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ABSTRACT

Multichannel recordings of meetings provide informa-
tion on speaker locations in the timing and level differences
between microphones. We have been experimenting with
cross-correlation and energy differences as features to iden-
tify and segment speaker turns. In particular, we have used
LPC whitening, spectral-domain cross-correlation, and dy-
namic programming to sharpen and disambiguate timing
differences between mic channels that may be dominated
by noise and reverberation. These cues are classified into
individual speakers using spectral clustering (i.e. defined by
the top eignenvectors of a similarity matrix). We show that
this technique is largely robust to precise details of mic po-
sitioning etc., and can be used with some success with data
collected from a number of different setups, as provided by
the NIST 2004 Meetings evaluation.

1. INTRODUCTION

In contrast to the major challenges of accurate recognition
of speech recognition from meeting recordings (and how
to make use of any results), we have been looking at in-
formation that can be extracted from such recordings with-
out resorting to such heavyweight processing. One kind of
information that should be relatively prominent within the
data (and hence feasible to extract) is the pattern of speaker
turns – i.e. when the active speaker changes, and patterns of
transitions between speakers. In earlier work, we have used
these patterns, derived from hand-marked speaker turns, to
segment meetings into distinct dialogues [1].

Here we consider the practical problem of recovering
speaker turn information directly from multichannel audio
recordings, without any manual annotation. For maximum
applicability, we are interested in developing algorithms that
make as few assumptions as possible about the nature of the
multiple audio channels; in particular, we do not employ
any information about the actual locations of the different
microphones. All we can assume is that the sound field has
been sampled at several different points, resulting in sev-
eral ambient recordings. We envisage a future scenario in
which several participants in a meeting may have hand-held

recording devices which they place at arbitrary points on the
table; the speaker turn analysis system has access to sev-
eral of these (possibly synchronized) recordings, but has no
control over, or information about, where the sensors are
placed.

In particular, this study takes advantage of the NIST
2004 Meeting Evaluation [2] which includes development
data comprising real meetings recorded at four independent
sites with a range of equipment and configurations. While
our principal development has been on the ICSI meeting
data [3], this dataset has allowed us to evaluate on meeting
data recorded at CMU, NIST, and the LDC.

Most previous work on speaker segmentation has fo-
cused on single channel data such as mono recordings of
broadcast audio, and has relied exclusively on changes in
the statistical properties of the speech spectrum to detect
change points (e.g. [4, 5] among many others). Here, we
deliberately avoid using this conventional approach to con-
sider instead how well the problem can be solved without
modeling the source spectra, but looking only at the differ-
ences between the signals received by each sensor. Ulti-
mately, of course, it is best to use both sources of informa-
tion, but for now we consider new approaches made possi-
ble by the availability of multiple, distant-mic recordings.

The next section describes our speaker turn segmenta-
tion system based on timing differences. In section 3, we
describe how the approach was tested with the NIST RT04
Meeting data, and present the results on the different meet-
ings in that set. Finally, section 4 discusses the performance
and suggests some future developments.

2. USING TIMING CUES

Figure 1 gives an overview of the speaker turn detection sys-
tem based on timing difference cues. Microphone channels
are compared pairwise; in our system, we arbitrarily com-
pared two distinct pairs of mics to create a two-dimensional
time-difference feature vector, but the approach could easily
be extended to make comparisons between more channels.

The different distances between each microphone and
a particular speaker will result in time differences in the
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Fig. 1. Overview of the timing difference classification system.

direct-path voice detected by those mics, and the time differ-
ence can be estimated by finding the ‘lag’` that maximizes
the (normalized) short-time cross-correlation centered at time
M :
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where mi[n] is the sample sequence from microphonei
etc., the cross-correlations are calculated over anN + 1
point window, and the denominator, summing over the same
range, normalizes the results to lie within -1..1 with 1 indi-
cating a perfect match. The best lag for each mic pair{i, j}
at each timeM is simply:

`∗ij [M ] = argmax
`

ρij [`,M ] (2)

Rather than cross-correlating the raw waveforms, we found
the preprocessing stages shown in fig 1 to give significant
improvements in robustness and precision. First, the recorded
waveforms are pre-emphasized by filtering with the 2-point
FIR filter {1− 1} – i.e. a zero at d.c. – to strongly attenuate
low frequencies, where background noise such as air condi-
tioning tends to dominate, and to flatten the natural spectral
rolloff of speech.

