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Abstract

This paper describes connectionist techniques for recognition of Broadcast News. The

fundamental difference between connectionist systems and more conventional mixture-of-

Gaussian systems is that connectionist models directly estimate posterior probabilities as

opposed to likelihoods. Access to posterior probabilities has enabled us to develop a num-

ber of novel approaches to confidence estimation, pronunciation modelling and search. In

addition we have investigated a new feature extraction technique based on the modulation-

filtered spectrogram, and methods for combining multiple information sources. We have

incorporated all of these techniques into a system for the transcription of Broadcast News,

and we present results on the 1998 DARPA Hub-4E Broadcast News evaluation data.

1 Introduction

This paper describes recent advances in a set of interrelated techniques collectively referred to

as “Connectionist Speech Recognition”. Specifically, it describes those advances made by the

SPRACH consortium1 that we have incorporated into our large vocabulary recognition system.

Our system uses connectionist, or neural, networks for acoustic modelling, and this single

change from the conventional architecture has led us to investigate new models and algorithms

for other components in the speech recognition process. It is the aim of this paper to describe

the differences between our system and those of others, both to explain the advantages and

disadvantages of the connectionist approach and also to facilitate the transfer of the advances

we have made under the connectionist framework to other speech recognition methodologies.

We are concerned with the transcription of North American Broadcast News. This domain,

and the associated evaluation programme, is described by Pallett (2000). The final systems in

the paper are trained with the full 200 hour Broadcast News acoustic training set released by

NIST (containing 142 hours of speech), although the development systems reported through

the paper have been trained on approximately half of this data (except where noted). For

development we have used the 1997 evaluation data released by NIST (termed Hub-4E-97);

for rapid turnaround of experiments we also defined a 173 utterance subset with a duration of

approximately 30 minutes, termed Hub-4E-97-subset. This subset results in a slightly higher

word error rate (WER) than the full Hub-4E-97 data set. Language models for all experiments

were constructed from the transcripts of the acoustic training data (about 1 million words), 150

million words of broadcast news transcripts covering 1992–96, and a variety of newspaper and

newswire sources. Unless otherwise stated our systems operated with a vocabulary of 65,532

words and a trigram language model.
1http://tcts.fpms.ac.be/sprach/sprach.html
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The paper is organised as follows: section 2 briefly outlines the connectionist approach

to speech recognition, showing how we estimate a stream of posterior probabilities of phone

occurrence. This approach is particularly amenable to the incorporation of novel features and

we describe the modulation-filtered spectrogram (MSG) features and their benefits in section 3.

Another pleasing feature of the connectionist stream-of-probabilities approach has been a com-

putationally efficient means of computing confidence levels that is discussed in section 4. These

confidences are applied to the task of pronunciation modelling in section 5. Over the past five

years we have developed two new search algorithms based on the stack decoder and these are

described in section 6. Finally, all these elements are combined into a complete system that is

applied to the Broadcast News domain in section 7.

2 Connectionist speech recognition

We use the phrase “connectionist speech recognition” to refer to the use of connectionist

models, or artificial neural networks, as acoustic modelling in a speech recognition system

(Bourlard and Morgan 1994). The acoustic model in a “traditional”, generative hidden Markov

model (HMM) system is typically composed of a mixture of Gaussian densities and trained

to estimate the probability that a given state, qk, emitted the observation, xt, i.e., P (xt|qk).

However, an alternative approach is to model P (qk|xt), relating the two as:

P (qk|xt) =
P (xt|qk)P (qk)

P (xt) .
(1)

Since P (xt) is independent of any given state sequence, it acts only as a scaling factor

and P (qk|xt) may be divided by P (qk) to obtain what we refer to as a scaled likelihood,

P (xt|qk)/P (xt). Typically, a phone class is allocated a single state qk and so the acoustic

model is required to estimate relatively few probabilities at each time frame. These posterior

probabilities may be used to form a meaningful display of the speech process. Such a display is

shown in figure 1 for the word sequence one two three with the corresponding phone sequence

/w ah n t uw th r iy/. Each horizontal line in the figure corresponds to a phone, qk,

and its width is proportional to the posterior probability of the class. Phones are arranged in

alphabetic order with the exception of silence (sil), which appears at the top. Time runs

horizontally and the relative positions of each of the eight phones can be easily located in this

example. (The most significant confusion occurs for /dh/ and /th/ at the start of three.)

The diagram highlights the factorization of the speech recognition process into the task of esti-

mating phone class posterior probabilities followed by that of finding the most probable word

3



sil

aa

ae

ah

ao

aw

ax

ay

b

ch

d

dh

ea

eh

er

ey

f

g

hh

ia

ih

iy

jh

k

l


m

n


ng

oh

ow

oy

p

r

s

sh

t

th

ua

uh

uw

v

w

y

z


zh

Figure 1: Phone class posterior probabilities for an instance of the word sequence one two
three. Time follows the horizontal axis and the duration of the utterance is 1.5 seconds.

sequence. Furthermore, the existence of this intermediate stream of probabilities has proven to

be useful for the combination of acoustic features, the estimation of confidence measures, the

generation of new pronunciations and as a component of fast search algorithms.

