced form of double vowel stimulus, in which eac
vowel was represented by two noise bands, to demonstrate an absence of across-freque
grouping by common interaural delay. They went on to show that introducing an interaura
decorrelation (as opposed to a delay) improved identification of the vowels.

• No effects of common, across-frequency, patterns of frequency modulation on double vow
identification have been found (Darwin and Culling, 1990; Culling and Summerfield, 1995a).

Reviews of concurrent vowel segregation can be found in Lea (1992), de Cheveigné (1993), Summerfie
Culling (1995) and de Cheveigné et al (1995).

Taken together, these findings suggest that listeners make use of a variety of stimulus properties conv
the detailed time-frequency structure of the auditory response to identify double vowels. Some of the
be cast as cues for primitive perceptual grouping, but the role of factors which enable the engagem
vowel schema (e.g. locally-favorable target-to-background level; see Assmann and Summerfield, in
need to be carefully assessed. In fact, no firm conclusions about mechanisms can be drawn at p
although a number of detailed proposals have been made. These are discussed below.

4.B Models

The first computational model of double vowel segregation was constructed by Scheffers (1983) hi
Scheffers’ model employed a harmonic sieve algorithm (Duifhuiset al., 1982) in which each f0 estimate
generated a sequence of frequency intervals around each harmonic frequency for that f0. Peaks in the
excitation pattern of the stimulus which fall through these sieve intervals contribute to the evidence fo
f0, and the f0 which has the largest weight of evidence is chosen. Scheffers introduced a two-vowel proc
which finds the pair of f0s which together best explain the excitation pattern. His model consiste
underperformed listeners (e.g. 27% versus 45% for f0=0), but showed a small improvement with a f0 of
1 semitone (38% versus 62% for listeners). However, this improvement disappeared at 4 semitones dif
(27%) while listeners’ performance remained at 62%.

Scheffers’ harmonic sieve model can be classified as a place domain approach since it operate
narrowband spectral representation. An alternative strategy is to compute correlates of f0 by time-domain
processing. If this computation takes place on signals filtered by peripheral frequency channels,
approaches are termed place-time processes. Place, place-time and pure-time models for double vow
estimation and segregation are discussed in de Cheveigné (1993).

∆ ∆
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One process well-suited to detecting signal periodicities is autocorrelation. Several different autocorre
like models have been proposed for auditory computation. In 1951, Licklider suggested a structu
periodicity enhancement consisting of a series of delays, each of which fed a multiplier and integrator,
in turn received an undelayed input. The series of delay elements thus maps out uniformly increasing
and the integrated multiplication at any place along this delay axis represents a running autocorrelatio
the lag given by the number of delays which the signal passes through to reach that place.

Assmann and Summerfield (1990) compared two models on the concurrent vowel segregation task. O
a place model similar to that used by Scheffers. The other involved a place-time analysis based on de
periodicities using an autocorrelation of the output of each channel of a periphery model. Their place
estimated vowel spectra by sampling the excitation pattern at harmonics of the f0s found by their
implementation of Scheffers’ sieve. The place-time model estimated vowel pitches as corresponding
delays with the two largest peaks in a summary autocorrelation function. This summary was crea
summing individual autocorrelation functions across channels. Figure 3 depicts an autocorrelogram
vowel pair together with its summary. Vowel spectra were then formed by taking slices through
autocorrelation functions at lags corresponding to the two pitches. Assmann and Summerfield evalua
performance of the place and place-time models (and other variants of these involving an optional no
compression stage) and found that the place-time model came much closer to accounting for lis
performance on the same task.

Meddis and Hewitt (1992) also used an autocorrelogram analysis, but chose a different segregation s
They first determined the lag of the largest peak in the summary autocorrelogram. They then selecte
channels whose individual autocorrelation functions possessed a large peak at this lag. The rem
channels were deemed to belong to the other voice. A further innovation concerned the choice of
template. Meddis and Hewitt computed another summary autocorrelation function based solely on
channels selected as belonging to one of the vowels. The lower-order lag coefficients in the summary
information about periodicities at high frequencies (the lag being inversely proportional to frequency)
they reasoned that spectral information suitable for vowel identification would be encoded in the sho
section of the summary – which they termed the “timbre region.” They repeated this analysis wit
unselected channels to get a timbre region vector for the second vowel. Their vowel recognition results
on channel selection and timbre regions, were very close to the results of subjective tests perform
Assmann and Summerfield. One weakness of the Meddis and Hewitt model is that it cannot accou
effects of a difference in fundamental for weak vowels whose spectrum is dominated by the other vow
Cheveigné et al, 1997a; de Cheveigné, in press), since no autocorrelogram channels remain for the
vowel.

One issue which has been explored with the aid of double vowel stimuli is the question of whether lis
use an estimate of the fundamental of the target vowel to enhance or select that vowel, or whether th0 of
the interfering vowel is used to attenuate or cancel it – or indeed whether a combination of both strate
used. An f0-based enhancement strategy is advantageous when the target signal is periodic and do
since f0 estimates will be more accurate. Conversely, cancellation ought to favor situations with a pe
and stronger interfering sound.

A number of authors have considered this question in detail (Lea, 1992; de Cheveigné, 1993, 1997
argued that an enhancement mechanism should favor a voiced vowel over a whispered vowel regar
whether the other vowel was voiced or whispered. By contrast, a cancellation model predicts that a vo
easier to pick out if the interference is voiced. Lea’s experimental results suggests that listeners
perceptual strategy which can exploit the periodicity of a interfering vowel to help identify a target sound
that they cannot use target periodicity to extract a vowel from a mix.

More recently, Berthommier and Meyer (1997) have shown how amplitude modulation information ca
used as a basis for double vowel segregation. Their ‘AM map’ is computed by performing a pitch r
spectral analysis of the envelope at the output of a bank of auditory filters. The resulting represen
conveys envelope modulation information as a function of spectral frequency, and can be used in th
form to group channels which possess a peak at the same envelope modulation frequency. Ho
Berthommier and Meyer note that the presence of harmonics in the AM spectrum can cause spurious
1999 Oct 25 13
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and propose a further transformation using a harmonic sieve to group these harmonics together prior to
classification.

De Cheveigné (1993) proposed a time-domain cancellation model based on a comb filter. A comb filt
the property of producing zero output for periodic input signals whose period matches the lag coeffici
the filter. Of course, it is necessary to know the lag parameter in order to actually effect the cancell
however, the comb filter can be used to find the period of an input signal by searching in filter lag spa
a minimum output. He tested a neural implementation of that filter with auditory nerve respons
concurrent vowel stimuli (Palmer ,1990) and demonstrated that it could successfully isolate the period
of either vowel. He later showed that the model could account accurately for listener’s responses in a
vowel experiment (de Cheveigné, 1997). De Cheveigné (1993) also suggested using a cascade of tw
filters to estimate the two fundamental frequencies of concurrent voices. He compared the scheme w
of Assmann and Summerfield (1990), described above, based on choosing the two largest peaks
summary autocorrelogram. His test data consisted of voiced tokens of natural speech. Using the crite
the percentage of estimates falling further than 3% away from the correct f0, he found that the comb filter
cascade scheme resulted in 10% errors, while the summary correlogram method produced 62%
estimates.
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Figure 3: Autocorrelogram of a synthetic double vowel pair ([er] on a fundamental of 126 Hz a
[ar] with a fundamental of 100 Hz). The summary correlogram (lower panel) shows a strong pe
at an autocorrelation lag of 10 ms, corresponding to periodicities in the signal at harmonics
100 Hz. A smaller peak at 7.9 ms corresponds to harmonics of 126 Hz.
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4.C Discussion

Interplay between pitch and grouping

One issue which models of double vowel segregation have highlighted is the interplay between groupi
pitch: does grouping depend on pitch identification, or does grouping determine pitch, or does each inf
the other? It is known, for instance, that onset asynchronies amongst partials of a tonal complex can in
pitch (Darwin and Ciocca, 1992). The very different models of Meddis and Hewitt (1992) and de Chev
(1993, 1997) both rely on an initial pitch determination. For Meddis and Hewitt, this allows the groupin
channels, but subsequently, the remaining channels could be used to determine a second pitch.