To further flatten the signals, a 12th order LPC model
is fit to a 32 ms (512 sample) window every 16 ms, then
the signal is filtered by the inverse of this model to ob-
tain the residual, in which the broad spectral structure cap-
tured by the LPC model has been removed. This elimi-
nates strong signal resonances that would otherwise appear
as strong ‘ringing’ in the cross-correlations, and equalizes
the influence of all frequency bands.

However, since energy in the low frequency region (be-
low about 500 Hz) and in the very highest regions (e.g.
above 6 kHz, where the mic may disappear due to anti-
aliasing filters) holds little information about the target voices,

it is filtered out of the residual with 16th order Chebyshev-2
filter providing 60 dB of rejection outside the passband.

Figure 2 compares the short-term cross-correlations for
a short segment with and without the preprocessing. The
combination of low-frequency noise and strong resonances
in the raw signal lead to broad peaks and ambiguous peaks
in the cross correlation; the preprocessed signal leads to
very precise timing difference peaks, with a clear distinction
between the two dominant speakers indicated in the ground-
truth speaker labels shown below each pane.

Cross-correlation results are more robust when the cor-
relation window size is increased, provided the underlying
time difference remains constant. We found a 250 ms win-
dow to be good compromise. Then the lag corresponding
to the overall peak in the cross correlation is recorded as
the time delay estimate. (We have tried a fractional-sample
resolution estimator, based on fitting a linear slope to the
phase of the Fourier transform of the cross-correlation in
the vicinity of the peak, but sample-level quantization was
adequate.) We experimented with exploiting temporal con-
straints to remove outliers from the sequence of time esti-
mates: we tried both median filtering, and a dynamic pro-
gramming approach that selected among the top 10 cross-
correlation peaks observed at each time frame to find a path
that optimized a quality metric comprising both peak height
and lag continuity, but both approaches seemed to introduce
more errors than they were able to resolve.

2.1. “Good” peak selection

The whitened example in figure 2 is fairly clean, but in
general the cross correlation may not find any time lags
that make the two channels very similar – for instance, if
one channel is dominated by a noise that barely registers in
the other channel, or if there are multiple conflicting sound
sources. The next stage of the system seeks to identify the
separate speakers present in the recording by searching for
clusters in the multidimensional space defined by the lag
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Fig. 2. Short-time cross-correlations on raw signals (left panel) and after LPC whitening and filtering (right panel). Vertical
axis is lag; horizontal axis is time; darker pixels indicate higher normalized cross-correlation. The ground-truth speaker labels
are shown below each pane; there is a visible transition between speaker 2 and speaker 4 around t = 1229 sec.

values of the cross-correlation peaks, but spurious points
resulting from poorly-matching frames will pollute this pro-
cess. Thus, we use the peakvalueof the normalized cross
correlationρij [`∗] at each time frame to decide if a particu-
lar lag value is ‘reliable’. Although the absolute value of this
peak varies considerably depending on the recording condi-
tions, we discard, for each mic pair, the time frames whose
normalized cross correlation peak value is below the me-
dian over the whole meeting. Clustering is then based only
on time frames for which every mic pair returns a ‘good’
value, but this is event strongly correlated between chan-
nels so almost half the time frames are selected as ‘good’.
Since these points are being used only to define the clusters,
it is acceptable to be conservative in selecting these points;
we will subsequently go back and classify all time frames
based on the clusters we derive.