2.1 Multi-layer perceptrons and recurrent neural networks

We have made use of two connectionist architectures, a standard feedforward multi-layer per-

ceptron (MLP) (Bourlard and Morgan 1994) and a recurrent neural network (RNN) (Robinson

1994). Both take acoustic features at the input, and output phone class posterior probability

estimates. Traditional HMMs typically make use of a vector of acoustic features and their first

and second temporal derivatives. In comparison, the connectionist acoustic models make use

of more acoustic information. In the case of the MLP we commonly use a nine frame window

centred on the frame of interest, i.e., the sequence Xt+4
t−4 = {xt−4, . . . ,xt, . . . ,xt+4}. The re-

current connections of an RNN incorporate information from the start of the sequence to four
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frames into the future, estimating P (qk|Xt+4
1 ).2 We have used three-layer MLPs with a hidden

layer of up to 8,000 units (or about 2.5 million parameters) and RNNs, which use feedback

to accomplish the hidden layer processing, with a feedback vector of 256 elements (approxi-

mately 80,000 parameters). In both cases we use Viterbi training, with the network parameters

estimated using stochastic gradient descent. Further details of the MLPs and RNNs that we

have used, including size, format and training issues can be found in Bourlard and Morgan

(1996) and Robinson et al. (1996).

In any HMM system there is a tradeoff between the number of distinct states and the amount

of acoustic training data available to model each state. We have experimented with this balance

and found that the connectionist models work best with fewer states (and hence more acoustic

information per state) than traditional HMMs. This gives rise to a simpler probability stream to

pass to the decoding stage—for most of our work we use monophone models (i.e., no phonetic

context), as in figure 1.

2.2 Training set vs number of parameters

Concern has previously been expressed, by ourselves and others, that our context-independent

(CI) models could not easily exploit large amounts of training data for tasks such as Broadcast

News. To test this, we used Perceptual Linear Prediction (PLP) (Hermansky 1990) features to

train MLPs for every combination of 4 network sizes (hidden layers of 500, 1,000, 2,000 and

4,000 units) and 4 training-set sizes (corresponding to 1/8, 1/4, 1/2 and all of the 74 hours of

1997 Broadcast News training data, bntrain97). The performance of these nets, measured in

percentage word error rate (WER) on the Hub-4E-97-subset, is plotted as a surface in figure 2.

The results show that significant gains are to be had from increasing model size in step with

training data over the entire range tested. This strongly suggested that using the full 142 hours

of 1997 and 1998 training data and doubling the network size once again to 8,000 hidden units

should be a worthwhile effort. Using special-purpose hardware (Wawrzynek et al. 1996), this

training run took 21 days, totaling some 1015 parameter updates. Again the larger networks

gave lower error rates than the smaller ones: while our best 4,000 hidden unit net achieved an

error rate of 27.2% on Hub-4E-97-subset when combined with the RNN acoustic model, the

error rate for the final 8,000 hidden unit net in the same conditions was 25.4%, reflecting both

the increased model complexity and the improved training targets made available through the

iterative relabelling of the training data with each successive acoustic model.

As training recurrent neural networks is also computationally expensive, the RNNs are also
2The use of more than one frame of context violates the usual HMM assumption that the current observation

is conditionally independent of past (and future) observations given the HMM state.
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Figure 2: Surface plot of system word error rate as a function of the amount of training data
and the hidden layer size.

trained on dedicated hardware—in this case an array of 28 TMS320C30’s (33 MFLOP each)

(Morgan et al. 1992). Memory limitations with this hardware have restricted the RNN size to

256 feedback units.

2.3 Connectionist probability combination

In addition to using two different network architectures, in the course of this work we have

trained models using different features, on different amounts of data and representing different

balances of acoustic conditions. As the RNN output is (asymmetrically) dependent on previous

inputs, we often train pairs of RNNs, with one running forwards in time and the other back-

wards (having a dependency on all frames to the end of input). With all of these probability

estimates, a method for combination of probability streams is necessary; the most straightfor-

ward combination is framewise. A simple linear combination is an obvious choice, but we

have found that a log domain combination consistently outperforms linear ones (Hochberg

et al. 1995). For a set of estimators Pn(qk|xt),
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logP (qk|xt) =
1

N

N∑

n=1

logPn(qk|xt)− B, (2)

where B is a normalizing constant so that
∑
k P (qk|xt) = 1. It is our experience that each extra

model combined in this way reduces the number of errors made by about 8% for up to four

models.

3 The Modulation-Filtered Spectrogram

Two different acoustic feature sets were used in this work: the normalized cepstra derived

from the modified Perceptual Linear Prediction (PLP) (Hermansky 1990) as used in the 1997

ABBOT evaluation system (Cook and Robinson 1998), and a novel representation called the

modulation-filtered spectrogram (MSG) (Kingsbury 1998; Kingsbury et al. 1998).

The modulation-filtered spectrogram was developed as a representation for speech recog-

nition robust to adverse acoustic conditions such as reverberation. It is inspired by several

observations concerning the human auditory system, namely:

• the use of peripheral frequency channels whose bandwidth and spacing increase with

frequency;

• within each channel, preferential sensitivity to particular modulation frequencies (e.g.

below 16 Hz);

• adaptation to the signal characteristics in each channel over a short timescales on the

order of hundreds of milliseconds;

• the use of multiple alternative representations for the same basic signal.

The development of MSG features originated in experience with RASTA processing (Her-

mansky and Morgan 1994), which also used an auditory-like spectral analysis, and achieved

robustness though band-pass filtering of subband energy envelopes. In devising MSG, Kings-

bury took the same basic concept of filtering in the modulation domain but experimented with

a much larger range of filters, looking specifically for systems that performed well with rever-

berant speech and with mismatched train/test conditions. Automatic gain control was included

to further normalize the characteristics within each channel, mirroring adaptation in humans.