The time course of double vowel segregation

Some models of double vowel segregation typically operate over short time windows and have diff
accounting for perceptual findings which involve a wider temporal context (e.g. the results of Assman
Summerfield, 1994, and McKeown and Patterson, 1995, described in section 3A). Culling and Darwin (
have showed that it is not necessary to adopt a time-domain periodicity process to account for list
double vowel identification for small f0 differences (0.25 semitone). Their model used a tempora
smoothed excitation pattern as input to a single-layer perceptron trained to recognize one of 5 vowe
demonstrated an increase in identification with increasing f0. They attributed this result to the possibility o
glimpsing the changing spectrum arising from the low-frequency beating caused by the small f0 difference.
These results are considered further in the discussion of extending cues across time in the next sect

5. Accumulating grouping information across time

In this section we consider how the auditory system combines information received at different times
easy to recognize a temporal aspect to grouping in the many ‘buildup’ phenomena (discussed ab
relation to streaming) where the perception of a stimulus depends on its duration. Many of these phen
might be explained as no more than sluggishness in the calculation of low-level features, but som
require a separate, central process for integrating a grouping attribute, abstracted from any specific c
now examine some of the evidence for this type of mechanism.

5.A Listeners

The double-vowel paradigm combined sounds whose properties (fundamental frequency and spectru
not vary beyond the scale of their pitch cycles, and in this respect they are unlike most real-world soun
which the coherent changes in different spectral regions offer a very powerful indication of common o
The theoretical account of grouping presented by Bregman (1990) describes the treatment of local, d
sound elements such as harmonics. These elements are grouped into sources on the basis of vario
implicit in this account is a central reckoning in which each element is tracked over its period of exist
and evidence for grouping is gathered, stored, and applied over the whole element – even thoug
evidence may arise from a limited time interval.

Extending a single cue across time

A single cue may influence grouping at times remote from its own temporal focus. Thus, although
information is present only at the beginning of a tone, the segregation of a harmonic that starts 40-
before the rest of a cluster will persist for many hundreds of milliseconds – as judged from its contribut
the timbre (Darwin, 1984) or pitch (Mooreet al., 1986). Thus, a single cue can exert an influence long af
it has occurred.

An equally important role for time in low-level grouping is that certain cues may need a significant s
duration for their determination. A detailed pitch judgement, for instance, needs to be averaged acros
to reduce internal noise. This may be a factor in the increasing perceptual delay with decreasing
difference noted by McKeown and Patterson (1995). Other cues are intrinsically dependent on time, s
the detection of cyclic repetition in iterated frozen-noise stimuli (Guttman and Julesz, 1963; Kaern
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1992). Another example, described in Mellinger (1991), is the Reynolds-McAdams oboe signal in wh
small degree of frequency modulation is applied to just the even harmonics of a signal that initially ha
character of an oboe, but subsequently splits into a clarinet-like tone (formed from the unmodulate
harmonics) and something like a soprano at an octave above (corresponding to the modulated harm
The frequency modulation may take several hundred milliseconds of accumulated observation befo
sufficient to separate the sound into two percepts, but once the threshold has been reached, the influ
much like an instantaneous cue, in that it applies immediately to the tracked continuations of the sou

Mistuning in double-vowel segregation and harmonic clusters provides an interesting case. In both situ
identification (of the different vowels, or of the presence of a mistuned harmonic) becomes more diffic
the signal duration is reduced from 200 to 50 ms (for vowels; see Assmann and Summerfield, 1994)
to 50 ms (for harmonics; see Mooreet al., 1986). This suggests a time-integration process able to make f
distinctions when given more of the signal. The alternative explanation, proposed by Culling and D
(1994) is that in both kinds of stimulus phase interactions between slightly mistuned harmonics give
‘beating’ modulations. This may be a cue to discrimination in itself, or it may provide offer ‘glimpse
moments when the signal interactions make the identification task briefly much easier. A longer stimulu
a greater chance of spanning such a glimpse, giving, on average, better identification. If the bene
glimpsing relied solely on the single best glimpse, a shorter stimulus that happened to contain a g
would be equally well segregated. This is partially supported by the result that certain 50 ms segmen
better identification scores than others (Assmann and Summerfield, 1994). However, in that study no
segment allowed the level of discrimination that occurred with the 200 ms segments, suggesting a
from low-level temporal integration available only in the longer stimuli.

Glimpsing has also been proposed to explain the phenomenon of comodulation masking release (CM
which the threshold for a sinusoidal target beneath a narrowband noise masker can bereducedby adding
noise bands separate from the target/masker band if the added bands share the amplitude-mo
envelope of the on-band masker (Hallet al., 1984). Although there are a variety of possible cues to th
detection (Schooneveldt and Moore, 1989), at least some of the effect appears to result from a com
between the envelopes in the on-band and flanking frequency channels. For instance, the auditory
could monitor the flanking noise envelopes to detect instants when the on-band masker was briefly at
low amplitude, giving the most favorable opportunity for ‘glimpsing’ the target tone, or it could ap
processing similar to Durlach’s (1963) equalization-cancellation (EC) model (Buus, 1985). A prior aud
process would be required to confirm that the noise bands are co-modulated. Such a process might
low-level integration along time, either of repeated synchrony between features such as amplitude pe
a more direct calculation of the running cross-correlation (Richards, 1987).

In these examples the temporal integration relates to only a single cue, and hence they do not require a
reckoning of an abstract grouping property; the integration can be a direct part of the cue calculation, a
grouping could be rigidly determined on the basis of the single strongest cue. In the next section, ho
we look at circumstances where the interaction between different cues is investigated, implying a
complicated process of grouping.

Integrating different cues

Combining different kinds of evidence is one of the most intriguing aspects of auditory organization
experiments in cue competition form an important paradigm. As we have seen, the Bregman and
(1978) stimuli investigated the competition between the fusion of (near) simultaneous sine tones w
streaming of sequential tones close in frequency. Other experiments have related onset asynch
mistuning (Darwin and Ciocca, 1992; Ciocca and Darwin, 1993) or spatial location (Hill and Darwin, 19
In each case, the result that the effect on grouping of reducing one cue can be compensated for by inc
a different cue suggests that, at some level, both cues are mapped to a single perceptual attribute, and
become interchangeable.

In fact, the organization of any signal involves the combination of different cues: any simple signal ex
numerous attributes known to influence grouping such as common onset, harmonicity and common int
properties. Although a particular experiment may only investigate a single cue, other aspects of the
1999 Oct 25 16
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even though they are held constant, will still contribute factors to be integrated into the overall organiz
Thus the reduced threshold for detecting mistuned harmonics in longer signals could indicate the k
integration-along-time discussed above, but it may also reflect a dynamic balance between a continu
present mistuning cue and the decaying influence of the onset cue. This was directly demonstrated by
(1983), who used a harmonic complex with individual components which abruptly increased in level. A
moment of the change, the boosted harmonic is perceived as separate from the others, but over a time
seconds it will ‘merge’ back into the harmonic complex as the step-change in amplitude becomes increa
remote in time, and the harmonicity cue regains dominance.