2.2. Spectral clustering

Clustering of these ‘good’ points in two-dimensional lag
space is performed by a simplified form of “spectral clus-
tering” [6]. We form an affinity matrix of the similarities
between every point based on a Gaussian local similarity
function. If L[M ] is the vector of time differences from
time frameM , then the affinity matrixA has elements:

amn = exp{−‖L[m] − L[n]‖2/2σ2} (3)

whereσ is a ‘cluster radius’ parameter indicating how dis-
tant two points can be before their affinity; we usedσ = 10
samples (or about 600µs) based on our initial investiga-
tions; for well-separated clusters, the results should be sta-
ble over a wide range. Points lying within a single cluster
will tend to have affinities close to 1 with all their cluster
mates, and close to zero for points in other clusters.

Spectral clustering considers the eigenvectors of this affin-
ity matrix. An intuitive understanding comes from imagin-
ing a finite state system with each point as a state, and the
affinity matrix as proportional to the transition probabili-
ties between the states. A particular point/state will tend to
make transitions only to other points within its same clus-
ter, so the eigenvectors of the transition matrix, which cor-
respond to ‘steady-state’ state occupancy distributions, will
tend to identify the separate clusters [7]1.

The eigenvalues of the unnormalized affinity matrix in-
dicate roughly the number of points ‘involved’ in each eigen-
vector, so we consider only the eigenvectors whose eigen-
values are larger than 1% of the total number of points.
Then for each eigenvector we decide if it is defining a sin-
gle cluster (most values either close to zero or close to one)
or ‘splitting’ an existing cluster (values spread between−1
and 1) by looking at the ratio of smallest to largest val-
ues. (Eigenvectors with many values close to−1 are flipped
in sign). If this ratio is less than 0.5, then all points for
which the eigenvalue dimension is greater than the mean
over the whole vector are assigned to a new cluster; oth-
erwise, the eigenvector is ignored. While this procedure is
highly heuristic and has not been carefully optimized, in the
ideal conditions when clusters are well defined and sepa-
rated, it gives good results.

Cluster models are given by the means of each set of
points resulting from this procedure, and a single variance
for each lag dimension is calculated from the distance be-
tween each clustered point and its cluster mean. The left
pane of figure 3 shows the “good” points for an example
meeting in a two-dimensional lag space; the coloring indi-
cates the separate clusters found.

1Thanks to Brendan Frey for this explanation
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Fig. 3. Clustering of time-skew values. Left pane shows the ‘good’ points (high peak cross-correlation) extracted from a
5 minute meeting excerpt, colored according to the clusters they seeded; the right pane shows the lag values from all time
frames of the excerpt, colored according to their final cluster assignments. About 20% of these points lie outside the range
shown in the plot.

2.3. Classification

The final speaker turn assignments are obtained by classi-
fying every time frame as belonging to one of the clusters;
points will low cross-correlation peaks that were excluded
from the cluster formation may still, in fact, show the ap-
propriate best lag times, and will be correctly labeled by
this stage. However, genuinely spurious lags will not give
meaningful results, and may actually arise from conditions
in which nobody is speaking. Thus, points whose Maha-
lanobis distance from any cluster is greater than 4 result in
time frames labeled with no speaker active; all remaining
frames are labeled as having a single speaker active, corre-
sponding to the closest cluster. The right pane of fig 3 shows
the final cluster assignments of all the frames.

3. EVALUATION

The NIST development data consisted of eight meeting ex-
cerpts, each of around 10 min duration, recorded at ICSI,
CMU, NIST, and LDC [2]. Each set except CMU had multi-
ple distant mics; we arbitrarily chose four from each for our
evaluation, and for the CMU sets, we formed two pairs by
comparing the single mic to two of the lavalier mics (i.e. the
single distant mic participated in both pairs). Each meeting
was described by a hand-marked annotation file giving the
start time, duration, speaker identity, and words of each ut-
terance, derived from headset or lavalier mic channels. We
converted this into a binary speaker activity matrix, where
each row described one speaker, each column referred to
one time step, and each cell indicated whether that speaker
was active at that time. We used a time quanta of 250 ms to
match our timing analysis frames. Because of speaker over-
laps, it is possible for several cells to be set in each column.