Multiple parallel representations were initially introduced by separating the real and imagi-

nary (quadrature) components of the complex modulation-domain band-pass filter used in early
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prototypes. The resulting filters approximated a low-pass filter and its differential, and the con-

siderable gains seen in using the separated components mirrors the benefits found when using

the deltas of conventional features. As with all the parameters, later experiments systemati-

cally varied the filter characteristics of the two parallel banks to optimize performance. Full

details of the development of each stage are presented in (Kingsbury 1998); the final form of

the processing is as follows:

1. The speech signal is segmented into 32 ms frames with a 16 ms frame step, each frame

is multiplied by a Hamming window, and the power spectrum is computed with a fast

Fourier transform (FFT).

2. The power spectrum is accumulated into critical-band-like frequency channels via con-

volution with a bank of overlapping, triangular filters that have bandwidths and spacings

of 1.0 Bark and cover the 100–4,000 Hz range. The critical-band power spectrum is

converted into an amplitude spectrum by taking the square root of the filterbank output.

3. The critical-band amplitude trajectories are filtered through two different infinite impulse

response (IIR) filters in parallel: a lowpass filter with a 0–16 Hz passband and a bandpass

filter with a 2–16 Hz passband. The IIR filters are designed to have at most ±1 sample

of group delay ripple in their passbands.

4. The lowpass and bandpass streams are each processed through two feedback AGC units

(Kohlrausch et al. 1992) in series. For the lowpass stream the first AGC has a time

constant of 160 ms and the second has a time constant of 320 ms, while for the bandpass

stream the first AGC has a time constant of 160 ms and the second has a time constant of

640 ms.

5. Finally, the features from both the lowpass and bandpass streams are normalized to have

zero mean and unit variance on an utterance-by-utterance basis.

For comparison, figure 3 shows spectrograms of the same brief speech segment processed

by the PLP front-end (shown before cepstral transformation) alongside the corresponding first

bank of MSG features (with a modulation passband of 0 to 16 Hz). The automatic gain control

and modulation filtering can be seen to greatly emphasize onsets while suppressing sustained

energy. It is clear that the two representations are very different.

Experiments to compare the performance of the different front ends were performed using

an MLP classifier. Our goal in developing the MLP-based acoustic model was to provide a

useful complement to the existing RNN classifier based on the PLP features. Previous experi-

ence with combining multiple representations has shown that an additional input is most useful
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Figure 3: Comparison of spectrograms based on PLP and MSG processing, illustrating the
effect of modulation-domain filtering. The vertical frequency axis is in Bark units; because the
MSG features are based on signals bandlimited to 4 kHz, they extend only to 14 Bark, whereas
the PLP features continue to 19 Bark.

when it is most different, and that combining two systems can show dramatic improvements

relative to either system alone—even when one system’s isolated performance is significantly

worse, as long as it is also significantly different (Wu 1998).

Further, the MLP system was based on acoustic data bandlimited to 4 kHz, thereby reduc-

ing the acoustic distinction between telephone-quality speech and the rest of the data. Although

throwing away the upper half of the spectrum slightly reduces the overall system performance,

it serves the goal of increasing the differences from the original RNN system. Later exper-

iments with MSG features based on full-band acoustics showed no significant improvement

over the bandlimited variants when combined with PLP-based models.

We conducted initial investigations with several different feature sets (PLP, RASTA-filtered

PLP (Hermansky and Morgan 1994) and MSG) to confirm that the MSG features were indeed

the best choice for combination. These experiments are summarized in table 1. In each case we

trained a 2,000 hidden-unit MLP classifier on the features calculated for one-half of the ban-

dlimited bntrain97 data (i.e., 37 hours), using target labels from the 1997 ABBOT system.

Decodings were performed with relatively aggressive pruning and the test set was the Hub-4E-

97-subset described above. For each feature set the WER was computed using both the MLP

classifier alone and combined with an RNN baseline system (as in section 2.3). The RNN

baseline system consisted of a set of four CI recurrent networks, trained on the bntrain97
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Feature Elements WER% (alone) WER% (RNN combination)

RNN baseline 33.2
plp12N 13 36.7 31.1

ras12+dN 26 44.4 32.5
msg1N 28 39.4 29.9

Table 1: Comparison of different acoustic features alone (MLP classifier) and in combina-
tion with the RNN baseline system on Hub-4E-subset. plp12N refers to 12th order cepstral
coefficients based on PLP-smoothed spectra; ras12+dN refers to 12th order cepstra of RASTA-
filtered PLP spectra plus deltas (note that the RASTA filter was not adjusted for the 16 ms
frame step); msg1N refers to the MSG features. These error rates are elevated due to relatively
aggressive pruning used in the decoding.

data using PLP cepstral coefficients.

These results confirmed our expectations that MSG features based on 4 kHz bandlimited

data offered a significant benefit as part of a combination with the RNN baseline, and were

therefore used as the basis of our subsequent work.

As table 2 shows, MSG features (as used with an MLP and based on reduced bandwidth

data) were not as good as PLP features from the full bandwidth data (as used with the RNN).

However, even in this case, the word error rate was significantly improved by combining these

two subsystems. The first column of the table shows this improvement. However, the second

column shows that almost none of this improvement was obtained on the prepared, studio

component of the shows (labelled F0 according to the Hub-4 conventions); rather, as shown

in the third column, essentially all of the improvement was achieved for signals that were

degraded in some manner.

system ALL F0 non-F0

RNN using PLP 27.2% 14.4% 35.2%
MLP using MSG 29.7% 17.7% 37.2%

Frame level combination 25.4% 14.3% 32.3%

Table 2: Word error rates for RNN subsystem using PLP features, MLP subsystem using MSG
features, and combined system. F0 is the studio quality prepared speech condition. Scores are
for the Hub-4E-97-subset.