Many experiments have used onset manipulations to investigate other grouping principles su
harmonicity (Darwin and Ciocca, 1992), formants (Darwin, 1984) and lateralization (Woods and Col
1992). The paradigm typically assumes that a degree of onset asynchrony can preemptively remo
contribution of a particular spectral region from the derived properties of the larger percept. In pra
however, the interaction between onset and other cues may have a more complex temporal develo
which can be minimized (but not eliminated) by employing very short stimuli; in contrast, the long sti
used by Pierce expose these interactions to the full.

The numerous factors influencing the integration of evidence derived from different processes is appa
experiments concerning the segregation of speech on the scale of sentences. Brokx and Nooteboom
resynthesized nonsense sentences using a monotone pitch different from the constant pitch of con
interfering speech. This task is unlike double-vowel identification, in that, in addition to f0 differences,
monotone utterances may be distinguished by the common temporal modulations within each voice, a
subject to wider linguistic-semantic constraints. This greater complexity reveals an interesting trend: w
segregation of static vowels has plateaued at 12% difference in f0 (Assmann and Summerfield, 1990), Brokx
and Nooteboom saw an approximately linear benefit of pitch separation on intelligibility out to a p
difference of 20%. More recent studies by Bird and Darwin (1998) have followed this trend out to
differences in f0.

5.B Models

Although the time dimension provides grouping mechanisms with extra information, it adds a great d
complexity to the computational task when compared to the problem posed by double vowels. We wi
look at some of the models that have dealt with these issues by emulating aspects of the organ
performed by human listeners on sound scenes at the scale of utterances.

Weintraub (1985) described the first computational model explicitly motivated by experimental studi
auditory organization. His goal was to separate mixtures of two simultaneous voices, with a vie
improving automatic speech recognition applied to each voice. His system used auto-coincidence (
complexity version of autocorrelation) of simulated auditory nerve impulses to separate signals of dif
periodicities in different peripheral frequency bands. Context dependence was included in the form
Markov model tracking the states (silent, voiced, unvoiced or transitional) of each speaker; the op
labelling provided by this model controlled a dual-pitch tracking algorithm and guided the division o
signal energy into spectra for each of the two voices. Although the benefits of his system (measured th
speech recognition scores) were equivocal, he prepared the ground for subsequent modeling
particularly in identifying the weaknesses of working solely from local features without the influence of
down factors.

Cooke’s (1991/1993) system decomposed the acoustic mixture into a set of time-frequency tracks
“synchrony strands”, then grouped these components using harmonicity (for the lower frequency re
partials) and common amplitude modulation (for the mid-high frequency unresolved partials). Harm
grouping employed a temporally-extended form of Scheffers’ harmonic sieve, illustrated in figure 4
main advantage of this scheme lies in the fact that tracking decisions are made locally in frequency.
grouping relies on identifying each distinct element correctly, situations where features collide and cro
lead to catastrophic mislabellings if the wrong continuations are tracked after the collision. Cooke’s algo
handles sounds with crossing fundamental frequency contours because attributes such as pitch are ca
after the tracking of partials, which themselves are less likely to manifest crossing due to the local sp
dominance of one or other source. A further benefit is that the likelihood of a partial falling into an inco
1999 Oct 25 17
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sieve ‘groove’ decreases rapidly with the duration of the sieve. To illustrate the generality of the appr
Cooke’s model was tested on 100 mixtures of sentence material combined with other acoustic so
including other sentences. In each case, a worthwhile improvement in signal-to-noise ratio was
(Different approaches to evaluation are discussed in section 7).

Similar considerations motivated Mellinger (1991) in his study of musical separation. His model tra
spectral peaks across time, grouping peaks with similar onset times or with common frequency modu
Mellinger’s system, like real listeners, maintained an evolving organization, in contrast to Cooke’s app
which left all processing until the end of the signal. Newly-detected harmonics had a fixed ‘grace perio
build up affinity with existing harmonics, after which they were added to a group, or used as the basis
new group. Mellinger used the Reynolds-McAdams oboe as one of his test signals; the sudden cha
perception from one to two sources in that sound is reflected in an abrupt change in his model’s organi
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Figure 4: Time-frequency representation and grouping used in Cooke (1991/1993). Upper: synchrony str
and grouping indications for a natural syllable. Strands corresponding to resolved harmonics are visible in
low frequency region. In the mid-high frequency region, strands represent formants F2-F4. The line w
encodes instantaneous amplitude, and a clear pattern of amplitude modulation is visible. Lower: synch
strand representation of the lower spectral region for a completely-voiced utterance, overlaid by a time-frequ
harmonic sieve (thin lines). Strands which fall between pairs of sieve lines are deemed to belong to the
source. In the upper panel, the frequency axis is linear in ERB-rate and covers the frequency range 100-300
The lower panel is linear in Hz and covers the range 100-1200 Hz.
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when the initial single source loses the even harmonics to a newly-spawned group (corresponding
soprano) which has a greater internal coherence of frequency modulation.

Brown (1992) also used a decomposition into partials, and introduced two further innovations. Fir
computed a local pitch for each partial by combining the summary autocorrelation function (see figur
the previous section) with the local autocorrelation function in the spectral region occupied by the p
This has the effect of emphasizing the relevant pitch peak in the summary, which is used to defin
underlying pitch contour for each partial. Second, Brown employed a tonotopically-organized computa
map of frequency movement to predict the local movement of partials. His system searched for gro
elements with common pitch contours, favoring sets with common onset times. Brown compare
approach to that obtained using frame-by-frame autocorrelation-based segregation and found that th
temporal context produced a substantially larger increase in SNR for the target sentence in a mixture

5.C Discussion

Defining an element

The dominant paradigm for auditory organization, presented by Bregman (1990), involves an analysis
sound signal into basic elements, defined by their locally coherent properties, from which grouping cue
be calculated and for which grouping decisions can be made. In simple experimental stimuli consist
sine tones and regular noise bursts, the circumscription of such elements is usually unambi
unfortunately, this is not the case for the noisy, complex sound scenes encountered in the real
Modelers have often dealt with this problem by limiting their elements to be those defined by strong sp
peaks, but the ability of listeners to organize all kinds of noisy signals may demand a more compreh
approach. Recent modeling work has attempted to cover a wider range of sounds. Ellis (1996) sugge
a simple vocabulary of tonal, noisy and impulsive elements may encompass most perceptually-salient s
and Nakataniet al.(1997) present a detailed ontology of the signal attributes characteristic of different cla
of sound such as speech and music. However, more sophisticated elements tend to be harder a
ambiguous to fit to a particular signal.

Different groupings for different attributes?

Darwin and Carlyon (1995) have cautioned that grouping should not be considered an ‘all-or-none’ pr
Certainly, the interaction of cues in grouping makes it misleading to search for a single threshold at w
feature such as mistuning or asynchrony will lead to segregation: these thresholds depend on the contr
of the other cues in a particular experimental paradigm. The deeper point, however, relates to results
for a single stimulus continuum, measurements based on different attributes give different gro
boundaries. Thus, when a resolved harmonic is mistuned relative to the others in a complex, subjects p
the harmonic as distinct for detunings of 2%; however, it continues to have an influence on the pitch
perceive for the remaining complex out to mistunings of 8% or more (Moore et al., 1985). Darwin
Carlyon see this as evidence for separate grouping processes simultaneously at play – one for the pe
of the number of sources, and a different one for the calculation of pitch. There may be an alter
explanation of this as an artifact of the pitch-calculation mechanism’s limited ability to respond to differe
in organization: even when the harmonic is fully distinct at the abstract percept level, some of its s
characteristics still ‘spill’ into the pitch calculation of other percepts. This explanation is at odds, how
with the results of Ciocca and Darwin (1993) showing that a sufficiently large onset-time difference
completely remove the contribution of the mistuned harmonic from the pitch of the residual, a phenom
not attributable to low-level adaptation since it can be released by providing an ‘alternative’ group to ca
the leading portion of the harmonic.