We represented the output of our speaker turn detection sys-
tem in the same format; however, since we find only one
speaker label at each time step, there can be at most one cell
active in each column for our system’s output.

The scoring this task is complicated because of the am-
biguity in associating the anonymous distinct speakers iden-
tified by the system with the speakers in the reference tran-
script. We implemented a greedy scheme, where the overlap
(number of cells correctly labeled active) was calculated for
all system speakers against all reference speakers, then cor-
respondences were made by choosing the largest overlap,
removing that reference/system pair from the table, then re-
peating. Any unassigned speakers (i.e. when the system and
reference differed in the number of speakers) were matched
to all-silent channels. The rows of the system output matrix
were then permuted to match the reference matrix.

Differences between these matrices represent errors; cells
set in the reference but clear in the system are deletions
(false rejects), and cells clear in the reference but set in sys-
tem are insertions (false detects). The total number of inser-
tions and deletions across all channels is calculated at each
time step, and the total error at that time step is the larger
of the two (i.e. an insertion-plus-deletion pair counts as a
single ‘substitution’ error). The overall error rate is the to-
tal errors summed across all time expressed as a proportion
of the total number of active cells in the reference. This is
a quantized approximation to the error metric proposed in
[2].

Table 1 shows the results for the eight recordings from
the development set. The overall error rates are high, ex-
ceeding 50% for seven of the eight cases, and reaching 85%
for one of the CMU sets. Note, however, that random guess-
ing all cells independently results in error rates above 100%



Meeting Ins Del Err Guess1
LDC 20011116-1400 10.5% 65.4% 66.5% 52.7%
LDC 20011116-1500 19.9% 76.3% 77.3% 60.1%
NIST 20020214-1148 3.9% 56.8% 58.0% 37.3%
NIST 20020305-1007 17.6% 46.1% 49.1% 77.9%
ICSI 20010208-1430 23.6% 55.2% 59.6% 69.8%
ICSI 20010322-1450 29.6% 60.1% 63.3% 62.4%
CMU 20020319-1400 15.3% 84.3% 85.3% 54.0%
CMU 20020320-1500 11.7% 65.0% 65.8% 37.4%

Table 1. Speaker turn detection error rates for the NIST RT04 development set. Highlighted are the two cases where the error
rate improves on the “Guess1” result obtained by hypothesizing that a single speaker speaks for the whole duration.

due to the many opportunities for insertions. On the other
hand, the optimal correspondence between system and ref-
erence speakers found in scoring can make some random
choices appear quite good. As a baseline, the “Guess1” col-
umn in the table gives the error rate that results from a sys-
tem guessing that the meeting consists of just one speaker
active the whole time, who, in scoring, is aligned with the
single most active speaker in the reference. Meeting ex-
cerpts that are dominated by a particular speaker (such as
the first NIST example and the second CMU example) have
a particularly low error rate on this measure. In fact, it is
only in two of the examples (second NIST and first ICSI)
that our system beats this uninformed baseline. We note,
however, that the insertion rates are mostly quite low (much
lower than “Guess1” would obtain), and there may be sit-
uations requiring low false alarms where our approach has
more value than the bottom-line error rates suggest.

Figure 4 gives some insight into the system performance
by comparing the speaker activity matrices for reference and
system output for a single dataset. First, the system found
only three speakers although seven were present in the tran-
script; speakers 2 to 5 in the system output are ‘silent’ speak-
ers inserted by the scoring. Second, system speaker 1 ap-
pears to be detecting reference speaker 6 i.e. this refer-
ence speaker has been ‘split’ into two speakers (1 and 6)
by the system; since scoring disallows mapping two speak-
ers to one, system speaker 1 has been aligned to reference
speaker 1 who happens to have a small overlap. However,
the missed reference speakers have very little activity (par-
ticularly speakers 3 and 5), so it is not so surprising that
they were missed by the system. Also visible in the figure is
the general tendency of the system to under-produce. Even
when speaker 6 is being reliably identified during his long
monologue aroundt = 400 sec, the system marks many
frames as silent (i.e. the extracted lags were implausible for
those frames).