4 Confidence Measures

A confidence measure on the output of a recognizer may be defined as a function that quanti-

fies how well the recognition model matches some speech data. Further, a confidence measure
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must be comparable across utterances (i.e., there must be no dependence on P (X)). Although

confidence measures are most obviously useful for utterance verification (Cox and Rose 1996;

Williams and Renals 1999), they have been shown to be useful throughout the recognition

process. ‘Unrecognizable’ portions (such as music or unclear acoustics) may be filtered from

an unconstrained stream of audio input to a recognizer, reducing both the WER and the com-

putational expense of decoding (Barker et al. 1998). The search space may be structured

using confidence measures, for example by pruning low confidence phones (Renals 1996) or

by weighting the language model probability (Neti et al. 1997). It is also possible to design

model combination weighting functions based on confidence measures (section 7). Finally,

confidence measures may be used for diagnostic purposes, by evaluating the quality of model

match for different components of a recognition system (Eide et al. 1995; Williams and Renals

1998).

The posterior probability of a hypothesized word (or phone) given the acoustics is a suit-

able basis for a confidence measure. While it is not straightforward to estimate this from a

large generative HMM system, the connectionist acoustic model performs local posterior prob-

ability estimation, without requiring explicit normalization. Such computationally inexpensive

estimates may be used to provide purely acoustic confidence measures directly linked to the

acoustic model. Their relationship to the acoustic model enables them to be applied at the

frame-, phone-, word- and utterance-levels, providing a basis for distinguishing between dif-

ferent sources of recognition error. We have investigated a variety of such confidence measures

(Williams and Renals 1999), including two that were applied in the SPRACH system: duration

normalized posterior probability and per-frame entropy. We have compared these to a confi-

dence measure that also incorporates language model information—lattice density.

Duration Normalized Posterior Probability The connectionist acoustic model3 makes a

direct estimate of the posterior probability of a phone model given the acoustics, P (q tk|Xt+4
1 ).

This estimate may be regarded as a frame-level confidence measure. By making an indepen-

dence assumption we can extend this frame-level estimate to the phone- and word-levels. A

consequence of such an assumption is an underestimate of the posterior probability for a se-

quence of frames. To counteract this underestimate, we define a duration normalized posterior

probability measure, nPP(qk), for a phone hypothesis qk with start and end frames ts and te
3In this section we consider the RNN acoustic model. However, posterior probabilities conditioned on X t+c

t−c
may also be used.
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using the Viterbi state sequence:

nPP(qk) =
1

D

te∑

t=ts

log
(
P (qtk|Xt+4

1 )
)

(3)

D = te − ts + 1 .

This measure may be extended to a hypothesized word wj , by averaging the phone level confi-

dence measures for each of the L phones constituent to wj (Bernardis and Bourlard 1998):

nPP(wj) =
1

L

L∑

l=1

nPP(ql) . (4)

Per-Frame Entropy A more general measure of acoustic model match is the per-frame en-

tropy of the estimated local posterior distribution. This measure, which is directly available

from the network output stream, does not require the most probable state sequence, and so

may be used for filtering (Barker et al. 1998; Williams and Ellis 1999) and frame-level model

combination prior to decoding. The connectionist acoustic model is based on a discriminative

phone classifier; the per-frame entropy confidence measure is based on the hypothesis that a

sharply discriminant posterior distribution indicates that the classifier is well matched to the

data. We define the per-frame entropy S(ts, te) of the K local phone posterior probabilities,

averaged over the interval ts to te as:

S(ts, te) = − 1

D

te∑

t=ts

K∑

k=1

P (qtk|Xt+4
1 ) log

{
P (qtk|Xt+4

1 )
}
. (5)

Lattice Density The above purely acoustic confidence measures may compared with a confi-

dence measure derived using both the acoustic and language models such as the lattice density

LD(ts, te)—the density of competitors in an n-best lattice of decoding hypotheses (Hethering-

ton 1995). This is computed by counting the number of unique competing hypotheses (NCH)

that pass through a frame and averaging the counts over the interval ts to te:

LD(ts, te) =
1

D

te∑

t=ts

NCH(t) . (6)

Recognition errors may be caused by unclear acoustics (high levels of background noise)

or mismatched pronunciation models. A low value of the duration normalized posterior prob-

ability at the state-level, coupled with a high per-frame entropy implies a poor acoustic model

match, whereas a high value of the duration normalized posterior probability at the state-level
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but a low value at the word-level, and a low per-frame entropy, implies a mismatched pronun-

ciation model.

The performance of the three measures for the task of recognizer output verification, as

measured by the unconditional error rate (UER) of the associated hypothesis test, is illustrated

in figure 4. (The UER counts any valid words in rejected utterances as deletion errors, and

thus indicates the overall system performance possible with the confidence scheme.) These

experiments indicate that the acoustic measures (a) perform better at the phone-level than the

word-level; (b) perform better on noisy (FX) rather than planned studio (F0) speech; and (c)

perform at least as well as the lattice density confidence measure for the broadcast news data.

These purely acoustic confidence measures have been used in the SPRACH system for pronun-

ciation modelling (section 5), search (section 6) and model combination (section 7).