Expectation as the mechanism for combining information along time

Thus far we have been concerned with the grouping of individual ‘atomic’ elements. There is, howe
higher level at which information could be combined along time, namely via the influence of ‘expectat
– short-term biases towards entire interpretations. Thus, in the experiments of Hukin and Darwin (19
harmonic is partially removed from a complex because it is captured by a stream set up in a pre
1999 Oct 25 19
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sequence of isolated harmonics. This grouping is altered not by any change in the local features of the
harmonic, but by the context of the preceding captor harmonics predisposing the auditory system to tr
harmonic as part of the stream and not the complex. The captor set up an expectation that energy in a
frequency region formed a continuation of the captor stream; The existence of a gap between the cont
the stimulus fragment implies a process operating above the level of elements discussed so far. Howe
demonstration that information can exert influence beyond the boundaries of a single region of e
suggests that the model underlying this section may be unneccessarily narrow: It is possible tha
asynchrony sets up an ‘expectation’ to affect the harmonics whose beginning it marks, without
specifically attached to those harmonics. This raises the questions of how ‘expectations’ are represen
how they exert their influence. The following section considers the action of top-down influences in
detail.

6. Context, expectations and speech

Detailed and reliable perceptions of the world turn out to be based upon surprisingly slender and imp
stimulus information – such as the very limited angle of view of the fovea, or heavily-masked speec
crowded room. We are able to operate with limited information in part because our perceptual sys
extremely efficient at exploiting and integrating constraints concerning what we ‘know’ to be the plau
range of alternatives in any given situation. Thus, implicit assumptions of constancy make it unneces
scan continuously every item in a visual scene. Similarly, when listening to partially-masked speec
experience of what comprises a ‘reasonable’ utterance (in a grammatical or semantic sense) may prov
enough information to construct an impression of how the original speech might have sounded. These
of cognitive function involving knowledge and expectation are poorly understood and difficult to rese
yet they of are central importance to auditory perception.

Progress in automatic speech recognition in the last decade has been due in a large part to su
techniques for combining ‘bottom-up’ information derived from the input signal with ‘top-down’ constra
imposed by the recognizer’s knowledge of vocabulary and grammar. Speech perception is a spec
instance of the principle that expectations are used to facilitate perceptual organization; later in this s
we will discuss some of the emerging work on integrating models of auditory scene analysis with s
recognition systems. First, we look at some of the experimental results demonstrating this principle in a

6.A Listeners

Local context and “old-plus-new”

An expectation is a state of the auditory processing system that will substantially affect the interpretat
a subsequent stimulus. A classic illustration of such an effect is the way in which listeners compens
the spectral coloration imposed on a signal by the transmission channel. Thus a simple filter can conv
vowel sound in an utterance of “bit” so that, when heard alone, a listener will hear it as “bet” (Watkins, 1
as discussed by Assmann and Summerfield, in press). However, if the altered word is prefixed with a
phrase (“Please repeat the word: bit”) modified by the same static coloration, the word is restored
original phonetic identity. Through exposure to the longer sample, the auditory system has separa
effects of source speech and channel coloration, and has compensated for the latter in the interpretatio
target word. This is anexpectationbecause the inference of channel characteristics from the carrier ph
makes a categorical difference to the perception of the target word; the expectation that the chann
continue to color the speech has altered the treatment of the stimulus. However, other explanatio
possible: listeners may adapt to channel characteristics or be sensitive to changes in spectral shape o

Expectation encompasses the general principle of auditory perception termed “old-plus-new” by Bre
(1990), related to the powerful real-world constraint of the independence of sound sources. Any a
change in the properties of the signal probably reflects a change in only one source, and a change in the
spectrum that consists of only an energyincrementwill be interpreted as theadditionof a “new” source, while
all the existing “old” sources continue unchanged – the signal following the change is interpreted as
1999 Oct 25 20
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old-plus-new, and the properties of the new source are effectively calculated by finding the diffe
between the signal before and after the change.

The old-plus-new idea is illustrated in figure 5 (after Bregman, 1990, p. 344). The alternation between n
and broader bands of noise is heard not as switching between two different signals but as a continuo
noise to which high noise bands (the difference between the narrow and the broad) are periodically
Physically, the two interpretations are equally valid, but the auditory system irresistibly chooses divis
frequency because it meets the old-plus-new criterion. The interpretation as the alternation between
noise bands would require the less likely event of the narrow band of noise turning off at the very insta
the broader band turns on.

Continuity and induction

The most dramatic consequences of expectations in the auditory system occur when an object or so
perceived in the absence of any direct, local cues to its sound. In these situations, the perceived o
‘induced’ from expectations set up by its context.

The simplest illustration of induction is the continuity illusion (Bregman, 1990, p.28, studied earlier a
“pulsation threshold” e.g. in Houtgast, 1972 and in Thurlow and Elfner, 1959). If a steady tone has a
burst of wideband noise added to it, the energy of the noise may mask the tone, leaving the auditory
without direct evidence that the tone is present during the noise (indeed, for increasingly intense and/o
noise bursts, it is impossible to say if a tone is present with any certaintya posteriori). In these circumstances,
the percept is typically of the tone continuing during the noise despite the absence of tonal features fr
stimulus during the burst. The auditory system rejects the interpretation that the tone has ceased du
noise burst since, although it is an adequate explanation of the stimulus, it violates the old-plus-new pri

More complex examples of auditory induction are provided by the phonemic restoration pheno
investigated by Warren (1970) and others. In the original demonstration, a single phoneme (the firs
“legislatures”) was attenuated to silence then masked by the addition of a cough. Not only were lis
unaware of the deleted phoneme (the speech was heard as complete), but they were unable to specify
timing of the cough, making a median error of 5 phonemes. Evidently, auditory processing had exploit
redundant information in the speech signal (co-articulatory, phonotactic and semantic) to ‘induce’ the id
of the masked (missing) segment, a process so complete that, at the level of conscious introspection
indistinguishable from ‘direct’ (non-restored) hearing. Subsequent experiments showed that a ke
occurring several syllablesafter the masked segment could provide the semantic constraint to restore
deleted phoneme, since listeners would reliably perceivedifferentrestorations for stimuli that differed only
in the final keyword (Warren and Warren, 1970). These results demonstrate not only the very powerful
of expectation in the perception of speech, but also that ‘expectations’ can operate backwards in
Induction also appears to operate between ears (“contralateral induction”, Warren and Bashford, 197
across the spectrum (“spectral induction”, Warrenet al., 1997). In the latter study, the spectrum is reduce

Figure 5: Schematic representation of the alternating narrow- and broad-
band noise stimuli, and its perceptual organization, illustrating the principle
of old-plus-new.
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down to two narrow signal bands with a commensurate reduction in intelligibility. The introduction o
intervening spectral band of noise then modestly increases intelligibility.