4. DISCUSSION AND CONCLUSIONS

Our results show that the between-channel timing informa-
tion revealed by cross-correlation is sufficient to gain some
information about speaker activity and turns, although clearly
this first effort leaves much room for improvement. We are
encouraged that an approach developed on a small amount
of data from a particular recording setup (at ICSI) seems
to perform equally well on recordings from other sites; in-
deed, our lowest error rate was achieved on one of the NIST
recordings. This underlines the point that our approach makes
very few assumptions about the geometry of the microphone
arrangements – or indeed the signal characteristics of the
speakers and recording equipment.

Several directions towards improving the results are sug-
gested by these results. The problem of undergeneration is
best explained by the right panel of fig 3. Despite our pre-
processing, many frames result in peak cross-correlation lags
that are meaningless, due to noise, interference between si-
multaneous sources, or chance correlations in the source
signal. However, notice the ‘streaks’ below the points la-
beled as speakers 1 and 2; in this case, the chan1/2 skew
is (presumably) correct, but the chan3/4 skew is inconsis-
tent. This may be because chans 3 and 4 were more dis-
tant, and hence corrupted by noise, or they may even be re-
flecting a second, simultaneous speaker, since there seem to
be significant numbers of frames aligned with the speaker
4/speaker 6 cluster on that axis. This suggests a classifi-
cation approach in which each lag dimension is classified
separately, with majority reporting, or even multiple labels
(simultaneous speaker outputs) in some cases. Clearly, us-
ing more than two lag calculations will improve reliability
for such a scheme, and perhaps make it feasible to use the
peak cross-correlation value as a ‘feature reliability’ index
for classification in addition to its current use in cluster for-
mation.

Even if only a small number of lag dimensions are to be
used, some mic pairs will work better than others, in terms
of giving reliable cross-correlation results more often. We
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Fig. 4. Comparison of reference and speaker activity matrices for a single meeting excerpt. In this case, the system found
three speakers although seven were present in the transcript; additional ‘silent’ speaker rows were inserted into the system
output by the scoring correspondence algorithm. The overall error rate is 59.6% for this example.

chose mic pairs arbitrarily, but a simple approach of choos-
ing mic pairs with the highest average peak cross correlation
value should improve system performance.

The issue of splitting single speakers into multiple clus-
ters, visible in the speaker 4/6 continuum mentioned above,
and also shown by the division of reference speaker 6 into
system speakers 1 and 6 in fig 4 suggests some genuine un-
derlying ambiguity, since a given speaker is not rigidly fixed
during a meeting, but may shift in her seat, turn her head,
etc., resulting in a spread of spatial cue values. This presents
a good opportunity to exploit the source spectral character-
istics mentioned in the introduction as the basis of previous
work in speaker segmentation: By calculating the cepstral
distributions of each system speaker, it should be possible
to identify speakers whose spectral behavior is nearly iden-
tical, and merge the labels. This approach could even track
a speaker who shifts seats during a meeting.

Finally, this paper has considered only timing differ-
ences. We have also investigated the use of between-channel
level differences (ratios), which in theory factor out source
spectral characteristics and thus should also be characteris-
tic of particular source locations. Level differences have the
attraction that small timing uncertainties or drift between
channels have no influence, whereas cross-correlation anal-
ysis relies on good synchrony for the duration of the meet-
ing. However, our preliminary results (to be reported later)
show that level differences, even for the high-energy por-
tions of the signal, have very high variances, possibly re-
flecting the complex spectral responses of the reverberant
coupling between speakers and distant mics. We will, how-
ever, further investigate this cue as another possible source
of information for speaker turn estimation.
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