5 Pronunciation modelling

Our two goals when developing pronunciation models were (a) to improve the pronunciation

models for common words; and (b) to find baseforms for novel words. We were interested

in applying lessons learned from automatic pronunciation modelling work in the Switchboard

domain (e.g., Riley et al. 1998), while not relying on the presence of hand-transcribed phonetic

data. Thus, we were seeking a method of introducing new pronunciation variants of existing

words suggested by the acoustic models of the recognizer, while trying to limit the number

of spurious pronunciations. Modelling patterns of pronunciation variation at the phone level,

rather than the word level, allowed us to generalize to infrequently-occurring words.

We were also faced with the task of generating baseforms for words such as Lewinsky that

did not occur in the ABBOT 96 dictionary—a vocabulary that spans current affairs is crucial for

recognizing Broadcast News.

Both of these tasks required considerable new machinery. To reduce effort when imple-

menting disparate functions, we reorganized our pronunciation software around a finite state

grammar (FSG) decoder (Figure 5). The modularization of Viterbi alignments into an FSG

compilation stage and a decoding stage allowed for novel compilation techniques without hav-

ing to completely rewrite the decoder. Thus, as long as the output of the procedure was a

valid finite state grammar, we could easily implement new pronunciation models (such as a

letter-to-phone model for novel words).
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Figure 4: A comparison of confidence measure UERs for word-level hypotheses (Upper Left)
and hypotheses obtained using phone-level decoding constraints (Upper Right) and for word-
level hypotheses in the F0 condition (Lower Left) and the FX condition (Lower Right), on
Hub-4E-97.
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5.1 Learning new pronunciations from data

In these experiments, we wanted to expand the set of pronunciations in the baseline lexicon

from the ABBOT Broadcast News transcription system (Cook et al. 1997), which contained an

average of 1.10 pronunciations for each member of the 65K word vocabulary. Candidate alter-

native pronunciations were generated by using the neural net acoustic models of the recognizer,

in a six step process:

1. Generate canonical phonetic transcriptions with the baseline dictionary.

2. Generate an alternative acoustic-model based transcription via phone recognition.

3. Align the canonical and alternative transcriptions so that each canonical phone is either

deleted or matches one or more alternative transcriptions.

4. Train a decision tree to predict P (alternative|canonical,context). Smooth out noise in the

distribution by pruning low probability phone pronunciations in the leaves of the d-tree

(typically p<0.1).

5. Retranscribe the corpus: for each utterance in the training set, create a network of pronun-

ciation variations using the d-trees, and align with the acoustic models to get a smoothed
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Dictionary WER (%) Decode time

Baseline (ABBOT 96) 27.5 21 x RT
Smoothed Trees: no pruning 27.1 72 x RT

log count (SPRACH 98) 26.9 33 x RT
confidence log count 26.6 30 x RT

Table 3: Word error rate on Hub-4E-97-subset for various pruning methods. Decoding time is
given in multiples of real-time on a 300 MHz Sun Ultra-30 using the start-synchronous decoder
described in section 6.

phone transcription.

6. Collect smoothed pronunciation variants into a new dictionary.

Since the FSG decoder produced both word and phone alignments, the new smoothed phone

transcription was easily converted into a new lexicon by collecting all of the pronunciation

examples for each word and determining probabilities by counting the frequency of each pro-

nunciation. New pronunciations were then merged with the ABBOT 96 dictionary using simple

interpolation.4

The interpolated dictionary, with 1.67 pronunciations per word, required an almost four-

fold increase in decoding time over the ABBOT 96 dictionary when evaluated on Hub-4E-97-

subset (table 3). Therefore, we devoted efforts to selectively pruning pronunciations from the

dictionary to increase decoding speed. For the SPRACH system, setting a maximum number of

baseforms per word based on the log count of training set instances gave useful reductions in

decoding time without sacrificing recognition accuracy.

After the 1998 evaluation, we continued to improve the dictionary. For each baseform

in the unpruned lexicon, we computed, over the 1997 BN training set, the average acous-

tic confidence scores based on the local posterior probabilities from the acoustic model (Sec-

tion 4). Dictionary baseforms were reselected by the log-count pruning scheme according to

their confidence-based rankings rather than by Viterbi frequency counts; this provided a small

boost to performance both in terms of decoding time and recognizer accuracy. This is an inter-

esting result: we suspect that choosing pronunciations based on acoustic confidence may lead

to less confusability in the lexicon.
4Recognition experiments using deleted interpolation for dictionary merging, where the interpolation coeffi-

cients are dependent on the count of the word in the corpus, showed no improvement over simple interpolation.
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5.2 Pronunciation generation for novel words

To develop pronunciations for novel words, we employed a technique similar that of Lucassen

and Mercer (1984). In essence, this model is almost identical to the dictionary construction

algorithm discussed above: we replaced the mapping between canonical and alternative pro-

nunciations in steps 1-3 with an alignment between the letters of words and the canonical

pronunciations in the dictionary.

For all words in the canonical dictionary, we generated an alignment between the letters

of the word and its corresponding phones using a Hidden Markov Model: starting from an

arbitrary initial correspondence, a mapping between letters and phones was successively re-

estimated using the Baum-Welch algorithm. The next step involved constructing d-trees based

on this aligned data to estimate the probability distribution over phones given a central letter

and the context of three letters to the left and right.

For each novel word that we desired in the vocabulary, we constructed a (bushy) pronunci-

ation graph for that word given its spelling (cf. step 5 above). One could just find the best n

paths in the pronunciation graph a priori to determine alternative pronunciations. However, we

had volunteers speak each word in isolation (by reading word lists), and then used the recorded

speech data to find the best path with respect to the acoustic models. The matching of this graph

to the acoustic models via alignment is the critical gain of this technique; using an off-the-shelf

text-to-speech system would likely produce pronunciations with properties different from our

baseline dictionary.