Speech information can be combined across regions disjoint in both time and frequency, as demonstr
“checkerboard noise” masking experiments of Howard-Jones and Rosen (1993). They used stimuli in
speech was alternated with noise in several frequency bands, such that half the bands carried unob
speech while masking noise was added to the interspersed remainder, and the pattern of noisy an
channels flipped every 50 ms to give noise interference that resembled a checkerboard on a log-fre
spectrogram. They found that for a two-channel division (above and below 1.1 kHz), listeners were a
tolerate a level of checkerboard noise 10 dB higher than control conditions of noise gated in one chan
continuous in the other, demonstrating that information from separate frequency regions was being inte
across time. (For wideband pink noise gated at 10 Hz – i.e. simultaneous ‘glimpses’ in high and low cha
– a further 7 dB of SNR decrease was acceptable). Their result supports the notion of a central
hypothesis (another kind of ‘expectation’) that gathers information from any available source, rathe
more local processes acting to integrate information only within frequency channels. There are num
other unnatural manipulations of speech from which listeners recover intelligibility; see Cooke and Gre
press) and Assmann and Summerfield (in press) for further discussions.

Speech as the best explanation

The capacity to infer the presence (and identity) of speech with limited evidence is well demonstrated b
wave speech (Baileyet al., 1977; Remezet al., 1981, 1994), in which the time-varying frequencies and leve
of the first three of four speech formants are resynthesized as pure sine-tones, removing cues to the ex
source present in the original. Although listeners hear sinewave utterances as a combination of whist
interpretation that might be expected), they are often able to interpret them as speech, particularly w
instructed.

The combined perception of whistles and speech make sine-wave utterances similar to so-called “d
phenomena (Rand, 1974; Liberman, 1982), in which some portion of the stimulus (e.g. an isolated fo
transition) is interpreted both as part of speech and as an additional source. For instance, Gardner and
(1986) showed that the application of frequency modulation to a harmonic near to a formant in a syn
vowel caused the harmonic to stand out perceptually but at the same time to contribute to the vowel p

A third example of the very powerful predisposition of the auditory system to interpret the most tenuo
stimuli as speech comes from the description of “temporal compounds” by Warrenet al. (1990, 1996). The
later study employed looped vowel sequences. Each sequence was formed from a random concaten
six 70 ms synthetic vowels. The resulting token was played repeatedly with no intertoken silence. Lis
could no longer identify the individual vowels or their order. Instead, the sequence fused into a tem
compound in which listeners often heardtwo simultaneous voices pronouncing syllable sequences. T
auditory system appears to reconcile the contradictory speech cues by relaxing the constraint that
interpreted as a single voice, rather than abandoning a speech-based interpretation. The syllable
invariably drawn from the set commonly used within the native language of the subject, with the resu
even given that inter-subject agreement of the perceived syllables was not very strong, speakers of d
languages would interpret the same stimulus very differently. Compare these results to phonemic resto
which can be seen as an interplay between the local cues of context, and the underlying linguistic cons
in these artificial vowel stimuli, the local cues are largely invalid (since the signal is not, in fact, real spe
so the interpretation relies primarily upon the long-term constraints, expressed as the acceptable ‘syl
for the listener’s native tongue.

Studies like these reveal the auditory system’s strong tendency to interpret any credible signal as s
invoking a wide range of constraints derived from language structure and the content of the message.
constraints can form a very powerful basis for overcoming distortions and masking in the original sign
the next section, we describe computational models that have addressed the application of expectati
other high-level constraints in the interpretation of auditory scenes.
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6.B Models

Blackboards and explanation-based systems

The perceptual phenomena described above highlight the importance of stored knowledge and expe
in permitting the interpretation of sound. A popular approach in modeling has been to use collectio
knowledge sourcesencapsulating specific, limited aspects of the necessary knowledge, and able t
independently to solve the larger explanation problem. Knowledge sources typically co-operate thro
common data structure, called ablackboard. Several systems for computational auditory scene analysis h
been built around blackboard architectures (Carver and Lesser, 1992; Nawab and Lesser, 1992; Cooket al.,
1993; Nakataniet al., 1998; Ellis, 1996; Klassner, 1996; Godsmark and Brown, 1999). Blackboards sup
an arbitrary combination of data-driven and hypothesis-driven activity, making them suitable
incorporating higher-level knowledge of use in the source separation task. For example, the h
representational level of Klassner’s system is a set of “source-scripts”, which embody the tem
organization of source sequences such as the regular patterning of footfalls.

One common feature of the blackboard models is the importance placed on generating con
explanations forall of the acoustic evidence. Nakataniet al. (1998) call their system aresidue-driven
architecture. Events (in their case groups of harmonically-related elements) are continuously tracke
predictions about the immediate future are made. These predictions are compared with the actual o
and the discrepancy, orresidue, is computed by subtracting the prediction from the remaining mixtu
Residues require explanation, often by the creation of new trackers. In this way, their scheme em
Bregman’s old-plus-new principle.

Klassner’s (1996) blackboard system also focuses on discrepancies between the observed signal feat
those that would be consistent with the current explanation. In his case, however, the discrepancies
resolved either by modifying the explanation or by changing the parameters of the front-end s
processing algorithms used to generate the features. Since the optimal values for factors such a
bandwidth and energy thresholds depend on the detailed conjunction of sources present, his system
those parameters within the control of the blackboard procedures – in sharp contrast to the fixed sing
signal-processing employed in other models. His system comprises a dual search in explanation sp
signal-processing parameter space to find the best explanation for a given sound scene in terms of 39
templates for everyday sounds such as “car engine” and “telephone ring.”

Ellis’s (1996) thesis presents “prediction-driven CASA” as an alternative to the data-driven sys
described in section 5. Motivated more closely by auditory realism than the other blackboard system
system constructs accounts of the input sound in terms of “generic sound elements” to act as the link b
raw signal properties and abstract source descriptions. Most earlier systems for CASA were limited
separation of voiced sounds, and their choice of representations (e.g. tracked partials) reflected th
Ellis’s system sought to model unvoiced sources such as noise bursts or impulses, through an expan
its representational vocabulary. The uncertainty implicit in modeling noise signals further led to a sy
tolerant of hypotheses for which direct evidence might be temporarily obscured, a framework consisten
the induction phenomena mentioned in section 5A. In Ellis’s system, periodic sounds are treated as a
case, with a correlogram-based pitch tracker triggering the creation of “wefts” (i.e. coherent sets of p
threads; Ellis, 1997a) that provide an estimate of the energy at a given modulation period in each freq
channel. The number and timing of events identified by Ellis’s system were in good agreement wit
sources identified by listeners in the ambient sound examples such as “city street”.

Motivated by the goal of reproducing complex perceptual phenomena like ambiguity and restor
blackboard-based systems have the potential to exhibit very complex behavior arising from the interac
their abstract rules. However, crafting the knowledge bases is a slow and difficult art, which offe
obvious solution to unrestricted, full-scale problems. Although this may not be a direct concern, progr
fields such as speech recognition suggests the superiority of ‘fuzzier’ techniques in modeling perc
interpretation tasks, and in particular the value of, exploiting training data to tune system parameters.
are also more rigorously-motivated approaches to the problem of integrating widely disparate sour
knowledge; the OPTIMA system of Kashinoet al. (1998) approaches the problem of analyzing compl
1999 Oct 25 23
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acoustic signals – in their case, polyphonic music – through the probabilistic-theoretic framewo
Bayesian networks.

Integration with speech recognition

Computational auditory scene analysis offers a possible solution to the serious challenges of robust au
speech recognition. Lippmann (1997) has argued that current approaches to robust ASR (reviewed in
1995; Junqua and Haton, 1996) are far less flexible than those employed by listeners. In addition
variability caused by reverberation and channel distortion, recognizers in real-life environments have t
with the nonstationarity of both target and interfering sources and the fact that the number of sources
at any moment is generally unknown. CASA is attractive because it makes few assumptions about the
and number of sources present in the mixture reaching the ears, relying only on general properties of a
sources such as spectral continuity, common onset of components, harmonicity, and the various
potential grouping cues described in earlier sections.

Several attempts have been made to integrate CASA with ASR. The most common approach uses C
a sophisticated form of speech enhancement, relying on an unmodified speech recognizer to do the re
instance, Weintraub (1985) passed separate resynthesized signals to a hidden Markov model
recognizer. Similarly, Bodden (1995) used binaural preprocessing prior to ASR. The main attraction
speech enhancement route is that it allows use of existing criteria in assessing the performance of a
system: As well as SNR improvements and ASR recognition rates, the intelligibility and naturalne
CASA-enhanced speech can be measured through listening tests.
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Figure 6: Example figure from Ellis (1996). The top panel shows a 10 s excerpt of “city-stre
ambience” represented by its time-frequency energy envelope and summary periodogr
Elements below are the ‘explanation’ of the scene in terms of generic sound elements, along
the distinct sound events reported by listeners in a subjective test. EXPLAIN MORE
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The enhancement-only implementation of CASA has been much criticized of late (see, for exa
Bregman, 1995; Ellis, 1996; Slaney, 1998; Cooke and Green, in press) – although the weakness was c
recognized even by Weintraub (1985). Slaney (1998) presents a “critique of pure audition” in whic
argues against a purely data-driven approach to auditory scene analysis, inspired by an analysis of to
pathways and processes in vision (Churchlandet al., 1994). Bregman (1995) too has warned against t
“airtight packaging” of segregation as a preliminary to recognition, invoking duplex perception of spee
an instance where recognition overrides segregation, thereby “defeating the original purpose of bott
ASA”.

An alternative approach to the integration of CASA and ASR has been proposed by Cookeet al. (1994). This
scheme relies on CASA to produce an estimate of spectro-temporal regions dominated by one or other
in a mixture, and applies missing data techniques to recognize the incomplete pattern. It fits naturall
channel selection schemes such as that of Meddis and Hewitt (1992) described earlier in the con
double-vowel identification. Channel selection is further inspired by neurophysiological oscillator mo
discussed in section 7. The missing data strategy works on the assumption that redundancy in the
signal allows successful recognition with moderate degrees of missing data. Robust recognition perfor
in the face of missing data can be obtained, and further improvements are possible when models of a
spectral induction (Warrenet al., 1997) are incorporated (Greenet al., 1995; Morriset al., 1998).

Auditory induction – or, more generally, the effect of perceived auditory continuity – has motivated a nu
of CASA systems. Ellis (1993) argued that restoration would be necessary to overcome obscured fea
data-driven system, and his system makes the inference of masked regions a central part of the pre
reconciliation analysis (Ellis, 1996). Okunoet al. (1997) described a scheme in which the residue remain
after extracting harmonically-related regions is substituted in those temporal intervals in which no har
structure could be extracted, arguing that this residual is a better guess for the continuation of the voicin
silence would be – since, at the very least, it will permit induction in listeners faced with the resynthe
signal.

Ellis (1997b) makes a specific proposal for incorporating speech recognition within scene analysis. Exte
his prediction-driven approach, he includes a conventional speech-recognition engine as one
“component models” that can contribute to the explanation of a scene. An estimate of the speech spe
based on the labeling from the speech recognizer, is used to guide the analysis of the remainder of th
by nonspeech models; this re-estimation of each component can be iterated to obtain stable estimat
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Figure 7: The upper panel shows an auditory spectrogram for the utterance “GIVE ME
CRUISERS DEPLOYED SINCE TWENTY TWO DECEMBER” mixed with Lynx helicopter noise
at a global SNR of 18 dB. Dark regions of the lower panel indicate those areas where the local
is positive. Attempts to recognize the mixture with a conventional recognizer yielded “IS
HORNE+S FOUR DECEMBER” while use of first-generation missing data techniques via the lowe
mask produced “GIVE CRUISERS DEPLOYED SEVENTH DECEMBER”.
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6.C Discussion

The significance of expectations

This section has focussed on the role of expectations and abstract knowledge in auditory perception,
efforts to model these effects. Although some of the stimuli involved are contrived, there are impo
implications from the demonstration that, in the absence of adequate direct cues, the auditory syste
employ information from elsewhere to build its interpretation of a scene – and, as seen in the original W
(1970) experiments, that this kind of ‘restored’ information is consciously indistinguishable from ‘dir
evidence. Given the enormous power of high-level constraints to restrict the range of interpretations tha
be considered, listeners might be inclined to rely on inference in many circumstances besides those in
information has been obscured. Clearly, perception exists as a compromise between finding direct ev
of particular sources and the mere absence of contradictory evidence.

Retroactivity

Certain perceptual phenomena, starting with the phonemic restorations which depended on a later k
(Warren and Warren, 1970), but including much simpler signals such as noise bands of abruptly alter
bandwidths (Bregman, 1990), show that the interpretation of a sound must sometimes wait for as m
several hundred milliseconds or longer before it can be finally decided. Examples such as the Rey
McAdams oboe (Mellinger, 1991) illustrate an initial organization which is consciously revised i.e.
listener is aware of the change in organization. Blackboard systems such as those of Klassner (1996) a
(1996) that maintain multiple alternative hypotheses can exhibit backwards influence in ce
circumstances; the system of Godsmark and Brown (1999) explicitly grows its “decision window”
ambiguity can be resolved. Ultimately, models may need an exceptional ability to return to and r
decisions that were previously considered complete, although it is not clear at what level of represen
this reassessment might apply.

Duplex perception, masking, and auditory induction

The idea that a single speech fragment can simultaneously be both perceptually segregated (i.e. ex
separate source) and perceptually integrated (i.e. contribute to a phonetic judgement) may be tied up w
notion of auditory induction. It is easy to conceive of an architectural arrangement in which primitive
such as differences in harmonicity give rise to assignments of harmonics to different streams, but wh
exist with top-down expectations looking for evidence of speech. Since differences in harmonicity for a s
formant, for instance, only serve to redistribute rather than to remove energy in a given spectral regio
possible that the mistuned harmonics appear as suitable material to ‘complete’ a phonetic hypothesis.
is readily identifiable with large spectral regions removed (Fletcher, 1953; Steeneken, 1992; Warrenet al.,
1997; Lippmann, 1996). Thus it is hardly surprising that identification is possible when otherwise mi
regions (perceptually segregated harmonics) contain some energy. This argument can be extended
other duplex phenomena as long as auditory induction is allowed to operate on the source mixture, si
duplex fragment is likely to provide a credible masker for the missing structure.

7. Issues in models of auditory organization

What is the goal of computational auditory scene analysis?

The common goal of CASA systems is the intelligent processing of sound mixtures, but individual sys
differ both in the kind of sounds that are handled and in the information about them which is to be extra
Some approaches seek to pluck a particular signal out of an interference whose properties are ess
ignored (e.g. the enhancement of the target voice in Brown, 1992), while others are concerned with m
a complete explanation ofall components in the acoustic mixture (e.g. Ellis, 1996). The former ‘tar
enhancement’ approach pursues algorithms with broad applicability by making the fewest assumption
only that the interference will be lower in energy than the target over a significant portion of the t
1999 Oct 25 26
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frequency plane). By contrast, ‘complete explanation’ accepts the added complexity of characte
portions of the signal that are to be discarded, in the belief that this is necessary to reproduce huma
context-adaptive processing in which the interpretation of a target is influenced by non-target compo
Such influences include the requirement of a plausible masker (Warrenet al., 1972).