The Viterbi alignment of the graph provides the best pronunciation for each word, as well

as the acoustic confidence score (equation 3). Using this procedure, we generated 7,000 new

pronunciations for novel words in the 1998 SPRACH system. The acoustic confidence measures

turned out to be critical: spot checks of the novel word pronunciations with high confidence

scores revealed them more linguistically reasonable than the low-confidence pronunciations;

thus, we were able to focus hand-correction efforts on the lower-confidence words.

We also employed a number of other pronunciation modelling techniques, which we only

summarize here. Multi-word models developed in the vein of Finke and Waibel (1997) did

not show any improvement in our final system. Extending the phone d-tree models to allow

contextual variation based on the word context, syllable context, speaking rate, language model

probability, and other factors did decrease the WER, although insignificantly (0.3% absolute).

For further details on these developments, the reader is invited to consult Fosler-Lussier and

Williams (1999) and Fosler-Lussier (1999).
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6 Large vocabulary search

The search problem in a large vocabulary speech recognition system involves finding the most

probable sequence of words given a sequence of acoustic observations, the acoustic model and

the language model. An efficient algorithm for carrying out such a search optimally and ex-

haustively is the Viterbi algorithm (forward dynamic programming), which can find the most

probable path through a time/state lattice. However, in the case of LVCSR an exhaustive search

requires a very large amount of computation, due to the vocabulary size (typically 65K words).

Indeed, once higher than first-order Markov language models are used, the search space ex-

pands massively and exhaustive search is impractical. Modifications have been made to the

Viterbi algorithm to combat this including beam search (Lowerre and Reddy 1980), dynamic

memory allocation (Odell 1995) and multi-pass approaches, in which earlier passes using sim-

pler acoustic and language models restrict the available search space (Schwartz et al. 1996).

These Viterbi-based searches are termed time-synchronous: the probabilities of all active

states at time t are computed before the probabilities at time t + 1. A different class of search

algorithms is based on stack decoding (Jelinek 1969), a heuristic search approach related to

A* search (Nilsson 1971). Stack decoders are based on a best-first approach in which partial

hypotheses are extended in order of their probability. We have developed two novel search

algorithms based on stack decoding, both of which have proven to be well-suited to large

vocabulary speech recognition. The NOWAY algorithm (Renals and Hochberg 1995; Renals

and Hochberg 1999) uses a start-synchronous search organisation; the CHRONOS algorithm

(Robinson and Christie 1998) uses a time first organisation. Although the details of the two

approaches are different they share the advantages of stack decoding (also common to other

approaches (Paul 1992; Gopalakrishnan et al. 1995)):

• Decoupling of the language model from the acoustic model; the language model is not

used to generate new hypotheses;

• Easy incorporation of longer term language models (e.g., trigrams, four-grams) and other

knowledge sources;

• Search organisation supports more sophisticated acoustic models (e.g., segmental mod-

els);

• Relatively straightforward implementation.

Most of the development experiments reported in this paper were carried out using the NOWAY

algorithm; the more recent CHRONOS algorithm was used for the final results reported in sec-

tion 7.
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6.1 Search Organisation

The two search algorithms have several common features including a tree-structured lexicon,

stacks implemented using a priority queue data structure, a search organization enabling shared

computation and the use of beam search pruning.

The start-synchronous decoder processes partial hypotheses in increasing order of reference

time. This is implemented as a sequence of stacks, one for each reference time. The stacks

are processed in time order, earliest first. All hypotheses with the same reference time are pro-

cessed in parallel, allowing different language model contexts to share the same acoustic model

computations. Hypotheses are extended by all possible (unpruned) one word extensions and

the resultant extended hypotheses are pushed onto the stack with the relevant reference time,

after a check for “language model equivalent” hypotheses on that stack (figure 6). Hypothesis

extensions through the tree are carried out in a breadth-first (time-synchronous) manner.

. . . 

. . . 

. . . 

. . . 

.recognize speech

wreck a nice beach

recognize each

recognizer each wreck a nice beach too

recognize speaker

recognize speech too

recognize speech to

wreck a nice beach today

recognize speech today.
PSfrag replacements

t = t1 t = t2 t = t3

Figure 6: Start synchronous search organization.

The time-first decoder employs a single stack for all hypotheses ordered first by reference

time, then by log probability. Computation is shared by each stack item representing a language

model state (rather than an individual path history) and containing a range of reference times.

Figure 7 illustrates this process, all three hypotheses that have the language model history

“<START> THE” are pulled from the stack and are propagated through the HMM, resulting

in three new hypotheses with language model history “THE SAT” that are inserted onto the

stack. The “time-first” designation comes from the order of the HMM dynamic programming

computations (numbered 1...12 in italic); the ordering computes the first HMM state for all

possible times (subject to pruning) before proceeding with the next state. In conventional

time-synchronous all states for time 6 would be processed before time 7 leading to the order
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Figure 7: Time first search organisation

6.2 Pruning

Both search algorithms use beam search approaches, augmented by confidence measures and

adaptive beam widths. A record of the maximum path probability to each frame is kept and the

search is pruned if the current hypothesis extension is less than a fixed fraction of the recorded

maximum. To avoid explicit lookahead, an online garbage model (Bourlard et al. 1994) based

on the average local posterior probability estimates of the top k phones is used to control

the beam. Additionally an adaptive beamwidth has been employed in the time-first search to

prevent a large expansion of the stack size in unfavourable acoustic conditions. This may be as

simple as a fixed maximum stack size, but we have found the following scaling scheme to be

successful:

B(t) = B∗ + γ log

(
N

n(t) + 0.5
− 1

)
, (7)

20



where B(t) is the log beam width used at time t, B∗ is the target beam, n(t) is the number of

stack items at time t, N is the maximum stack size (typically 8191) and γ is the weight of the

adaptive element in the beam.