Evaluation

Resynthesis of an enhanced target in a mixture permits system evaluation via listening tests. Most
systems possess one or more internal source representations which can be used for resynthesi
researchers have argued that an adequate model should represent all the perceptually-significant info
about a sound, and be able to resynthesize sources without further reference to the original mixture
1996). While this latter approach escapes the problems with overlap in time and frequency, the disto
associated with highly nonlinear analysis and resynthesis techniques present formidable challen
creating high-quality output. Mistakes in grouping assignments often become very prominent in resyt
although this can be uncomfortable for the modeler, it also carries a diagnostic benefit.

The systems of Cooke (1991/1993) and Brown (1992) were both evaluated through a calculation of th
improvement on test mixtures. Since energy in an output signal cannot be directly associated with a
input component, both evaluations posed a correspondence problem. Cooke classified his “strand” el
for closeness to representations of the separate input components, whereas Brown was able to calc
attenuation from his time-frequency mask for target and interference presented in isolation. Ellis (
sought a more perceptual measure of separation success by conducting listening tests in which subje
asked to rate, on a subjective scale, the resemblance of resynthesized components to the individual
they heard in the full original mixture.

Other approaches to evaluation include speech recognition and intelligibility scores (Weintraub,
Bodden, 1995; Okunoet al., 1997), and simulations or equivalents of psychoacoustic tests.

Unlike large-vocabulary automatic speech recognition or message understanding, computational a
scene analysis lacks a formal evaluation infrastructure at present. This makes it difficult to gauge str
and advances both within the CASA community and between the various alternative approaches
problem of understanding sound mixtures (see below). One suggestion for evaluation comes from Oket
al. (1997), who propose the simultaneous transcription of three speakers, so chosen because it guaran
the average SNR will be below zero. This challenge problem is interesting because it will clearly rewa
integration of scene analysis with speech recognition systems, although its focus on speech may byp
issues of ‘environmental sound’ recognition that some see as more fundamental (Ellis, 1996).

Neurophysiological plausibility

In a biological system, how are features which originate from the same source marked as belonging tog
Von der Malsburg and Schneider (1986) called this the “binding problem” and suggested a computa
solution in which neurons encoding a common environmental cause are grouped by synchrony o
temporal response. This elegant proposal allows grouping to be represented ‘in place’, without the ne
separate neural structures dedicated to representing the results of grouping. Their implementation
networks of neurons whose output is characterized by an oscillatory pattern. They demonstrate bind
responses, marked by a common phase of oscillation, in a simple auditory example in which common
and simultaneous activity in different frequency bands give rise to grouping between the channels.
proposal also allows an attentional mechanism to ‘strobe’ the temporal pattern and get an unobstru
incomplete, view of the attended source (Crick, 1984).

These ideas have been actively researched in vision, where a similar binding problem exists for
segregation. These investigations have received added impetus from physiological studies which ap
show that visual stimuli can elicit synchronized oscillations across disparate regions of the visual cortex
et al., 1989). Although specific evidence of visual binding through oscillations has failed to appear
mechanism retains its attraction.

Liu et al. (1994) applied neural oscillator models to speech recognition. Strictly, their model does not ad
auditory grouping, but can nevertheless be interpreted as a mechanism for schema-driven groupin
1999 Oct 25 27
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model encodes local peaks in a sharpened mel-scale LPC spectrum as independent sets of oscillation
they assume correspond to vowel formants. These oscillations interact with an associative memory in
formant-vowel associations are hard-wired. Reciprocal top-down and bottom-up activation lea
synchronized oscillations in those spectral regions which globally correspond to a known vowel.

Recently, a number of studies have sought to account of auditory grouping phenomena in terms of
oscillators (see Brownet al., 1996, for a review). Brown and Cooke (1998) presented an oscillator mo
which can account for a number of streaming phenomena, including grouping by frequency and tem
proximity, the temporal build-up of streaming, grouping by common onset, and grouping by sm
frequency transitions. The same model, operating on a different input representation, can also acco
grouping by common fundamental (Brown and Cooke, 1995), and at the same time provide an ad
explanation for the interaction of onset asynchrony and harmonicity (Ciocca and Darwin, 1993). Wan
Brown (1999) extended the oscillatory framework to sentence-level segregation.

Neural oscillator models have been particularly successful at providing accounts of the interaction
combinations, such as common onset and proximity. This is partly due to the limited vocabulary of n
architectures, in which information can only be represented as activations and weights, and thus differe
are necessarily expressed in forms that can be combined. By contrast, a traditional symbolic mo
grouping might represent periodicity and onset time attributes quite separately, requiring both to be f
mapped to some ‘grouping strength’ axis before their interaction could be considered.

Adaptation to context and handling ambiguity

A single fragment can serve widely differing roles depending on its surroundings and other predispos
of the interpreter. Auditory organization models must ultimately include a stage of processing that v
according to some notion of context, but there is a wide range of practice in where this stage is p
Ambiguous signals, whose correct interpretive context is not immediately clear, form an interesting t
context-adaptation.

Double-vowel identification models may have a simple processing sequence with no adaptation or fee
However, once the time dimension is incorporated, the organization of the acoustic information at
instant will depend on the immediately preceding context. At the very least, the top-level groupings
reflect the accumulation of grouping cues between the different sound elements generated by the lowe
of processing, as in Cooke (1991/1993) and Mellinger (1991).

Other systems have intermediate representations, which, for an identical signal, can vary in respo
contextual factors. In Weintraub (1985), these factors are the inferred presence of one or two voi
unvoiced speakers, which determines how many pitches will be extracted and how their associated
will be derived. The system of Ellis (1996) is concerned with signals that may lack any periodicity cue
which case the division of energy into representational units can only be made according to the pre
scene interpretation.

Klassner (1996) incorporates an even greater degree of adaptation by extending the influence of a
hypotheses right down to the numerical signal processing. Klassner’s system employs a criterion of f
the most efficient and appropriate processing for each particular situation. Consequently, the in
representation of the same signal – even when interpreted as the same object – may vary consi
depending on the other signals from which it had to be distinguished during analysis.

Greater degrees of context-adaptation imply more sophisticated approaches to ambiguity. The rigid
models and powerful signal processing of Nakataniet al.(1998) permit each signal frame to be incorporate
into the representation as soon as it is acquired, subject only to pruning of spurious creations. Other s
can delay making grouping decisions for newly-detected energy to allow the accumulation of disambig
information: In Mellinger (1991), the delay is a fixed latency before a new harmonic is assigned to a cl
Brown (1992) operated in two passes, with the grouping decisions made upon the intermediate elemen
when they were completely formed, and all information was available. Weintraub (1985) had a differen
pass structure, with the voice extraction depending on the overall best path from the initial dyn
programming double-voice-state determination.
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Rather than waiting for a unique solution to appear, some systems handle ambiguity by pursuing m
alternative hypotheses (Ellis, 1996; Klassner, 1996; Godsmark and Brown, 1999). Although this appro
computationally expensive, it perhaps resembles listeners by maintaining a set of ‘current beliefs’
partially-observed signal; in real-world situations, one may not have the luxury of waiting for signal to
before commencing analysis. Listeners’ interpretation of complex signals might be best understood
incremental influence of each additional signal cue (as in the alternating noise bands of figure 5); ultim
a correct understanding of human sound organization will probably include a combination of def
alternate hypotheses and hypothesis revision.

Representing and employing constraints

Since the problem of separating one signal into multiple subcomponents has, in its simplest form, inf
many solutions, the problem of auditory scene analysis may be viewed as defining and applying su
constraints to choose a preferred alternative. The nature of these constraints, and the ways in which t
encoded and applied, forms a further axis on which to distinguish between the computational models

Each of the cues in the summary of table 1 corresponds to a constraint, i.e. an assumption of restrict
the form of sound emitted by real-world sources. Thus the cue of harmonicity arises because many
sources generate matched periodic modulation across wide frequency ranges, and the consequent c
is that frequency bands exhibiting matched modulation patterns should be regarded as carrying energ
a single source.

In a system such as Brown (1992) which relies upon them, cues such as harmonicity and synchronize
are directly expressed in the intermediate representation, and thus the ‘knowledge’ of the constraint is i
in the computational procedure rather than being explicitly represented. By contrast, many percep
important constraints – such as characteristic patterns of an individual’s native tongue – are more arb
and must be acquired and recalled, rather than simply computed. This is seen in the templates of K
(1996), which allow his system to have a somewhat abstracted idea of what, for instance, a telephone
a hairdryer sounds like. The system then uses the constraint that any scene must be explained in t
known objects as a way to overcome the intrinsic uncertainty of a complex mixture. Unoki and Akagi (1
formalise Bregman’s ‘heuristic regularities’ as a series of constraints, which they deploy in their gen
purpose auditory scene analysis system.

One glaring difference between computational models and real listeners is the ability of the latter to
many of their constraints simply through exposure to the world. Future computer models may exhib
kind of learning, but await a more detailed understanding of the nature of these constraints.

Comparison with other approaches to source separation

CASA is not the only approach to the source separation problem. Three distinct alternatives are non-a
signal processing methods, model-based source decomposition and blind separation.

Non-auditory signal processing methods typically make use of similar or identical cues to those emplo
CASA systems, but operate without auditory inspiration or constraint. For instance, in systems of this
(Parsons, 1976), the harmonicity cue can access frequency spectra (based perhaps on narrowban
which have a larger number of resolved harmonics than is predicted by auditory frequency reso
Similarly, Denbigh and Zhao (1992) describe a pure signal processing system which combines binau
fundamental frequency cues.

Model-based source decomposition involves finding the ‘optimal’ explanation for a number of simultan
sources in terms of prior models for each of the sources. In HMM decomposition (Varga and Moore, 1
a mixture of two sources is decoded by determining the most probable pairing of HMM states as a fu
of time. HMM decomposition requires models for all constituent sources and is computationally expe
when both source models have a realistic number of states. The technique also requires the number of
to be fixed in advance. Model-based decomposition can be considered as an implementation of a
schema-driven approach to CASA.
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Blind separation (BS) techniques are motivated by the statistical independence of sources in a m
(Comon, 1994; Bell and Sejnowski, 1995). They attempt to invert the mixing process without
knowledge of the statistical distribution of the component signals. At present, BS is very effective u
certain conditions. These include the assumption that the number of component signals is known and
that their temporal alignment is known, that the mixing process is linear and constant, and that there
least as many sensors as signals. This collection of conditions represents an ideal which is never obt
natural listening conditions. Consequently, much current research effort in blind separation is aim
relaxing some of these constraints (e.g. Torkkola, 1998; Lee et al, 1997).

Van der Kouwe et al (1999) compared CASA and BS approaches to speech separation using the co
sound mixtures developed by Cooke (1991/1993). They measured the SNR of the target speech signal
and after segregation, and found that while the chosen BS algorithm (Cardoso, 1997) typically produ
larger improvement than the representative CASA system (Wang and Brown, 1999) on broadband
sources, the CASA system worked best on narrowband noise sources such as tones and sirens. Ho
meaningful comparison is difficult since the BS system utilised pairs of signal mixed in differing proport
(to simulate a pair of sensors), while the CASA system required just the single mixed signal. Van der K
et al concluded that CASA systems operated under fewer constraints (and hence are applicable in
range of listening situations) than current blind separation algorithms.

Conclusion

In the past three decades, auditory organization has come to be recognised as an essential aspect of
listening. Experimental investigations have employed increasingly complex stimuli ranging from rep
tone sequences to double vowels. Further work is required to imrpove our understanding of sound sep
of arbitrary sources in realistic environments. Neverthless, systems which draw inspiration from
perceptual task faced by listeners have shown some success on difficult problems. Applications in do
such as robust automatic speech recognition and automated polyphonic music understanding are st
appear. The goal of general-purpose automated sound scene understanding remains a cha
computational problem.
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Appendix A: Resources for auditory scene analysis

In addition to Bregman’s (1990) book, useful reviews of auditory organization can be found in Darwin
Culling (1990), Darwin and Carlyon (1995), Moore (1997, ch. 7) and Handel (1989). In addition, Vol
336 (1992) of the Philosophical Transactions of the Royal Society of London, Series B is devoted
psychophysics of concurrent sound perception.

In 1995, the first international conference specifically concerned with computational models of aud
scene analysis processes was held in Montreal as a research workshop associated with the Internatio
Conference on Artificial Intelligence. The proceedings of that meeting (Montréal, 1995) and subsequen
(Rosenthal and Okuno, 1998) provide an illustrative cross-section of the diverse approaches to CASA
now prevail. A second CASA Workshop (Nagoya, 1997) documents further recent advances in this
Revised papers from that meeting constitute a special issue ofSpeech Communication (1999, Vol. 3/4).

Other computational perspectives can be found in Cooke and Brown (1994), Summerfield and C
(1995), Duda (1994), Bregman (1995) and Slaney (1998).

Demonstrations: A CD containing many audio examples demonstrating principle governing auditory s
analysis (Bregman and Ahad (1995)Demonstrations of auditory scene analysis; the CD can be ordered from
1999 Oct 25 30



ns of
may

y used
coustic

arga
re less
spoken
e Map
tains

two
ech for
om a
ne for

erimen-

ferent

urrent

, in: The

ounds.

of Ex-

ne se-

onvo-

Pro-
nce,

in Psy-
Whurr,

ppli-
The MIT Press, 55 Hayward Street, Cambridge, MA 02142, USA). Interactive software demonstratio
many of the effects described in this review are part of the MATLAB Auditory Demos package which
be downloaded freely via http://www.dcs.shef.ac.uk/~martin.

Corpora: To date, computational auditory scene analysis has not required corpora of the scale typicall
in automatic speech recognition. Existing speech and noise corpora have been used to create a
mixtures suitable for computational auditory scene analysis. For instance, the NOISEX database (Vet
al., 1992) provides a limited set of noise signals. Corpora produced by post-hoc signal combination a
than ideal, and demonstrate none of the conversational effects or compensations which occur in real
communication. Two corpora of conversational speech which address this limitation are available. Th
Task corpus (Thompsonet al., 1993) provides recordings of several two-person conversations and con
a limited amount of overlapping speech. The ShATR (Sheffield-ATR) corpus (Karlsenet al., 1998), designed
specifically for research in computational auditory scene analysis, involves five participants solving
crossword puzzles in pairs (the fifth person acts as a hint-giver). This task generates overlapped spe
nearly 40% of the corpus duration. Eight microphones provides simultaneous digital recordings fr
binaurally-wired mannikin, an omnidirectional pressure zone mike and 5 close-talking microphones, o
each participant. This corpus is available on CDROM; for more information, see the URL below.

More information is available on these databases at the following web addresses:

NOISEX: http://svr-www.eng.cam.ac.uk/comp.speech/Section1/Data/noisex.html

Map Task: http://www.hcrc.ed.ac.uk/dialogue/maptask.html

ShATR: http://www.dcs.shef.ac.uk/research/groups/spandh/pr/ShATR/ShATR.html
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