Confidence measures have also been used to directly prune the search space. Phone de-

activation pruning (Renals 1996) sets a threshold on the local posterior probability estimates:

phones with posterior probabilities below this threshold are pruned from the search. This is an

efficient way to reduce the search space by a large amount—typically by over 60% with little

or no additional search error.

7 Current system description and results

This section describes the system we used in the 1998 Hub-4E evaluations and our recent

improvements to it. The approach taken is to produce multiple acoustic probability streams,

and to combine these at both the probability-level and the hypothesis-level. In this manner we

are able to take advantage of the properties of different acoustic features and models.

The task for the 1998 Hub-4E evaluation was the transcription of segments from a number

of broadcast news shows. This is an unpartitioned task, i.e. no speaker change boundaries or

change of acoustic conditions are provided. We used both the segmentation strategy freely

available from CMU (Siegler et al. 1997) and that developed by Hain et al. (1998), termed

the HTK segmentation method in these experiments. We have developed a hub system that is

not constrained in any way, and two spoke systems: A 10x system that is constrained to run

10x slower than real-time on a 450MHz Pentium-II PC and a real-time system on the same

platform.

7.1 Acoustic Models

Both RNN and MLP models were used to estimate a posteriori context-independent (CI) phone

class probabilities. Forward-in-time and backward-in-time RNN models were trained using the

104 hours of broadcast news training data released in 1997. These models used PLP acoustic

features. The outputs of the forward and backward models were merged in the log domain to

form the final CI RNN probability estimates. The MLP had 8,000 hidden units and was trained

on all 200 hours of broadcast news training data downsampled to 4 kHz bandwidth. MSG

features, as described in section 3, were used in this case.

Context-dependent (CD) RNN acoustic models were trained by factorisation of conditional

context-class probabilities (Kershaw 1996). The joint a posteriori probability of context class j

and phone class k is given by P (qCDj , qCIk |Xt+4
1 ) = P (qCIk |Xt+4

1 )P (qCDj |qCIk ,X
t+4
1 ). The CI
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RNN was used to estimate the CI phone posteriors, P (qCIk |Xt+4
1 ), and single-layer perceptrons

were used to estimate the conditional context-class posteriors, P (qCDj |qCIk ,X
t+4
1 ).

The input to each of the context-class perceptrons was the internal state of the CI RNN,

since it was assumed that the state vector contained all the relevant contextual information

necessary to discriminate between different context classes of the same monophone. Phonetic

decision trees were used to choose the CD phone classes, and 676 word-internal CD phones

were used in the system.

7.2 Language Models and Lexicon

Around 450 million words of text data were used to generate back-off n-gram language models.

Specifically these models were estimated from:

• Broadcast News acoustic training transcripts (1.6M),

• 1996 Broadcast News language model text data (150M),

• LA Times/Washington Post texts (12M), Associated Press World Service texts (100M),

NY Times texts (190M)—all from the LDC’s 1998 release of North American News text

data.

The models were trained using version 2 of the CMU-Cambridge Statistical Language

Model Toolkit (Clarkson and Rosenfeld 1997). We built both trigram and four-gram language

models for use in the evaluation system. Both these models employed Witten-Bell discounting.

The recognition lexicon contains 65,432 words, including every word that appears in the

broadcast news training data. The dictionary was constructed using the phone decision tree

smoothed acoustic alignments of section 5.

7.3 The Hub and 10x System

The hub and 10x systems use the same models and algorithms, and differ only in the levels

of pruning applied during the search. Five component connectionist acoustic models were

used: CI RNN (forward and backward), CI MLP and CD RNN (forward and backward). These

were combined at the frame level by averaging the probability estimates in the log domain as

described in Section 2.3. This results in three probability streams as illustrated in figure 8.

Combining estimates from models with different feature representations takes advantage of

the different information available to the different models. In the same manner it is possible

to combine information from multiple decoder streams. Evidence suggests that using different

acoustic and/or language models results in systems with different patterns of errors, and that the
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Segmentation Test Set Hub System 10x System

HTK h4e 98 1 21.2%
HTK h4e 98 2 19.6%
CMU h4e 98 1 21.9% 22.0%
CMU h4e 98 2 20.3% 22.9%

Table 4: Results for the Hub and 10x systems on the 1998 Broadcast News evaluation data.

differences can used used to correct some of these errors (Fiscus 1997). To this end the streams

were individually decoded, and the resultant hypotheses were merged using the ROVER (recog-

nizer output voting error reduction) system (Fiscus 1997) developed at NIST. The component

hypotheses were weighted using the word-level nPP confidence measure (equation 4).

The overall recognition process is shown in figure 8 and can be summarised as follows:

1. Automatic data segmentation using the HTK method.

2. PLP and MSG feature extraction.

3. Generate acoustic probabilities:

(a) Forward and backward CI RNN probabilities;

(b) Forward and Backward CD RNN probabilities;

(c) MLP probabilities.

4. Merge acoustic probabilities to produce three final acoustic models:

(a) Merged forward and backward CI RNN and MLP probabilities;

(b) Merged forward and backward CD RNN probabilities;

(c) MLP probabilities.

5. Decode with a four-gram language model using the CHRONOS stack decoder generating

confidence measures

6. Combine hypotheses (using ROVER with confidence-weighting) to produce the final sys-

tem hypothesis.

The results of this system are shown in table 4. This table suggests that the differences

in segmentation strategy have a greater effect than the tighter pruning for the 10x system.

However, both changes are very small and both together amount to only a 5–15% relative

increase in the number of errors.
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Figure 8: Schematic of the SPRACH Hub-4E Transcription System.

7.4 A Real-Time System

We have developed a real-time system by using only the context-independent RNNs in the

Hub-4E system. This system has the following features:

• CMU segmentation.

• PLP acoustic features.

• Forward and backward context-independent RNN acoustic models. No MLP or context-

dependent models are used.

• CHRONOS decoder.

• Trigram or four-gram language models.

The word error rate and timings for each stage of the real-time system are shown in Table 5.

It is encouraging that the single pass decode with a four-gram language model takes only

about 10% longer than the trigram language model.

24



h4e 98 1 h4e 98 2
Operation x real-time x real-time
Segmentation 0.10 0.10
Feature extraction 0.07 0.07
Acoustic probabilities 0.17 0.18
Search (trigram) 0.63 0.59
Search (four-gram) 0.72 0.66
Total (trigram) 0.97 0.92
Total (four-gram) 1.07 1.01

Word Error Rate h4e 98 1 h4e 98 2

Trigram system 27.2 25.9
four-gram system 26.8 25.2

Table 5: Results for the real-time system.

8 Conclusions

This paper has presented several developments to a connectionist speech recognition system.

The most salient aspect of the system is the connectionist acoustic model that provides a stream

of local phone class posterior probability estimates. This acoustic model is well suited to

the incorporation of large amounts of temporal context as well as experimental features with

unknown statistical behavior (such as those described in section 3), and we have found that our

system performs well using a simple stream of monophone probabilities. The availability of

this local posterior probability stream has allowed us to investigate several new approaches to

the components of an LVCSR system.

Firstly, the posterior probability stream has proved amenable to the combination of a com-

plementary set of acoustic features and phone classifier architectures. A considerable ben-

efit was obtained through merging the outputs of component connectionist networks via log-

domain averaging at the frame level. The most accurate performance was achieved using RNNs

trained forward and backward in time on PLP features, and an MLP using MSG features; the

MSG stream provided particular gains for acoustics outside of the studio-quality F0 condition.

A computationally efficient search algorithm is especially important for the Broadcast News

domain as the recognizer is not only expected to operate under more challenging acoustic

conditions, but may also be applied to very long, unsegmented recordings. We have described

two novel search algorithms based upon a stack decoder. In addition to the advantages inherent

to stack decoding, these algorithms have been able to exploit the stream of local posterior

probabilities for pruning the search. A consequence of these decoder advances is that our

system is able to operate in real time with reasonable memory requirements—a feature we have
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found useful as we move to decoding large quantities of audio data for information retrieval

and extraction tasks. At the addition of modest computational expense, we have found small

performance gains through the use of four-gram language models.

Local phone class posterior probability estimates have proven to be a good basis for mea-

sures of confidence. The availability of these measures at the frame-, phone-, word- and

utterance-levels coupled with their explicit link to the recognition models may well prove

useful for distinguishing between decoding errors due to unclear acoustics and those due to

mismatched pronunciation models. We have presented results that indicate that for the task of

utterance verification on Broadcast News data these measures perform at least as well as the

more conventional lattice density measure that is derived from both the acoustic and language

models. These confidence measures were shown to be useful for the tasks of filtering ‘un-

recognisable’ acoustics from the input to a recognizer and for evaluating alternative baseforms

in an automatic pronunciation learning process. Maintaining an up to date vocabulary is clearly

beneficial in the Broadcast News domain, and we have presented a set of techniques for both

improving the pronunciation models of words existing in the vocabulary and for learning the

pronunciations of novel words. Given appropriate acoustic data, these techniques should allow

the construction of an automatically-updated pronunciation lexicon that can track a changing

vocabulary without manual intervention.

A system based on these techniques was included in the 1998 Hub-4E evaluations. Its

word error rate was relatively some 30% higher than the best-performing systems, much of

which may be attributed to the absence of any local adaptation to speaker characteristics and

acoustic conditions in the test or training data. Partially, this is because we chose to focus on

other areas, but it should be noted that while the generative HMM approach estimates a joint

distribution over all variables, the connectionist approach does not estimate the distribution of

the acoustic data. A consequence of this is that Gaussian mixture-based HMM systems are very

amenable to local adaptation through schemes such as maximum likelihood linear regression

(MLLR) (Leggetter and Woodland 1995), which cannot be applied to connectionist systems.

Current approaches to connectionist speaker adaptation are based on gradient-descent (Neto

et al. 1995), although Fritsch et al. (1998) have recently presented a promising method using a

somewhat different connectionist acoustic model.

The complete recognizer was easily adapted to run within 10x slower than real-time, and a

fully real-time system was possible with only about a 25% relative increase in word errors.

In summary we have outlined a simple, efficient speech recognition system based on a

connectionist acoustic model. This single departure from traditional HMM techniques has

prompted us to explore several new approaches to the various components of an LVCSR sys-
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tem. Our results suggest that these methodologies are well suited to the challenges presented

by the Broadcast News domain.
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